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Abstract

This paper explores the application of first integrals in constructing Lyapunov functions for stability analysis of
dynamical systems in stochastic domains. A key advantage of using first integrals is their ability to embed system-
specific structural and physical information, distinguishing the resulting Lyapunov functions from generic positive
definite functions with no intrinsic connection to the system. However, since first integrals do not inherently satisfy
Lyapunov conditions, additional constraints—often with direct physical interpretations—must be introduced to
ensure positive definiteness and suitable monotonic behavior. The method is demonstrated on three mechanical
systems subjected to parametric noise: a nonlinear aeroelastic single-degree-of-freedom oscillator, a spherical
pendulum with two first integrals, and a gyroscope with three first integrals.
© 2025 University of West Bohemia in Pilsen.
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1. Introduction

The study of dynamic stability in systems subjected to random excitation naturally extends the
classical analysis where excitation is purely deterministic. Practical experience has shown that
random excitation can have both stabilizing and destabilizing effects on system responses. In
engineering applications, for example, it is common to introduce artificial turbulence to sup-
press vibrations—particularly in fields such as aerospace and civil engineering. These solutions
are often developed heuristically and may lack a rigorous theoretical foundation. Conversely,
random disturbances can interact hazardously with deterministic processes, significantly reduc-
ing system stability, even under seemingly benign conditions (e.g., icing or corrosion on cables,
uneven road surfaces, or minor aerodynamic irregularities).

The concept of dynamic stability under random excitation (DSR), whether the randomness
is additive or multiplicative, can be regarded as a generalization of the deterministic stability
problem. Multiple definitions of DSR exist, reflecting differences in factors such as the type of
response parameter considered, the interpretation of stability over time, and the properties of
the input stochastic processes, e.g., [7, 11].

Among the tools used to investigate stochastic stability, a prominent method is the extension
of Lyapunov’s second method to systems under random excitation, as formalized in classical
monographs such as [7] and [11]. Despite its foundational role in deterministic systems, Lya-
punov’s second method has been applied less frequently to stochastic problems. It is often
regarded as better suited for gaining structural insight into system behavior rather than pin-
pointing specific stability thresholds. For a brief overview of Lyapunov methods in the context

*Corresponding author. Tel.: +420 225 443 221, e-mail: naprstek@itam.cas.cz.
https://doi.org/10.24132/acm.2025.1026

177

https://doi.org/10.24132/acm.2025.1026


J. Náprstek et al. / Applied and Computational Mechanics 19 (2025) 177–194

of stochastic differential equations, see [23]. A more general perspective on its use for random
dynamical systems is offered in the review part of [2].

Nevertheless, when both sufficient and necessary conditions can be established for the exis-
tence of a Lyapunov function that corresponds to the desired stability type, the method becomes
highly powerful for both theoretical investigations and practical applications. The construction
of a Lyapunov function, when feasible, provides a comprehensive perspective on the system’s
stability, considering both global and local aspects. This versatility is the main strength of the
Lyapunov’s second method, though it also introduces certain challenges.

In the stochastic setting, the Lyapunov function can be interpreted as a generalized upper
bound for the the total energy of the system. Conceptually, it corresponds to a positive definite
function on the phase space (excluding the origin), with a negative total derivative with respect
to time within the same region, corresponding to an energy-dissipating system. The system’s
evolution, regardless of initial conditions, is governed by this dissipation, possibly counteracted
by any internal or external energy inputs, leading eventually to the convergence of all state vari-
ables to zero. This physical analogy underlies many of the practical methods used to construct
Lyapunov functions in specific stochastic systems.

Finding appropriate Lyapunov functions for stochastic systems remains a non-trivial task
and continues to be an active area of research. Early foundational work on the stochastic gen-
eralization of the Lyapunov method began with [3], and was formally developed in [10], with
methods for constructing suitable Lyapunov functions discussed in [9]. The concepts introduced
in both papers were integrated and elaborated upon in the monograph [11]. In contrast, a mod-
ern contribution by [20] proposes a systematic procedure for constructing Lyapunov functions
specifically for second-order linear stochastic stationary systems.

The choice of a Lyapunov function is critical, as an inappropriate form may yield misleading
or inconsistent results. Its construction demands careful consideration of the system’s specific
structure. However, no general method exists for constructing Lyapunov functions in either
deterministic or stochastic contexts.

In deterministic systems, Lyapunov functions are often derived by working backward from
the total time derivative, resulting in a first-order partial differential equation in spatial variables.
Such equations are commonly solvable via methods like the d’Alembert’s method of character-
istics (e.g., [12]), providing viable Lyapunov candidates. This approach, however, does not
directly extend to stochastic systems, where the relationship between the Lyapunov function
and its evolution differs fundamentally.

In the stochastic domain, the classical total derivative is replaced by the adjoint Fokker-
Planck (FP) operator L{·}, which accounts for the random function increment with respect to
both time and space variables, known as the Wiener stochastic differential. This substitution
reflects the fact that the magnitude of the stochastic increment ∥∆u∥ typically scales as

√
∆t,

as discussed in [4, 19]. For a rigorous treatment of this framework, see [1, 7].
Given these challenges, alternative strategies are often required (e.g., [11]). One such ap-

proach leverages first integrals of the corresponding deterministic system. A classical example
is the use of total energy—a conserved quantity—as a basis for constructing a Lyapunov func-
tion, an idea originally proposed by Chetaev in the deterministic setting [5]. This work adopts
this approach to construct Lyapunov functions for systems with polynomial nonlinearities sub-
jected to both Gaussian parametric and additive white noise.

This paper builds on presentations given at the 2022 and 2023 Computational Mechanics
conferences and the 2022 Engineering Mechanics conference. It extends the previously intro-
duced concepts in light of the valuable feedback and discussions that arose during these events.
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The paper is organized as follows: Following this introduction, Section 2 provides general
remarks on stochastic stability. Section 3 outlines the construction of Lyapunov functions based
on first integrals of the underlying physical system. Section 4 illustrates this approach using
a single-degree-of-freedom aeroelastic oscillator with Rayleigh- and van der Pol-type damp-
ing. Section 5 extends the analysis to a two-degree-of-freedom spherical pendulum. Section 6
presents a three-degree-of-freedom example involving a gyroscope, modeled as a perturbed
force-free motion of a symmetric top. The final section summarizes the conclusions.

2. Stochastic stability and Lyapunov functions

A general stochastic system can be described in the following form:

u̇i = fi(t,u) +
n∑

k=1

wik(t)hik(u). u(t0) = u0 , (1)

or, when the deterministic part fi(t,u) is separable in t and u, as

u̇i =
n∑

k=1

(Aik(t) + wik(t))hik(u) ,

fi(t,u) =
n∑

i=1

Aik(t)hik(u) .

(2)

Here, hik(u) are the continuous diffusion-drift coupling functions, equations (1)–(2) represent
an element-wise (Hadamard-style) weighting of u = {ui}T , i = 1, . . . , n, and u̇i denotes the
time derivative of ui.

According to [4], the adjoint Fokker-Planck (FP) operator, also known as the Kolmogorov
backward operator, is given by

L{λ(t,u)} =
∂λ(t,u)

∂t
+

n∑
i=1

κi
∂λ(t,u)

∂ui
+

1

2

n∑
i,j=1

κij
∂2λ(t,u)

∂ui∂uj
, (3)

where κi and κij represent the drift and diffusion coefficients, respectively, of the n-dimensional
Markov process u(t) given by

κi = fi(t,u) +
1

2

n∑
k,l,p=1

∂hik(u)

∂up
hip(u)siklp , (4)

κij =
n∑

k,l=1

hik(u)hjl(u)sikjl . (5)

In (1)–(5), the variables and parameters denote the following: λ(t,u) is a candidate Lya-
punov function, Aik(t) are the nominal (deterministic) system coefficients, possibly represented
by fi(t,u) in (1), wik(t) are zero-mean Gaussian white noise processes with cross-intensities
sikjl, satisfying E{wik(t)wjl(t

′)} = sikjl δ(t− t′), and E{·} denotes the mathematical expecta-
tion operator.

Note that the second term in (4) is specific to the Stratonovich interpretation of stochas-
tic differential equations. In contrast, under Itô’s interpretation—commonly used for systems
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driven by continuous processes—this term vanishes; see [19]. However, in scenarios where the
Stratonovich model is appropriate, this correction term can play a critical role in determining
the stability conditions.

The stability of the system described by (2) in the presence of random excitation is governed
by the structure of the matrix h(u) = (hij(u)) and the correlation properties of the noise
processes wij(t). For example, if h(u) is a square diagonal matrix and the noise processes are
independent, then the parametric noise has a purely destabilizing effect. However, it is also
possible to construct h(u) such that the influence of random excitation contributes positively to
the system’s stability.

The analysis of stochastic stability via Lyapunov functions closely relates to the determin-
istic case. Let λ(t,u) be a suitable candidate function satisfying the following conditions:

(a) λ(t,u) is positive definite in the Lyapunov sense, that is:

λ(t, 0) = 0 for all t > 0 , and
λ(t,u) > χ(u) for all u ̸= 0, t ≥ 0 ,

(6)

where χ : Rn → R is a continuous positive definite function, i.e., χ(0) = 0 and χ(u) > 0
for all u ̸= 0.

(b) λ(t,u) is continuous, with a continuous first derivative in time and continuous second
derivatives with respect to spatial variables. Consequently, the function

ψ(t,u) = L{λ(t,u)} (7)

should also be continuous.
If, after substituting u̇ using (2), the function ψ(t,u) is negative throughout a domain Ω and

vanishes or is undefined at the origin, then λ(t,u) qualifies as a Lyapunov function. In such a
case, for any initial condition with ∥u0∥ ≠ 0, the function λ(t,u) monotonically decreases as
t → ∞, while tending to zero in all spatial coordinates u. This behavior implies that the trivial
solution of the system given by (2) is stable in probability.

3. First integrals and the Lyapunov function

Consider a system whose equations of motion admit a first integral of the form

J0(u) = C0 = const, u = (u1, . . . , un)
T , (8)

where the difference J0(u)−J0(0) defines a positive definite function of the phase variables u.
In such cases, it is natural to select

λ(u) = J0(u)− J0(0) (9)

as a candidate Lyapunov function.
In purely conservative systems, the total mechanical energy can serve as a Lyapunov func-

tion. When nonconservative forces are introduced, stability is influenced by the type of these
forces—dissipative forces that dissipate energy and gyroscopic forces that preserve energy but
affect the system’s dynamic coupling.

The equations of motion in Lagrangian form are given by

d

dt

∂T

∂u̇k
− ∂T

∂uk
+
∂Π

∂uk
= Dk + Γk, (10)
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where T is the kinetic energy, Π is the potential energy, and Dk represents dissipative forces.
Γk denotes generalized gyroscopic (or workless) forces, which satisfy∑

k

Γku̇k = 0 , (11)

so they contribute no net work and, therefore, do not change the mechanical energy.
This notation separates the symmetric (inertial) part from the skew-symmetric (gyroscopic)

part of the operator. Only the symmetric part contributes to the quadratic form associated with
the energy function, whereas the gyroscopic part preserves energy and influences the system’s
stability solely through its coupling structure.

With this convention, and assuming that Dk and Γk are Euler-homogeneous functions of the
phase coordinates, the total energy balance can be written as

d

dt
(T +Π) = −

∑
mΨm, (12)

where m denotes the degree of homogeneity of the function Ψm. This form highlights how the
rate of change of total energy is governed by the structure of the nonconservative forces acting
on the system.

Equation (12) suggests the existence of a first integral corresponding to the total mechanical
energy. In the deterministic setting, if T+Π is selected as the Lyapunov function, the right-hand
side of (12) characterizes the system’s stability domain, as follows from the Lyapunov’s direct
method.

When the system is perturbed by Gaussian parametric white noise, a modified formulation
analogous to (12) can be obtained

L {T +Π} = −
∑

mΘm , (13)

where L{·} denotes the adjoint Fokker-Planck operator, and Θm is a homogeneous function of
the phase coordinates and noise intensities. Stability assessment proceeds analogously to the
deterministic case.

Beyond (8), the system may possess additional first integrals

J1(u) = C1, . . . , Js(u) = Cs, (14)

though these integrals may not yield positive definite functions when reformulated as in (9).
While it is possible to retain the Lyapunov function in the form of (9), neglecting the contribu-
tion of additional integrals in (14) may lead to overly conservative or inconclusive results due
to a significant gap between necessary and sufficient stability conditions.

A more comprehensive Lyapunov function may be constructed as a linear combination of
the first integrals and their functions, for instance,

λ(u) =
s∑

i=1

ai
(
Ji(u)− Ji(0)

)
+ bi

(
J2
i (u)− J2

i (0)
)
, (15)

where ai and bi are scalar coefficients chosen to ensure that λ(u) is positive definite.
First integrals of the type given in (14) are commonly associated with systems possessing

cyclic coordinates. In such cases, equation (10) reduces to

d

dt

∂T

∂u̇k
= Dk + Γk, (16)
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leading to first integrals of the form

∂T

∂u̇k
= −

∑
mΨm. (17)

This reduction enables analysis of the structure of generalized impulses. In the absence of dis-
sipative and gyroscopic forces (i.e., Dk = Γk = 0), the generalized impulse remains conserved.
Extension of this concept to the stochastic domain is evident.

In conclusion, several additional remarks can be made regarding the general construction
principle: (i) one of the coefficients ai or bi may be fixed arbitrarily—for example, by setting
a1 = 1; (ii) in many cases, the linear part of (15) alone provides a sufficient Lyapunov candidate;
(iii) in certain situations, first integrals can be identified directly from physical considerations,
even without explicit knowledge of the governing equations. It should be noted, however, that
the construction of a Lyapunov function—even when based on first integrals—retains a degree
of subjectivity. Consequently, modifications to (15) beyond the prescribed algorithm are per-
missible, provided that the resulting function preserves the required properties of a Lyapunov
function.

4. Single-degree-of-freedom aeroelastic system

The motion of a prismatic body transverse to an airflow results from aeroelastic interaction
between the body and the surrounding fluid, as illustrated in Fig. 1. The associated pressure
fluctuations in the airflow are predominantly random. When modeling galloping using a single-
degree-of-freedom (SDOF) system, the dynamics can be described by a nonlinear differential
equation, as presented in [8, 14, 21],

Mü(t) + Fdam(u, u̇) + Cu(t) = φM(t) , (18)

where M and C denote the mass and stiffness coefficients, respectively, and Fdam(u, u̇) repre-
sents the nonlinear damping force. In the absence of external forcing, the excitation is embed-
ded within the damping term. Variations in the lift force due to changes in the angle of attack
may lead to self-excitation. Additionally, random fluctuations in air pressure act as stochastic
perturbations of the damping mechanism and stiffness coefficient. This effect may be formally
written as φM(t) = −M (w1u− w2u̇), where w1, w2 represent the perturbations.

Fig. 1. Schematic of an SDOF system exposed to transverse air flow
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Several forms of Fdam(u, u̇) have been proposed. The most common lead to two canonical
types:

(i) Rayleigh-type damping:

Fdam(u, u̇) = 2M

[(
ωbc +

1

2
δ2u̇2(t)

)
− ωba

]
u̇(t) , (19)

(ii) van der Pol-type damping:

Fdam(u, u̇) = 2M

[(
ωbc +

1

2
γ2u2(t)

)
− ωba

]
u̇(t) . (20)

In both expressions, ωbc corresponds to the classical viscous damping coefficient, while ωba

accounts for aerodynamic effects due to lift variation. Their difference ωb = ωba − ωbc charac-
terizes the net contribution of aerodynamic destabilization. The parameters δ and γ define the
intensity of the nonlinear damping terms.

These damping components are subject to random fluctuations due to airflow irregularities,
modeled as Gaussian white noise processes w1(t) and w2(t), with respective intensities s11, s22,
and cross-correlation intensity s12.

Introducing the phase variables u = (u1, u2)
T = (u, u̇)T , the system governed by (18) can

be reformulated in normal form as follows:
(i) Rayleigh-type system:

u̇1 = u2 ,

u̇2 =
(
2ωb − δ2u22 + w2

)
u2 − (ω2

0 + w1)u1 ,
(21)

(ii) van der Pol-type system:

u̇1 = u2 ,

u̇2 =
(
2ωb − γ2u21 + w2

)
u2 − (ω2

0 + w1)u1 ,
(22)

where ω2
0 = C/M denotes the squared natural frequency of the undisturbed linear system.

Both damping models possess a first integral of motion corresponding to total energy. There-
fore, an appropriate deterministic Lyapunov function can be defined, as in [15, 16, 18], by

(i) for Rayleigh-type damping:

λ(t,u) =
1

2
u22 +

1

2
ω2
0u

2
1 , (23)

(ii) for van der Pol-type damping:

λ(t,u) =
1

2

(
u2 −G(u1)

)2
+

1

2
ω2
0u

2
1 , (24)

where the function G(u1) in (24) incorporates the nonlinear damping contribution

G(u1) =

u1∫
0

(
2ωb − γ2ζ2

)
dζ = 2ωbu1 −

1

3
γ2u31 . (25)
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Both equations (23) and (24) define positive definite functions. In accordance with the
notation introduced in (2), (4) and (5), the coefficients κi and κij take the following forms:

(i)

κ1 = u2 ,

κ2 = (2ωb − δ2u22)u2 − ω2
0u1 ,

κ11 = κ12 = κ21 = 0 ,

κ22 = u21s11 + u1u2(s12 + s21) + u22s22 ,

(26)

(ii)

κ1 = u2 ,

κ2 = (2ωb − γ2u21)u2 − ω2
0u1 ,

κ11 = κ12 = κ21 = 0 ,

κ22 = u21s11 + u1u2(s12 + s21) + u22s22 ,

(27)

where, with respect to (2), n = 2,m = 3, h12 = h22 = u2, h21 = u1; h23 = u32 or u21u2 for cases
(i) and (ii), respectively. The stochastic inputs are defined as w21 = −w1, w22 = w2; sikjl = skl
for i = 2 or j = 2, and sikjl = 0 whenever any of the following holds: i = 1, j = 1, k = 3 or
l = 3.

Denoting ∂x = ∂/∂x, the derivatives of the Lyapunov function λ(t,u) with respect to the
phase variables, as required in (3), are given by

(i)
∂u1λ(t,u) = ω2

0u1 ,

∂u2λ(t,u) = u2 ,

∂u2
2
λ(t,u) = 1 ,

(28)

(ii)
∂u1λ(t,u) =

(
u2 − (2ωb − 1/3 γ2u21)u1

)
(γ2u21 − 2ωb) + ω2

0u1 ,

∂u2λ(t,u) =
(
u2 − (2ωb − 1/3 γ2u21)u1

)
,

∂u2
2
λ(t,u) = 1 ,

(29)

Finally, combining the partial expressions from (26)–(29), the application of the adjoint FP
operator L{·} to the Lyapunov function yields

L{λ(t,u)} =

(i) ψ(t,u) = u22
(
2ωb − δ2u22

)
+ u21s11 + u1u2(s12 + s21) + u22s22 , (30)

(ii) ψ(t,u) = ω2
0u

2
1

(
2ωb − 1/3 γ2u21

)
+ u21s11 + u1u2(s12 + s21) + u22s22 . (31)

When the noises w1 and w2 are independent (i.e., s12 = s21 = 0), it follows from the
structure of (30)–(31) that both noise terms have a destabilizing effect compared to the deter-
ministic case. The condition ψ(t,u) = 0 can be employed to estimate the stability boundaries
of the original system. Since the model includes only symmetric, independent parametric noise
sources without external excitation, the system’s response is likewise symmetric. As a result,
the processes u1 and u2 can be treated as centered.

If the process u1 can be approximately considered Gaussian, the relation D4
ii = 3(D2

ii)
2

holds, where D2
ii and D4

ii denote the second and fourth central moments of ui, respectively.
This approximation is reasonable, particularly for small amplitudes when the systems governed
by (19) and (20) behave approximately linearly. In such cases, as shown in [18], the estimated
stability boundary in the domain D2

11, D
2
22 > 0 takes the form:

(i) −3δ2(D2
22)

2 + (2ωb + s22)D
2
22 + s11D

2
11 = 0 , (32)

(ii) −ω2
0γ

2(D2
11)

2 + (2ω2
0ωb + s11)D

2
11 + s22D

2
22 = 0 . (33)

184
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(a) (b) (c)

Fig. 2. (a) Stability domains for the van der Pol system (case (ii)); flow speeds: 1⃝ – subcritical,
2⃝ – critical, 3⃝ – supercritical. (b)–(c) Comparison of stability domains for the Rayleigh (parabola

with horizontal axis, yellow, case (i)) and van der Pol (parabola with vertical axis, blue, case (ii)) damp-
ing models for subcritical (b) and supercritical (c) flow speeds

The curves defined by (32)–(33) are parabolas passing through the origin. Their axes are
(i) horizontal for (32) and (ii) vertical for (33). The stable region corresponds to the domain
where ψ(t,u) < 0, i.e., the region between the respective parabola and either (i) the positive
vertical axis of D2

22 or (ii) the positive horizontal axis of D2
11. These scenarios give rise to three

distinct cases, illustrated in Fig. 2a for the van der Pol system in case (ii).
In all graphs in Fig. 2, the shaded areas together with the arrows indicate the stability do-

mains, i.e., the regions where conditions (i) or (ii) are satisfied. In plot (a), the three curves
1⃝– 3⃝ defined by (33) represent subcritical, critical, and supercritical flow velocities, respec-

tively. For each curve, the stability region occupies the area between the parabola and the pos-
itive part of the horizontal axis. The three cases differ in whether the stability domain includes
the origin (subcritical), touches it (critical), or is displaced away from it (supercritical).

If the vertex of the parabola lies to the left of the D2
22 axis in case (i), or below the D2

11 axis
in case (ii), the stability domain extends to the origin (cf. curve 1⃝ in Fig. 2a and both curves
in Fig. 2b.). These conditions are satisfied when

(i) 2ωb + s22 < 0 , (34)

(ii) 2ω2
0ωb + s11 < 0 . (35)

If the vertex coincides with the origin—that is, if the inequalities in (34)–(35) become
equalities—the system is marginally stable near the origin. This situation corresponds to curve
2⃝ in Fig. 2a. In this case, it is possible for ψ(t,u) to attain zero or negative values without

requiring positive values of D2
11 or D2

22. The system is thus poised at the boundary between
unconditional stability and the onset of nonlinear, amplitude-dependent stabilization.

If either expression in (34)–(35) is positive, the vertex of the corresponding parabola lies
above the D2

11 axis or to the right of the D2
22 axis. This configuration is depicted by curve 3⃝

in Fig. 2a and by both curves in Fig. 2c. In such cases, secondary stability arises due to the
influence of the nonlinear damping terms, and the system exhibits bounded vibration within a
nonzero band. The onset of stability occurs at points D2

2k and D2
1k, given by

(i) D2
2k =

2ωb + s22
3δ2

, (36)

(ii) D2
1k =

2ω2
0ωb + s11
ω2
0γ

2
, (37)
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and are adjacent to the vertical axisD2
22 or the horizontal axisD2

11, respectively. These threshold
values mark the minimum amplitude of effective nonlinear damping required to counteract the
destabilizing influence of the flow.

When the airflow velocity—or equivalently, the parameter ωb—is sufficiently low such that
the stability domains in both cases extend to the origin, the system remains stable, and the
displacement perturbations due to parametric noise are negligible. In this regime, the system’s
behavior is largely independent of the damping model employed. Both Rayleigh- and van
der Pol-type nonlinearities produce nearly identical stability characteristics in this low-velocity
range.

In the supercritical regime, a common instability domain emerges for both models, and the
system’s response becomes highly sensitive to the specific form of the damping characteristics;
see Fig. 2c. As the airflow velocity increases, the stability boundary shifts along the diagonal of
the first quadrant. Beyond a certain velocity threshold, denoted D0 in Fig. 2c, the system enters
a nonlinear stability domain governed by the damping nonlinearity. This stability domain is
shared by both models and shows decreasing sensitivity to the exact form of the nonlinear
damping function. Similar behavior has also been reported in two-degree-of-freedom systems;
see [13,17]. Thus, at high flow velocities the dominance of nonlinear damping leads to a unified
stabilization mechanism, regardless of the specific damping formulation.

5. Two-degree-of-freedom spherical pendulum

The motion of a spherical pendulum rotating about a vertical axis serves as a more complex
example for constructing a Lyapunov function. The system dynamics are described using the
coordinates φ (the azimuthal angle around the vertical axis) and ξ (the angle between the vertical
axis and the pendulum arm). In the deterministic stationary state, the pendulum undergoes
uniform circular motion in the horizontal plane, as illustrated in Fig. 3 and discussed in [6].
However, in the presence of small random perturbations, the motion is altered.

The perturbed motion can be described by the expressions

ξ = α + u1, ξ̇ = u2, φ̇ = ω + u3 , (38)

Fig. 3. Outline of a two-degree-of-freedom pendulum
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where α denotes the nominal angle between the pendulum suspension and the vertical in the
unperturbed (deterministic) state. The relation ω2l cosα = g defines the connection between
the angular velocity ω, pendulum length l, and gravitational acceleration g.

The kinetic and potential energies, T and Π, are given by

T =
1

2
Ml2(ξ̇2 + φ̇2 sin2 ξ) , (39)

Π = −Mgl cos ξ . (40)

The kinetic energy T depends on the velocity φ̇ but not on the coordinate φ itself. Since
∂Π/∂φ = 0, the coordinate φ is cyclic, and no force acts directly along it. Moreover, because
gravity is a potential force, the system possesses two first integrals

T +Π =
1

2
Ml2(ξ̇2 + φ̇2 sin2 ξ)−Mgl cos ξ , (41)

∂T

∂φ̇
=Ml2φ̇ sin2 ξ . (42)

Equation (41) represents the total mechanical energy and corresponds to (12). Equation (42)
corresponds to the integral form in (17) and expresses conservation of angular momentum about
the vertical axis. These integrals, derived from general dynamical principles, allow for system
characterization without requiring the explicit derivation of the governing differential equations.

Using (41)–(41), a Lyapunov function can be constructed in the form of (15) to analyze the
stability of the pendulum’s motion. In this particular case, it is sufficient to consider only the
linear part of (15) by setting b1 = b2 = 0. This leads to the form

λ(u1, u2, u3) = a1
(
J1(u)− J1(0)

)
+ a2

(
J2(u)− J2(0)

)
, (43)

where J1 and J2 are derived by substituting (38) into (41)–(41), i.e.,

2
(
Ml2

)−1
J1(u) = (ω + u3)

2 sin2(α + u1)−
2g

l
cos(α + u1) + u22 ,(

Ml2
)−1

J2(u) = (ω + u3) sin
2(α + u1) .

(44)

The coefficients a1 and a2 can be selected as

a1 = 2
(
Ml2

)−1
, a2 = a

(
Ml2

)−1
, (45)

where the parameter a is to be determined to ensure that the Lyapunov function λ is positive
definite.

Substituting (44) into (43) yields

λ(u1, u2, u3) = u22 + (ω + u3)
2 sin2(α + u1)−

2g

l
[cos(α + u1)− cosα]

+
[
(ω + u3) sin

2(α + u1)− ω sin2 α
]
a− ω2 sin2 α. (46)

Assuming small perturbations u1, u2, u3, equation (46) can be expanded using a Taylor series.
The resulting approximation is

λ(u1, u2, u3) = u21ω
[
(a+ ω) cos 2α + ω cos2 α

]
+ u22 + u23 sin

2 α

+ (2u1ω cosα + u3 sinα + 2u3u1 cosα) (a+ 2ω) sinα + . . . (47)
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J. Náprstek et al. / Applied and Computational Mechanics 19 (2025) 177–194

Here, the relation g = ω2l cosα has been applied, which reflects the equilibrium condition
where the centrifugal force resulting from rotation balances the component of gravitational
force along the pendulum arm.

To ensure that λ(u1, u2, u3) is positive definite, the linear terms in u1, u2, and u3 must be
eliminated. This condition is satisfied by choosing a = −2ω. Substituting this value yields the
simplified Lyapunov function

λ(u1, u2, u3) = (u21ω
2 + u23) sin

2 α + u22 + . . . (48)

Returning to the system under consideration, the equations of motion can be derived using
(39)–(40) in conjunction with the Lagrange equations, within the scale of perturbations. They
take the following form:

ξ̈ − φ̇2 sin ξ cos ξ +
g

l
sin ξ = µl(ξ − α)w(t), (49)

φ̈+ 2φ̇ξ̇ cot ξ = 0. (50)

To introduce parametric excitation, equation (49) includes the influence of white noise w(t),
which is proportional to the deviation from the unperturbed angle α; µ [s−2] denotes the cou-
pling constant. Substituting ξ, ξ̇, φ̇ from (38) into (49)–(50), the system can be reformulated in
normal form in terms of u1, u2, u3 as

u̇1 = u2 ,

u̇2 = −ω2 cosα sin(α + u1) +
1

2
(ω + u3)

2 sin 2(α + u1) + µl u1w(t) , (51)

u̇3 = −2u2(ω + u3) cot(α + u1) .

The linearized form of the system is given by

u̇1 = u2 ,

u̇2 = −ω2u1 sin
2 α + ω u3 sin 2α + µl u1w(t) , (52)

u̇3 = −2u2 ω cotα .

In order to formulate the Lyapunov function using (3), the drift and diffusion coefficients κi
and κij corresponding to (52) are given by

κ1 = u2 ,

κ2 = −u1ω2 sin2 α + u3ω sin 2α ,

κ3 = −2u2ω cotα .

κij =

{
µ2swwu

2
1l

2 , i = j = 2 ,

0 otherwise.
(53)

In the case of the spherical pendulum described by (51), the function ψ(u) takes the form

ψ(u) = 2u1u2ω
2 sin2 α + u2

[
(ω + u3)

2 sin 2(α + u1)− 2ω2 cosα sin(α + u1)
]

− 4u2u3(ω + u3) sin
2 α cot(α + u1) + u21(µl)

2sww . (54)

Alternatively, when expanding and retaining terms up to third or second order in the perturbation
variables ui, the function simplifies as follows:

ψ(u) =−
[(

3

2
ω2u21 + u23

)
− 8ωu1u3 cos

2 α

]
u2 + u21(µl)

2sww , (55)

ψ(u) = u21(µl)
2sww , (56)
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Fig. 4. Regions of positive (dark) and negative (bright) values of the Lyapunov function ψ(u), as defined
in (54), for various parameter configurations; parameters used: l = 1m, g = 9.81m s−2, α = 1/12 rad,
and sww = 0.02, 0.1, 0.2

depending on whether cubic or only quadratic terms in ui are retained.
The positive coefficient of sww in (54)–(56) clearly reflects the destabilizing influence of the

noise w(t). The overall stability of the system depends on the contributions of the remaining
terms on the right-hand side of (54). When the Lyapunov function ψ(u) is constructed based
on the linearized version of the system, all terms vanish except the last one, due to the structure
of the first integrals, see (56). This implies that, in the linearized approximation, the system is
unstable.

However, stability can be achieved either by introducing dissipative forces or by carefully
designing the matrix h(u) and tailoring the properties of the noise processes wi(t), depending
on the physical nature of the system under investigation.

Fig. 4 presents a set of six contour plots of the Lyapunov function ψ(u), as defined in (54),
evaluated over the phase space u1, u3 for two values of u2 = 0.03, 0.15. The results are arranged
in two rows, each corresponding to a fixed value of u2, which represents the deviation in the
angular velocity of the pendulum suspension. Each row contains three subplots, corresponding
to different levels of noise intensity, sww = 0.02, 0.15, 0.3, respectively. This allows for a
direct comparison of how increasing stochastic excitation affects the qualitative structure of the
Lyapunov function and, consequently, the system’s stability.

Dark-shaded regions indicate domains where ψ(u) > 0 signaling potential instability,
whereas bright regions correspond to ψ(u) < 0, suggesting local stability. As the noise inten-
sity increases across each row, the regions of positive ψ(u) expand, illustrating the destabilizing
influence of stronger random part of parametric excitation. The analysis assumes fixed system
parameters: l = 1m, g = 9.81m s−2, µ = 1 s−2, and α = 1/12 rad.
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6. Gyroscope

This section considers a three-degree-of-freedom system representing the perturbed force-free
motion of a gyroscope, as described in [22]. The symmetric top rotates about its symmetry
axis z, which is aligned with a massless shaft hinged at the origin of a fixed coordinate system.
The center of mass is located at a distance l above the hinge point. The primary rotational
motion may be influenced by parasitic perturbations about the horizontal axes. The orientation
of the gyroscope is described using a moving coordinate system (x, y, z), which is related to the
inertial frame (x0, y0, z0) via the Euler angles α and β, as illustrated in Fig. 5.

In the unperturbed state, the motion is purely rotational about the z-axis, and the values of
the five dynamical variables reduce to

α = 0 , α̇ = 0 , β = 0 , β̇ = 0 , φ̇ = ω . (57)

The kinetic and potential energy of the gyroscopic system are given by

T =
1

2
Ix(α̇

2 + β̇2 cos2 α) +
1

2
Iz(φ̇− β̇ sinα)2,

Π =Mgl cosα cos β,
(58)

where Ix = Iy and Iz are the principal moments of inertia, M is the mass, and l is the vertical
distance from the hinge to the center of mass.

The system admits three first integrals that characterize its deterministic dynamics and serve
as the basis for constructing suitable Lyapunov functions in the presence of stochastic perturba-
tions. The first is the total mechanical energy

T +Π =
1

2
Ix(α̇

2 + β̇2 cos2 α) +
1

2
Iz(φ̇− β̇ sinα)2 +Mgl cosα cos β = C1 . (59)

Because the coordinate φ is cyclic, the second integral arises from conservation of angular
momentum about the body’s symmetry axis

∂T

∂φ̇
= Iz(φ̇− β̇ sinα) = Iz C2 . (60)

Fig. 5. Schematic of the gyroscope and its coordinate systems
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The third integral corresponds to the projection of the angular momentum vector onto the fixed
vertical axis z0, and can be expressed as

Ix(−α̇ sin β + β̇ cosα sinα cos β) + Iz(φ̇− β̇ sinα) cosα cos β = C3 . (61)

Perturbations of the motion are introduced through the coordinates u = ui, i = 1, . . . , 5,
defined as follows

α = u1, α̇ = u2, β = u3, β̇ = u4, φ̇ = ω + u5.

The first integrals of the perturbed motion take the form

J1(u) =
1

2
Ix(u

2
2 + u24 cos

2 u1) +
1

2
Iz(ω + u5 − u4 sinu1)

2 +Mgl cosu1 cosu3 ,

J2(u) = ω + u5 − u4 sinu1 , (62)

J3(u) = Ix(−u2 sinu3 + u4 cosu1 sinu1 cosu3) + Iz(ω + u5 − u4 sinu1) cosu1 cosu3 .

Since the second and third integrals are not positive definite, a Lyapunov function is constructed
in the following form:

λ(u) = a1(J1(u)− J1(0)) + a2(J2(u)− J2(0)) + a3(J3(u)− J3(0)), a1 = 1. (63)

Substituting the expressions for the first integrals from (62) into (63), and expanding the trigono-
metric functions sin and cos in a Taylor series up to second order (assuming small perturba-
tions), yields the following quadratic approximation:

λ(u) =− 1

2
(Mgl + a3ωIz)u

2
1 +

1

2
Ixu

2
2 −

1

2
(Mgl + a3ωIz)u

2
3 +

1

2
Ixu

2
4 +

1

2
Izu

2
5

+ (ωIz + a2 + a3Iz)u5 − (ωIz + a2 + a3Iz − a3Ix)u1u4 − a3Ixu2u3 + . . . (64)

To ensure that the Lyapunov function λ(u) is positive definite, the coefficient of the linear
term in u5 must vanish. This requirement leads to the condition

ωIz + a2 + a3Iz = 0 . (65)

With this condition imposed, equation (64) simplifies to

λ(u) =
1

2
δu21 +

1

2
Ixu

2
2 +

1

2
δu23 +

1

2
Ixu

2
4 +

1

2
Izu

2
5 + a3Ixu1u4 − a3Ixu2u3 + .... , (66)

δ =− (Mgl + a3ωIz) . (67)

The function defined in (66) can be decomposed into the sum of three quadratic terms

λ1(u) =
1

2
δu21 + a3Ixu1u4 +

1

2
Ixu

2
4 ,

λ2(u) =
1

2
δu23 − a3Ixu2u3 +

1

2
Ixu

2
2 , (68)

λ3(u) =
1

2
Izu

2
5 .

The term λ3(u) is positive definite in the variable u5. The remaining terms λ1(u) and λ2(u) have
identical structure and are positive definite under certain conditions. According to Sylvester’s
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criterion, each of these quadratic forms is positive definite for non-zero (u1, u4) and (u2, u3) if
the following inequalities are satisfied:

∆1 = Ix > 0 ,

∆2 =

∣∣∣∣ δ a3Ix
a3Ix Ix

∣∣∣∣ = Ix(δ − a23Ix) > 0 .
(69)

Substituting for δ from (67) leads to the following condition for the coefficient a3:

− 1

2Ix

(
−ωIz −

√
ω2I2z − 4MglIx

)
< a3 < − 1

2Ix

(
−ωIz +

√
ω2I2z − 4MglIx

)
. (70)

Thus, for a sufficiently large angular velocity ω, ensuring that the discriminant in (70) is posi-
tive, that is, for

|ω| > 2
√
MglIx
Iz

,

there exist real values of a3 satisfying the condition in (70). In such cases, the function λ(u), as
defined by (64) and (65), is positive definite and can therefore be used as a Lyapunov function.

The subsequent analysis proceeds analogously to the previous cases. Since the system of
equations of motion in normal form is derived from the kinetic and potential energies in (58),
and stochastic perturbations are introduced through physically motivated noise models, the re-
sulting formulation corresponds to the structure of (1). This permits the determination of the
function ψ(u) using the same methodology described in the previous sections.

Accordingly, the investigation of stochastic stability can begin with the deterministic char-
acteristics of the system and focus on the contribution of the final term in the Fokker-Planck
operator (3), particularly in terms of whether it leads to positive or negative values of ψ(u).

7. Conclusions

The construction of Lyapunov functions based on first integrals has been shown to offer signifi-
cant advantages over more general methods. In the case of linear systems, this approach yields
results consistent with the classical Routh-Hurwitz stability criteria, providing both necessary
and sufficient conditions for stability. For nonlinear systems, the analysis can be effectively
grounded in the deterministic dynamics, as the impact of parametric stochastic perturbations
can be treated as a distinct extension. This separation enables a clear and tractable analysis of
the stochastic behavior and supports the development of models that account for the stabilizing
or destabilizing effects of random parametric noise.

A major strength of this method lies in its ability to incorporate the physical and structural
characteristics of the system directly into the form of the Lyapunov function. In many cases, it
is not necessary to derive the full equations of motion explicitly; instead, stability properties can
be inferred directly from the system’s first integrals. When refining the Lyapunov function—
typically constructed as a linear combination of these integrals—it is often necessary to impose
constraints to ensure positive definiteness. These constraints frequently have direct physical
interpretations, making them not only mathematically necessary but also practically meaningful
in terms of system design and control.

Although the approach is not universally applicable to all classes of dynamical systems, it
proves particularly effective for a wide range of nonlinear systems, including those considered
in this study. The method is especially advantageous when first integrals are known or can be
derived from symmetry or conservation laws. In such cases, it enables a rigorous and physically
interpretable stability analysis, both in deterministic and stochastic settings.
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[15] Náprstek, J., Stochastic exponential and asymptotic stability of simple non-linear systems, Inter-

national Journal of Non-Linear Mechanics 31 (5) (1996) 693–705.
https://doi.org/10.1016/0020-7462(96)00031-5
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