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Abstract

This paper presents the numerical simulations of a flow around an exhaust valve, inside the cylinder of a four-
stroke combustion engine. The different flow models have been tested. Besides, the impact of the dimensionality
and geometry detailness has been studied. Fixed (i.e. non-moving) geometry and steady boundary conditions have
been assumed for all simulations. All the results presented have been obtained by a newly developed CFD package,
based on finite volume method (FVM) with an AUSM-family numerical scheme.
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1. Introduction

The exhaustion phase in a four-stroke engine is a phenomenon determined by many factors.
Except the challenging shape of the exhaust channel inside a real engine, the gas leaves the
combustion chamber at supersonic velocity and probably some chemical reactions are still being
terminated even during the exhaustion. Whole process is unsteady since at operating engine
revolutions the exhaust valve needs to open and close several ten-times per second.

Fig. 1. Reciprocating engine at exhaustion phase, illustrative figure

Due to the tough accessibility to the domain, there are almost no experimental data to com-
pare the numerical solutions with. On top, the vicinity of the exhaust valve belongs to one of
the least explored domains in whole engine. Therefore a new numerical software is developed
in a stepwise manner, such that we have good confidence in its results as well as in the flow
structure during the exhaustion.
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2. Governing Equations

The flow is modelled by conservation laws of mass, momentum and energy in a form

oW OF 0G  OH OR _9S  OT

W+a—m+a—x2+a—%_a—:ﬁ+a—:@+a_x3’ 1)
with W the vector of conservative variables
W = |p, pwi, pws, pwy, e|”, 2
F, G, H the convective fluxes and R, S, T the viscous fluxes
F = |Pw17 pwi + p, pwiws, pwiws, (e + p) ‘w1‘T
G = |pw2, pwiwsy, pwi + p, pwows, (e + p) ~w2|T 3)
H = |pws, pwiws, pwsws, pw? + p, (e +p) - ws|"
R = |0, i1, 712, Tu3, W1Ti1 + WoTig + W3Ti3 — (I1|T
S |0, T12, Toz, To3, W1Ti2 + WaTeg + W3Toz — Q2|T
T = [0, 713, To3, T33, W1T13 + WaToz + W3T33 — QS|T

The variables p, & = (wy, we, w3), €, p, h =e+ % represent the density, the velocity compo-
nents, the internal energy per unit volume, the pressure and the enthalpy. The stress tensor 7 is
considered symmetric, with

p (208 = 2diva) ifi=

Tij = ] “4)
p(Ge+e) i
and the heat flux X\ a7
;= —— ; 5
4 Pr Oz; )

with A being the thermal conductivity, Pr the Prandtl number and 7 the temperature. The system
is closed by the equation of state

1
p= (=1 o= 2ol + w4 ud ©
and the Sutherland’s law 52
T
= iy (7)
T+S
with v = 1.4 the Poisson’s constant and C; = 1.458 - 1079 - :f/?, S = 110.4 K other consti-

tutive air constants. As intimated, the working medium has been considered air respecting the
laws of an ideal gas and with no chemistry involved.

Turbulence Model

When turbulent computations mentioned, the two-equation Menter’s baseline model [2] is al-
ways considered. The model uses a decomposition of flow variables into a mean value and a
fluctuation, written as

X=X+ (8)
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The original equations (1) are understood as the transport equations of actual values. For the set
of equations used, Favre’s density weighted averaging [1] has been chosen, as it is the suitable
averaging for compressible models.

On the right hand side of the momentum equations a tensor of turbulent stresses pwiw3
occurs due to the averaging. This tensor has been approximated with the Boussinesq hypothesis
that assumes analogy between the molecular and the turbulent momentum transport. The tensor
is then expressed as

— ow; ow; 2_ oW, 1 —F
_pw§w§- = [ (813 + 8%; — géij ax:> — géijpwfcw;, ©)]
where the turbulent viscosity p; replaces all the unknown entries of the tensor. Such set of
averaged equations (so-called Reynolds-Averaged Navier-Stokes equations) holds the form of
(1), with the variable 7 from equation (3) substituted by summation of terms (4) and (9). The
turbulent viscosity is computed as follows

_k
e =""p—, (10)
w
where ~* is the model constant, k is the turbulent kinetic energy and w is the specific dissipation
rate. The variables k£ and w are computed using two extra transport equations

Dk ow; 0 ok
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"Dt 7 vy Ox; fp+ 0z, G topm) 0 ( P w Ox; Oux; (12)

with 0%, 0, o, v, 3, o2 another model constants. By the use of a function F7, this model blends
between the classical k— model in freestream regions and the k—w model near the walls in fact.
This blending function eliminates the boundary condition sensitivity.

On the right hand side of the energy equation an extra term pw;h' arises due to the aver-
aging. This term represents turbulent transport of energy which is modelled regarding to the
Boussinesq hypothesis as

&aﬁ
Prt a.ﬂvz '

pwih! = (13)

with Pr; = 0.9 the turbulent Prandtl number.

3. Mathematical Formulation and Boundary Conditions

After plugging turbulent transport equations (11) and (12) into the original set of equations (1)
seven (resp. six) differential equations appear to be solved for 3D (resp. 2D) model. For the
sake of clarity a 2D computational domain is shown and described in fig. 2. The solution of
system (1), (11) and (12) is the function fulfiling these equations in the domain interior, initial
condition at t = 0 and various boundary conditions (BC). In general four different BC’s appear
at each computation:

inlet mean value of velocity w;,; is imposed through its magnitude and incidence angle, tem-
perature T' = T},;.; and turbulent variables given by Menter’s paper [3]

Moo
k = kine = Winlet * 5
inlet Winlet 100
‘winlet|
= Winlet — . 14
w Winlet Toes (14)
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Fig. 2. Scheme of computational domain
outlet mean value of pressure p,,ue; i imposed, such that pressure ratio over the domain
reaches requested value.
symmetry axis so-called non-permeability condition /- 7 = 0

wall so-called no-slip condition w = 0 and for turbulent variables

kwar = 0
60 - v
Wuwall m

using again suggested expressions and parameters of the paper [3].

The inlet and outlet boundary conditions are completed by suitable Neumann’s type conditions
for remaining variables. Because the computational domain has been assumed symmetric along
the valve axis, the 3D computations have been realized on a cylindrical wedge of the geometry.
Therefore one more BC type appears for 3D computations:

cylindrical periodicity superposes variables from corresponding wedge surfaces.

4. Computational Grid

The computational domain has been covered with a computational grid, consisting of trian-
gles and/or quadrilaterals for 2D computations (structured or unstructured configuration) and
hexahedrons for 3D computations (only structured configuration). Fig. 3 shows examples of
structured multi-block grids for planar and spatial cases. As hinted on the picture, the spatial
grid has been constructed as an axisymmetric extrusion of the planar domain.

block 1

block 2

Fig. 3. Examples of structured multi-block grid, 2D — 3D
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5. Numerical Method

The time marching method has been based on a Finite Volume Method (FVM). Hence the
original set of equations (1) is discretized as

Wn+1 —wn 1 #faces _ . _ .
v A to— u_ Z (—Fk-nk—‘rRk-TLk) , (15)
bok=1

with time derivative on the left-hand side, j; the meassure of i-th volume, Fk the numerical
approximation of advection fluxes F', G, H (see equation (18)), R, the numerical approximation
of viscous fluxes R, S, T and @ = (nq, ng, n3) the unit outward normal vector to k-th face of
the volume <.

5.1. Time Integration

Two methods of explicit or implicit time integration have been used. The explicit method eval-
uates the right-hand side of equation (15) at the time level n, allowing direct iterations in time.
The implicit method computes fluxes from both the previous time level n and the actual time
level n + 1, leading to a system of equations

#faces
At - -
anrl _ Win _ /T Z (—F (Wn’ W?’Hrl)k A+ R (V[/n7 WnJrl)k . ﬁk) 7 (16)
i =1
which transforms to
JW™ AW = —-R(W") , (17)

with J (W™) the Jacobian matrix, AW = W™+ — W™ the difference in the vector of unknowns
and R (W") the remaining terms (time dependent terms, numerical fluxes, source terms). Equa-
tion (17) has been solved by the GMRES iterative solver provided by PETSc (see [4]).

5.2. Advection Fluxes

A numerical scheme able to capture flowfields with wide velocity range was needed. Therefore
the AUSM™" in a form of [5] has been used. The scheme is based on a solution of 1D Rie-
mann problem (flux over a discontinuous step between two states W, and W) and is extended
to more space dimensions through rotation to the normal direction of the volume face. This
approach converts any 2D or 3D fluxes to one dimensional case in fact. The numerical flux F
is then written

pa 0

) pw1aG ny
Fy -1y = : pw2a +| ne | 'p =>=Mip - Prr+prr  (18)

3

0

PW3a
(pE+p)a

witha =, /7’—; the local speed of sound and M = ? the local Mach number in the normal

direction. Terms M g, prr are computed with the splitting polynomials and ® ; is upwinded.

MLR = MEZQ(ML) + M(;)(MR) + Morr (19)
PLR = ng) (pr, ML) + P5) (PR, MR) + Peorr (20)

N {(I)(WL) if Mpg >0 o

@(WR) if Mg <0
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Splitting polynomials are defined

M(il) if [M]>1
M = ) . (22)
) M, (1 F16-3- M%) otherwise
1N .
bt M) if |[M|>1 o3
(%) M, {(j:Q ~M)F16-a-M - M?g)} otherwise
with lower order polynomials
1 1
M (M+|M)), ME=+-(M+1)*. (24)

m~ 9 (G —}

Both equations (19), (20) contain correction terms, that ensure better convergence for low speed
flows

K _ _
M.y = ——Lmax(1—o? 0) PEPE (25)
fa p'a2
Pcorr = *Ku‘ij'pi '(pL‘I’pR)'fa'a’(wR*wL)
where
) [Lp? 4+ w2
fo= M@= M), =¥ F (26)

aLr
My = min (1, max (]\7./, MOQ)) .

M is a user-defined reference Mach number. The effect of correction terms (25) has been
tested on an inviscid flow in planar channel with a 10 % circular arc bump on lower wall, so
called GAMM channel [6].

Three flow regimes for M., = 0.675, M, = 0.200 and M., = 0.020 have been tested by
a numerical scheme without correction terms and with them respectively. The isolines of the
Mach number are shown in fig. 4. An increase of robustness for a AUSM P scheme has been
observed, as the solution preserves better symmetry even for low and very low flow speeds,
whereas the solution at nominal speed M, = 0.675 remains untouched.

vV vV
O O o - -
) ° Ma = 0.020
L & — ' 000 |
Ma = 0.200
Ma = 0.675

Fig. 4. Mach number isolines for AUSM scheme without correction terms (left) and with correction
terms (right) for different main-stream velocity
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solution (original)

N —— piece-wise linear

solution (reconstructed)

Fig. 5. Linear reconstruction of 1D solution (left), reconstructed values before and after a limiter appli-
cation (right)

5.3. Viscous Fluxes

Viscous terms of equation (15) have been computed by a central approximation, using dual cells
connecting neighbouring cell centroids with edge halves. The centroidal values have been given
by the solution and the values at edge halves have been interpolated. Derivatives required for
viscous fluxes (equation (3)) have been computed using the Green theorem.

6. Improvement of Spatial Accuracy

Spatial accuracy of upwind schemes is generally limited to first-order. For an improved ac-
curacy the linear reconstruction with a limiter has been adopted in order to interpolate higher
order left and right states across a cell interface, see fig. 5 left. Because the numerical scheme
only requires values Wy, and Wx without providing any information about their position and/or
meaning the algorithm (18) remains unchanged also after the linear reconstruction.

Linear reconstruction might unfortunately lead to spurious oscilations (see fig. 5 right),
hence a suitable limiter must always be applied in order to overcome convergence problems.
This work shows results, which have used either the minmod [7] or the Barth limiter [8].

7. Results
7.1. Effect of the Numerical Scheme Accuracy

Fig. 6 presents a comparison of the first order scheme with the higher order solution. The figure
presented has been obtained for 2D laminar flow model for valve opening 4 mm. The inlet flow
temperature has been set to 500 K and pressure ratio ;% =4.0.

The flow topology consists of a main beam, which accelerates from deep subsonic velocity
in the combustion chamber to supersonic velocity at the exhaust pipe. The maximal Mach

- = 1
— ; 08

Fig. 6. Comparison 15¢ order solution (left), higher order solution (right), contours of Mach number,
velocity streamlines
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Fig. 7. Comparison 2D solution (left), planar slice of 3D solution (right), contours of Mach number,
velocity streamlines

number reached within the flow is M,,,, = 1.94 for the first order solution and M,,,, = 2.32
for the higher order solution. The more accurate solution captures the expansion with better
resolution and also the vortex structure around the beam shows more details. Only the higher
order results are therefore shown on remaining figures of this paper.

7.2. Comparison of 2D and 3D Solution

Fig. 7 brings comparison of 2D and 3D solution. The results have been obtained for inviscid
flow model with identical boundary conditions for both computations: valve opening 4 mm,
inlet temperature 500 K, pressure ratio % = 1.69.

Even for these inviscid computations large recirculation zones have occured, also with one
recirculation leaving and re-entering the outlet boundary for both cases. The impact of dimen-
sionality is however indispensable in the velocity magnitude, size of recirculation zones and

trajectory of the main flow beam.

7.3. Effect of the Valve Casing

Fig. 8 presents the influence of the detailness of the exhaust pipe. The results have been com-
puted with a 2D laminar flow model, with the valve opening 4 mm, inlet temperature 500 K and
the pressure ratio % =4.0.

The casing strongly affects the recirculation zones on both sides of the channel. The smaller
cross-section at the complete geometry (fig. 8, left) helps closing the separation along the upper
wall and smoothes the exhaust in the pipe. The separation along the valve is larger on the other
hand. The simplified geometry without casing (fig. 8, right) suffers from the backflow through

the outlet boundary.

Fig. 8. Comparison of geometry with valve casing (left), without valve casing (right), velocity stream-
lines
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Fig. 9. Comparison of laminar (left) and turbulent (right) flow model, contours of Mach number

7.4. Influence of the Flow Model

The results in fig. 9 compare solutions for laminar and turbulent flow model at identical geom-
etry and analogous boundary conditions: valve opening 4 mm, temperature 500 K, pressure at
the inlet 400 kPa and at the outlet 100 kPa, analogically to the exhaust to the atmosphere.

Due to the additional dissipation of the turbulent flow model both the supersonic expansion
and the recirculation zones are captured differently. The turbulent model does not allow such
acceleration and its outlet is almost subsonic. The full structure is described in the following
section.

8. Flow Structure

Fig. 10 reveals the flow topology of the turbulent solution. The result does not show any back-
flow through the outlet boundary and the average outlet velocity is M, = 0.72 (maximal
outlet velocity M.t = 1.12). The overall maximal Mach number is M,,,, = 2.85 and ap-
pears inside the first supersonic expansion behind the seals.

Several separation zones have appeared in the domain due to the shock waves or the sharp
corners. These separations form an artificial channel throat, which allows further expansion.

9. Conclusion

Several results of the gas exhaustion have been acquired with the new numerical code. The
influence of particular factors such as the presence of the valve casing, dimensionality (2D or
3D model) and different flow model has been shown. The high sensitivity to these factors has
been proved with even small modifications causing markant flow changes.

detail of valve seat detail of outlet boundary

supersonic expansi
around corner

detail of expansion detail of bottom corner
|

separation behind
shock waves valve seat
deflecting flow }
/
causing separations
on both sides

~——__separation at

_-comer where

. . " valve meets
>separa1|on behind .- its casing

the pipe corngr’/

002040608 1 12141618 2 222426258 3 ) :
separation on the \\
lower smooth wall /,r\\ i

T

— artificial channel throat

" . i separation on
determined by recirculations - applain wall

Fig. 10. Detailed flow structure of the turbulent solution
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All results shown have contained several separation zones and their importance to the so-
Iution has been discovered. They have turned out to be the key issue in order to compute an
accurate solution. Hence, the turbulent flow model seems to be the most appropriate. The tur-
bulent result has therefore been explored in detail and it has shown more realistic features than
the inviscid or laminar flow models.

Thus the turbulence model will be extended to 3D within the numerical code and also some
further extensions of the code to unsteady boundary conditions and moving boundaries will be
performed. Current work has shown that the gas exhaust is a complex phenomenon which does
not allow many simplifications (dimension, shape, etc.) in order to obtain a trustworthy result.
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