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Abstract

This study presents an open-source Python library for simulating two-dimensional incompressible Kelvin-Helm-
holtz (KH) instabilities in stratified shear flows. The solver employs a fractional-step projection method with
spectral Poisson solution via fast sine transform (FST). While diffusion and pressure terms achieve second-order
spatial accuracy through central differencing and spectral methods respectively, advection employs first-order up-
wind differencing that provides numerical stability for sharp gradients characteristic of KH billows. Implementa-
tion leverages NumPy for array operations, SciPy for spectral methods, and Numba just-in-time (JIT) compilation,
balancing computational performance with code transparency and accessibility. Four canonical test cases system-
atically explore parameter space spanning Reynolds numbers 1 000–5 000 and Richardson numbers 0.1–0.3: clas-
sical shear layer, double shear configuration, rotating flow, and forced turbulence. Statistical analysis employing
Shannon entropy, complexity indices, and nonparametric tests reveals non-monotonic relationships between flow
parameters and mixing efficiency, with double shear layers achieving 4.3× higher mixing rates than forced turbu-
lence despite lower Reynolds numbers. The developed complexity metrics combining entropy, gradient variability,
and higher-order moments provide quantitative benchmarks for turbulence model validation complementing con-
ventional statistical measures. While the two-dimensional framework excludes spanwise secondary instabilities,
it isolates primary mixing mechanisms relevant for understanding atmospheric and oceanic transport processes.
The solver executes efficiently on standard desktop hardware, with the most demanding 384 × 192 grid simula-
tion completing in approximately 31 minutes for 30 seconds physical time, enabling systematic parameter studies
on modest computational resources. Results demonstrate that mixing efficiency depends fundamentally on insta-
bility generation pathways rather than intensity measures alone, challenging existing Richardson number-based
parameterizations and suggesting refinements for subgrid-scale representation in climate models.
© 2025 University of West Bohemia in Pilsen.
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1. Introduction

The study of stratified shear flows traces its origins to the pioneering observations of Hermann
von Helmholtz in 1868 and Lord Kelvin in 1871, who independently recognized that veloc-
ity discontinuities across density interfaces could generate wave-like instabilities [67, 72]. For
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comprehensive modern treatments of these classical results, readers are referred to recent re-
views [8, 59]. These early theoretical insights, derived from linearized stability analysis of
idealized velocity profiles, established the foundation for understanding turbulent mixing in
geophysical fluids. The subsequent century witnessed gradual refinement of stability criteria,
culminating in the seminal contributions demonstrating that the Richardson number fundamen-
tally controls instability growth through the competition between destabilizing shear and sta-
bilizing stratification [29, 49]. This theoretical framework, developed through mathematical
analysis of simplified configurations, remains central to modern understanding of atmospheric
and oceanic mixing processes.

Experimental investigations revealed that Kelvin-Helmholtz (KH) billows undergo a char-
acteristic life cycle from initial exponential growth through nonlinear saturation to eventual
turbulent breakdown [68]. Laboratory experiments in stratified tilt tanks demonstrated that
mixing efficiency peaks during the transition from laminar billows to three-dimensional tur-
bulence, with irreversible density changes occurring primarily during the collapse phase [68].
These controlled experiments, while necessarily limited in scale and parameter range, provided
crucial validation of theoretical predictions and revealed unexpected phenomena including bil-
low pairing, secondary instabilities, and asymmetric mixing patterns absent from linear the-
ory [13]. The development of particle image velocimetry (PIV) and laser-induced fluorescence
(LIF) techniques in the 1990s enabled quantitative measurements of velocity and density fields
simultaneously, revealing the detailed structure of mixing events [8].

Field observations in natural environments demonstrate both the ubiquity and complexity
of KH instabilities across scales from meters to hundreds of kilometers. Atmospheric mani-
festations range from cloud billows visible in satellite imagery to clear-air turbulence affect-
ing aviation safety [1]. Oceanic examples span from estuarine mixing to equatorial undercur-
rents [50, 60]. However, these observations reveal systematic departures from laboratory-based
scaling laws, particularly in environments with multiple shear interfaces, rotational effects, or
time-dependent forcing. The mixing efficiency, defined as the ratio of buoyancy flux to tur-
bulent kinetic energy dissipation, varies by an order of magnitude across different geophysical
contexts, challenging universal parameterizations based solely on Richardson number [19]. Re-
cent measurements using modern observation systems have documented intermittent mixing
events that dominate time-averaged fluxes, highlighting the importance of rare but intense in-
stability events [12].

The computational investigation of KH dynamics evolved from early finite-difference so-
lutions in the 1960s to contemporary spectral and finite-volume methods capable of resolving
the full range of dynamical scales [9]. Initial numerical studies employed two-dimensional do-
mains with periodic boundaries, revealing the fundamental mechanisms of vortex roll-up and
pairing. The extension to three-dimensional simulations in the 1980s, enabled by vector su-
percomputers, demonstrated the critical role of spanwise perturbations in triggering transition
to turbulence [34]. Modern direct numerical simulations achieve Reynolds numbers approach-
ing geophysical values but require billions of grid points and thousands of processor hours,
limiting systematic parameter exploration [46]. Large-eddy simulations (LES) reduce compu-
tational demands through subgrid-scale modeling but introduce closure assumptions that yield
order-of-magnitude variations in predicted mixing rates [63].

The mathematical formulation of stratified shear flows relies on the Boussinesq approxima-
tion, which treats density variations as dynamically important only in buoyancy terms while
maintaining constant density in inertial terms. This simplification, rigorously justified through
scale analysis when density variations remain below approximately ten percent, reduces the
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compressible Navier-Stokes equations to an incompressible system with buoyancy forcing [43,
48]. The resulting equations admit analytical solutions only for highly idealized configurations,
necessitating numerical approaches for realistic parameter regimes. The two-dimensional re-
striction, while excluding certain three-dimensional instabilities, captures the primary mixing
mechanisms since linear stability analysis demonstrates that the fastest-growing KH modes are
inherently two-dimensional [3]. This dimensional reduction enables high-resolution simula-
tions at moderate computational cost, facilitating parameter studies impossible in fully three-
dimensional configurations.

Recent advances in scientific computing, particularly the development of just-in-time (JIT)
compilation and optimized array libraries, enable high-performance simulations using inter-
preted languages previously considered unsuitable for computational fluid dynamics (CFD)
[21, 39]. Python, with its extensive scientific ecosystem and emphasis on code readability,
provides an ideal platform for developing transparent, reproducible simulation tools [24, 25].
The combination of NumPy for array operations, SciPy for spectral transforms, and Numba for
performance optimization achieves high computational efficiency while dramatically improv-
ing code accessibility [71]. The fractional-step projection method provides a robust algorithm
for solving the incompressible flow equations while maintaining the divergence-free constraint
essential for physical accuracy [9, 65, 66].

While general-purpose computational fluid dynamics frameworks such as OpenFOAM and
research codes like Basilisk can simulate KH instabilities, these tools typically require substan-
tial expertise in computational methods and may present barriers for educational applications
or rapid prototyping. To our knowledge, dedicated open-source implementations specifically
designed for accessible KH instability studies remain limited in the Python ecosystem, though
MATLAB-based educational codes and specialized Fortran implementations exist in the liter-
ature. The present work addresses this gap by providing a focused, well-documented Python
implementation that balances computational efficiency with code transparency.

This study presents kh2d-solver, an open-source Python implementation designed to democ-
ratize access to high-fidelity KH simulations for research and educational applications. The
solver addresses the gap between simplified analytical models and computationally intensive
three-dimensional simulations by providing an efficient, transparent framework for investigat-
ing idealized two-dimensional configurations. Four canonical test cases systematically explore
parameter dependencies across Richardson numbers from 0.1 to 0.3 and Reynolds numbers
from 1 000 to 5 000, spanning regimes from marginal stability to fully developed turbulence.
Comprehensive statistical analysis employing Shannon entropy, complexity indices, and non-
parametric tests quantifies the evolution of flow structures beyond traditional mean and variance
metrics [28]. The implementation achieves sufficient computational efficiency to enable param-
eter studies on standard desktop hardware, with detailed documentation and visualization tools
facilitating both research applications and pedagogical use. By providing open access to vali-
dated simulation capabilities, this work aims to accelerate understanding of fundamental mixing
processes relevant to climate modeling, ocean dynamics, and atmospheric transport phenomena.

2. Methods

2.1. Mathematical formulation

The mathematical description of KH instability in geophysical fluids—encompassing atmo-
spheric boundary layers, oceanic thermoclines, and planetary atmospheres—requires a system-
atic derivation from first principles. The analysis begins with the fundamental postulates of
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continuum mechanics and proceeds through careful approximations justified by the physical
scales characteristic of geophysical flows.

Consider an infinitesimal fluid element in three-dimensional space. Let X = (X1, X2, X3)
denote the Lagrangian coordinates labeling material particles at initial time t0, and x = (x1, x2,
x3) represent the Eulerian coordinates at time t. The motion of the continuum is described by
the mapping [6]

x = χ(X, t) with X = χ(X, t0). (1)

The deformation gradient tensor, fundamental to describing local material deformation, is de-
fined as

FiA =
∂xi

∂XA
, where J = det(FiA) > 0, (2)

with J representing the Jacobian ensuring non-interpenetration of matter. The velocity field in
the Lagrangian description follows from the time derivative holding material coordinates fixed

V(X, t) =
∂χ(X, t)

∂t

∣∣∣∣
X

. (3)

Transforming to the Eulerian description, where we follow fixed spatial points rather than ma-
terial particles, the velocity field becomes

u(x, t) = V(χ−1(x, t), t). (4)

The material derivative, connecting Lagrangian and Eulerian rates of change, emerges from the
chain rule

D

Dt
=

∂

∂t

∣∣∣∣
X

=
∂

∂t

∣∣∣∣
x

+ ui ∂

∂xi
, (5)

where Einstein summation convention is employed for repeated indices.
Mass conservation requires that the total mass within any material volume Vm(t) remains

constant. For density ϱ(x, t), the principle states

D

Dt

∫
Vm(t)

ϱ dV = 0. (6)

Applying Reynolds transport theorem, which relates the rate of change of an integral over a
moving volume to the integrand’s behavior:

D

Dt

∫
Vm(t)

ϱ dV =

∫
Vm(t)

[
∂ϱ

∂t
+∇ · (ϱu)

]
dV. (7)

Since (6) must hold for any arbitrary material volume, the integrand must vanish identically

∂ϱ

∂t
+∇ · (ϱu) = 0. (8)

Expanding the divergence term using (5):

∂ϱ

∂t
+ ui ∂ϱ

∂xi
+ ϱ

∂ui

∂xi
=

Dϱ

Dt
+ ϱ∇ · u = 0. (9)
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Newton’s second law for a continuum states that the rate of change of momentum equals
the net force. For the material volume Vm(t) with surface Sm(t):

D

Dt

∫
Vm(t)

ϱui dV =

∫
Sm(t)

ti dS +

∫
Vm(t)

ϱf i dV, (10)

where ti represents the traction vector and f i is the body force per unit mass. Cauchy’s stress
principle relates the traction to the stress tensor through [73]

ti = σijnj, (11)

where σij is the Cauchy stress tensor and nj the outward unit normal. Applying Reynolds
transport theorem to the left-hand side of (10) and Gauss divergence theorem to the surface
integral: ∫

Vm(t)

ϱ
Dui

Dt
dV =

∫
Vm(t)

∂σij

∂xj
dV +

∫
Vm(t)

ϱf i dV. (12)

Since the volume is arbitrary, we obtain the local form of the momentum equation

ϱ
Dui

Dt
= ϱ

(
∂ui

∂t
+ uj ∂u

i

∂xj

)
=

∂σij

∂xj
+ ϱf i. (13)

The constitutive equation for a Newtonian fluid relates stress to deformation rate. The most
general linear isotropic relation is [2]

σij = −pδij + λδijDkk + 2µDij, (14)

where p is thermodynamic pressure, λ and µ are viscosity coefficients, and the rate of deforma-
tion tensor is

Dij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (15)

For geophysical flows, the incompressibility approximation applies when flow velocities
are much smaller than the sound speed. In the atmosphere, typical wind speeds (∼10 m s−1) are
negligible compared to the sound speed (∼340 m s−1). In the ocean, currents (∼ 0.1–1 m s−1)
are far below the sound speed in water (∼1 500 m s−1). This justifies setting

∇ · u =
∂ui

∂xi
= 0. (16)

Under incompressibility from (16), Dkk = 0, eliminating the bulk viscosity term. The stress
tensor from (14) simplifies to

σij = −pδij + 2µDij = −pδij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
. (17)

Substituting (17) into the momentum equation (13) and using incompressibility (16) to simplify
the viscous term:

ϱ

(
∂ui

∂t
+ uj ∂u

i

∂xj

)
= − ∂p

∂xi
+ µ

∂2ui

∂xj∂xj
+ ϱf i. (18)
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Geophysical flows exhibit density stratification due to temperature variations (atmosphere),
salinity gradients (ocean), or compositional differences (planetary atmospheres). Following
Mihaljan [48], we performed a systematic scale analysis. Let ϱ′ denote density variations and
ϱ0 a reference density:

ϱ(x, t) = ϱ0 + ϱ′(x, t), where
∣∣∣∣ ϱ′ϱ0

∣∣∣∣ = ε ≪ 1. (19)

The small parameter ε typically ranges from 10−3 in strong oceanic thermoclines to 10−2 in
atmospheric fronts. Substituting (19) into (18):

(ϱ0 + ϱ′)

(
∂ui

∂t
+ uj ∂u

i

∂xj

)
= − ∂p

∂xi
+ µ

∂2ui

∂xj∂xj
+ (ϱ0 + ϱ′)f i. (20)

The Boussinesq approximation systematically expands in powers of ε. To leading order,
density variations were retained only where multiplied by gravity, as demonstrated through
scale analysis [43]. The inertial terms scale as ϱ0U

2/L, while buoyancy terms scale as gϱ′.
Their ratio yields the Richardson number

Ri =
gϱ′L

ϱ0U2
=

gεL

U2
= O(1), (21)

confirming that buoyancy effects remain significant despite small ε. Neglecting O(ε) terms in
inertia but retaining them in buoyancy:

ϱ0

(
∂ui

∂t
+ uj ∂u

i

∂xj

)
= − ∂p

∂xi
+ µ

∂2ui

∂xj∂xj
+ (ϱ0 + ϱ′)f i. (22)

The gravitational body force acts vertically, i.e., f i = −gδi3. The pressure was decomposed
into hydrostatic and dynamic components:

p(x, t) = p0(z) + p′(x, t), (23)

where the reference pressure satisfies hydrostatic balance:

dp0
dz

= −ϱ0g. (24)

This decomposition removed the dominant balance, isolating dynamically relevant gradients.
Substituting (23) and (24) into (22):

∂ui

∂t
+ uj ∂u

i

∂xj
= − 1

ϱ0

∂p′

∂xi
+ ν

∂2ui

∂xj∂xj
− ϱ′

ϱ0
gδi3, (25)

where ν = µ/ϱ0 is the kinematic viscosity. The density perturbation evolves through advection-
diffusion. From conservation of a scalar quantity θ (potential temperature, salinity, or chemical
concentration) with ϱ′ = −ϱ0αθ, where α is the expansion coefficient:

∂ϱ′

∂t
+ uj ∂ϱ

′

∂xj
= κ

∂2ϱ′

∂xj∂xj
, (26)

where κ represents molecular diffusivity.
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The two-dimensional restriction was justified through linear stability analysis showing that
the most unstable KH modes are spanwise-invariant [3]. Setting ∂/∂y = 0 and v = 0 in (16),
(25), and (26):

∂u

∂x
+

∂w

∂z
= 0, (27)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ϱ0

∂p′

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂z2

)
, (28)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ϱ0

∂p′

∂z
+ ν

(
∂2w

∂x2
+

∂2w

∂z2

)
− ϱ′

ϱ0
g, (29)

∂ϱ′

∂t
+ u

∂ϱ′

∂x
+ w

∂ϱ′

∂z
= κ

(
∂2ϱ′

∂x2
+

∂2ϱ′

∂z2

)
. (30)

Non-dimensionalization employed characteristic scales: the shear layer thickness δ, the velocity
jump ∆U , and the density jump ∆ϱ:

x̃ =
x

δ
, z̃ =

z

δ
, t̃ =

t∆U

δ
, ũ =

u

∆U
, w̃ =

w

∆U
, p̃ =

p′

ϱ0∆U2
, ϱ̃ =

ϱ′

∆ϱ
. (31)

The final non-dimensional system (dropping tildes) governing KH instability in the velocity-
pressure formulation:

∇ · u = 0, (32)
∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u− Ri ϱ ez, (33)

∂ϱ

∂t
+ u · ∇ϱ =

1

Re · Pr
∇2ϱ, (34)

where ez is the unit vector in the vertical direction. The governing parameters—the Reynolds
number Re = ∆Uδ/ν, the Richardson number Ri = g∆ϱδ/(ϱ0∆U2), and the Prandtl num-
ber Pr = ν/κ—characterize the flow regime across atmospheric, oceanic, and astrophysical
applications.

For diagnostic purposes, the spanwise vorticity component, measuring local rotation rate, is
computed from the velocity field [41]:

ωz =
∂w

∂x
− ∂u

∂z
, (35)

which reveals the characteristic billow structures that define the instability’s nonlinear evolution.

2.2. Numerical implementation

The numerical solution of the governing equations (32)–(34) requires careful treatment of the
nonlinear advection terms, viscous diffusion, and the pressure-velocity coupling inherent in
incompressible flows. Our implementation draws inspiration from the Fortran 95 solver devel-
oped by Kämpf [33], which demonstrated the feasibility of simulating KH instabilities using a
fractional-step approach with successive over-relaxation (SOR) iteration for the pressure Pois-
son equation. However, we depart significantly from that implementation by employing spectral
methods for the pressure solver rather than iterative techniques.

The spectral approach offers substantial computational advantages over iterative methods.
While Kämpf’s SOR implementation requires approximately 8 000 iterations per time step to
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achieve convergence tolerance of 10−3, our FST solver achieves machine precision (typically
10−15) in O(N logN) operations without iteration. For typical grid resolutions (256×128), this
translates to approximately two orders of magnitude reduction in pressure solve time, though we
note that direct quantitative comparison would require running both implementations on identi-
cal hardware with identical test cases. The primary advantage of our spectral approach lies not
only in computational efficiency but also in its mathematical elegance—the discrete Laplacian
eigenvalues (51) are computed exactly, eliminating iterative convergence uncertainties. This
spectral method, originally developed by Swarztrauber et al. [64], exploits the periodic bound-
ary conditions to diagonalize the discrete Laplacian operator. Furthermore, while the Fortran
implementation employs a sophisticated total variation diminishing (TVD) advection scheme
with flux limiters, we adopt first-order upwind differencing that, despite its simplicity, provides
sufficient numerical diffusion to stabilize sharp gradients characteristic of KH billows without
requiring explicit slope limiting.

The implementation leverages modern Python scientific computing libraries including
NumPy [21] for array operations, SciPy [71] for spectral methods, and Numba [39] for JIT
compilation, achieving performance comparable to compiled languages while maintaining de-
velopment flexibility. This represents a fundamental shift from traditional Fortran-based CFD
codes toward more accessible, maintainable implementations. Where Kämpf’s solver outputs
formatted ASCII files requiring post-processing for visualization, our framework generates self-
describing NetCDF-4 files with CF metadata conventions, enabling direct integration with mod-
ern analysis tools. The fractional-step projection method we employ, originally developed by
Chorin [9] and rigorously analyzed by Témam [65, 66], decouples the pressure-velocity cou-
pling through operator splitting following the same mathematical principles as Kämpf’s imple-
mentation but with enhanced computational efficiency through spectral methods. Additionally,
our adaptive time-stepping algorithm automatically balances CFL and viscous stability con-
straints, eliminating the need for manual parameter tuning required in fixed time-step imple-
mentations, thereby enabling robust parameter studies across diverse Richardson and Reynolds
number regimes without user intervention.

The projection method, comprehensively reviewed by Guermond et al. [20], decomposes the
time advancement into a predictor step that ignores pressure gradients followed by a correction
step that enforces incompressibility. Beginning with the dimensional momentum equations
(28)–(29), we introduce an intermediate velocity field u∗ = (u∗, w∗) through the fractional
steps

u∗ − un

∆t
+ (un · ∇)un = ν∇2un − ϱn

ϱ0
gez, (36)

un+1 − u∗

∆t
= − 1

ϱ0
∇pn+1, (37)

∇ · un+1 = 0, (38)

where superscript n denotes the discrete time level tn = n∆t, with ∆t representing the time
step, un = (un, wn) is the velocity field at time tn, and ez is the unit vector in the vertical
direction. Taking the divergence of (37) and enforcing the incompressibility constraint (38)
yields the pressure Poisson equation

∇2pn+1 =
ϱ0
∆t

∇ · u∗. (39)

The computational domain Ω = [0, Lx] × [0, Lz] is discretized using a uniform Cartesian
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grid with spacing

xi = i∆x, i = 0, 1, . . . , Nx − 1, ∆x =
Lx

Nx − 1
, (40)

zj = j∆z, j = 0, 1, . . . , Nz − 1, ∆z =
Lz

Nz − 1
, (41)

where Nx and Nz denote the number of grid points in the horizontal and vertical directions,
respectively. Let qni,j ≈ q(xi, zj, t

n) represent the discrete approximation of any field variable
q ∈ {u,w, ϱ, p} at grid point (i, j) and time level n.

The nonlinear advection terms demand special treatment to ensure numerical stability near
sharp gradients characteristic of KH billows. Following the pioneering work of Courant et al.
[10] and the high-resolution schemes of Harten [22], we employ first-order upwind differencing
that maintains monotonicity through directionally-biased stencils. For a generic scalar field q
advected by velocity (u,w), the discrete advection operators are

(
u
∂q

∂x

)
i,j

=


ui,j

qi,j − qi−1,j

∆x
if ui,j > 0,

ui,j
qi+1,j − qi,j

∆x
if ui,j < 0,

(42)

(
w
∂q

∂z

)
i,j

=


wi,j

qi,j − qi,j−1

∆z
if wi,j > 0,

wi,j
qi,j+1 − qi,j

∆z
if wi,j < 0.

(43)

This upwind scheme, while introducing numerical diffusion of order O(|u|∆x), acts as
implicit subgrid-scale dissipation that stabilizes the solution without requiring explicit filtering,
as demonstrated in the flux-corrected transport algorithms of Boris et al. [4]. We acknowledge
that the overall spatial accuracy is formally first-order due to the upwind advection scheme. The
choice prioritizes robustness over formal accuracy, as first-order upwind naturally stabilizes
sharp density gradients without requiring explicit flux limiters or slope reconstruction. For
the resolved scales in our simulations (Re = 1 000–5 000), this implicit numerical diffusion
remains small compared to physical diffusion. The discrete advection update for any transported
quantity q becomes

q∗i,j = qni,j −∆t [Ax(u
n, qn)i,j +Az(w

n, qn)i,j] , (44)

where Ax and Az denote the upwind operators defined in (42)–(43).
The viscous diffusion terms are discretized using second-order central differences, yielding

the discrete Laplacian operator

∇2qi,j =
qi+1,j − 2qi,j + qi−1,j

∆x2
+

qi,j+1 − 2qi,j + qi,j−1

∆z2
. (45)

For computational efficiency, the implementation adaptively switches between explicit and
implicit time integration schemes based on the diffusive stability criterion. When the following
stability constraints are satisfied:

ν
∆t

∆x2
<

1

4
and ν

∆t

∆z2
<

1

4
, (46)
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we employ the explicit forward Euler update

qn+1
i,j = qni,j + ν∆t∇2qni,j. (47)

For larger time steps that would violate conditions (46), we switch to an implicit backward
Euler scheme solved iteratively through the Jacobi method, i.e.,

q
(k+1)
i,j =

qni,j + α(q
(k)
i+1,j + q

(k)
i−1,j) + β(q

(k)
i,j+1 + q

(k)
i,j−1)

1 + 2α + 2β
, (48)

where α = ν∆t/(2∆x2), β = ν∆t/(2∆z2) are the dimensionless diffusion numbers, and the
superscript (k) denotes the iteration level within the Jacobi solver.

The Jacobi method was selected for its straightforward parallelization via Numba’s prange
construct, which enables automatic multi-threading across grid points. While more sophisti-
cated schemes such as SOR or Gauss-Seidel converge faster in serial implementations, they
introduce data dependencies that complicate efficient parallelization. Importantly, our adaptive
time-stepping strategy, see (52)–(54), typically maintains the explicit stability conditions (46),
relegating the implicit solver to infrequent use. Profiling revealed that implicit diffusion steps
account for less than 5 % of total computation time in our test cases, making iterative solver
optimization a secondary consideration.

The pressure Poisson equation (39) with homogeneous Neumann boundary conditions
(∂p/∂n = 0 on ∂Ω) is solved using the fast sine transform (FST) method developed by Swarz-
trauber et al. [64], achieving machine precision with O(N logN) computational complexity.
The pressure field is expanded in discrete sine basis functions that automatically satisfy the
boundary conditions

pi,j =
Nx−2∑
k=1

Nz−2∑
l=1

p̂k,l sin

(
πki

Nx − 1

)
sin

(
πlj

Nz − 1

)
, (49)

where p̂k,l are the spectral coefficients in Fourier space. Substituting expansion (49) into the
discrete Laplacian transforms the Poisson equation into an algebraic system in spectral space:

p̂k,l =
f̂k,l
λk,l

, (50)

where f̂k,l represents the Fourier coefficients of the divergence field ∇ · u∗, and the eigenvalues
of the discrete Laplacian are

λk,l = −4

[
sin2(πk/2(Nx − 1))

∆x2
+

sin2(πl/2(Nz − 1))

∆z2

]
. (51)

The implementation employs SciPy’s optimized DST routines [71], which utilize FFTPACK
algorithms for efficient computation on modern architectures.

The time step selection ensures numerical stability through adaptive constraints on both
advective and diffusive processes. The Courant-Friedrichs-Lewy (CFL) condition for advection
stability requires

∆tCFL = CCFL min

(
∆x

max |u|
,

∆z

max |w|

)
, (52)
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while the diffusive stability constraint imposes

∆tvisc = Cvisc min

(
∆x2

ν
,
∆z2

ν

)
, (53)

where CCFL = 0.4 and Cvisc = 0.2 provide safety margins below theoretical stability limits. The
actual time step is chosen as

∆t = min(∆tCFL,∆tvisc). (54)

The spanwise vorticity component ωz, essential for visualizing KH roll-up patterns and
coherent structures, is computed as a diagnostic quantity using second-order central differences

ωi,j =
wi+1,j − wi−1,j

2∆x
− ui,j+1 − ui,j−1

2∆z
. (55)

This quantity directly measures the local rotation rate and reveals the characteristic billow struc-
tures that define the instability’s nonlinear evolution.

The computational performance is dramatically enhanced through Numba’s JIT compila-
tion [39], which translates Python functions into optimized machine code at runtime. The
@jit(nopython=True, parallel=True) decorator enables automatic loop vectorization and multi-
threading via OpenMP, achieving 10–50× speedup compared to pure Python implementa-
tions [26, 27]. Memory access patterns are optimized through contiguous array layouts that
maximize cache efficiency, while the prange construct enables embarrassingly parallel opera-
tions across grid points.

Boundary conditions reflect the physical configuration appropriate for shear layer studies.
Periodic conditions in the streamwise (x) direction,

u(0, z, t) = u(Lx, z, t), w(0, z, t) = w(Lx, z, t), ϱ(0, z, t) = ϱ(Lx, z, t), (56)

allow the instability to develop without artificial confinement. No-slip walls at the vertical (z)
boundaries,

u(x, 0, t) = u(x, Lz, t) = 0, w(x, 0, t) = w(x, Lz, t) = 0, (57)

represent channel flow configurations commonly used in turbulence studies [34].
The complete algorithm integrates the components through the following sequence: (i) com-

putation of the intermediate velocity u∗ via equations (44) and (47) or (48), incorporating ad-
vection and diffusion operators; (ii) solution of the pressure Poisson equation (39) using the
discrete sine transform (50); (iii) projection of the velocity field through (37) to enforce incom-
pressibility; (iv) update of the density field using the same advection-diffusion scheme applied
to (30); and (v) computation of diagnostic quantities including vorticity via equation (55).

The simulation output employs NetCDF-4 format [54], the standard for geophysical data
storage, providing self-describing, platform-independent storage with CF metadata conventions
that ensure compatibility with analysis tools including xarray [30] and NCL [51]. The hi-
erarchical HDF5-based structure enables transparent compression, typically reducing storage
requirements by 40–60 % [15].

Animated GIF visualizations complement the archival data by revealing temporal evolution
of coherent structures essential for understanding mixing processes [55]. The dual-panel layout
showing vorticity (ωz) and density (ϱ) fields simultaneously facilitates analysis of instability
growth, billow pairing, and baroclinic vorticity production that govern mixing efficiency [56].
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The perceptually uniform colormaps from matplotlib [31] (RdBu for vorticity, viridis for den-
sity) ensure accurate interpretation while maintaining accessibility [69]. This numerical frame-
work provides accurate, stable, and efficient simulations of KH instability across the wide range
of Reynolds and Richardson numbers relevant to geophysical applications, from laminar labo-
ratory flows to turbulent atmospheric and oceanic shear layers.

2.3. Numerical experiments

To demonstrate the solver’s capability in simulating geophysically relevant flows, we present
four idealized test cases that capture fundamental aspects of KH instability in atmospheric and
oceanic contexts. Each scenario employs the numerical framework described in (36)–(55) on a
standardized domain of Lx = 2.0m by Lz = 1.0m, facilitating direct comparison of dynamical
evolution across different physical regimes. The density field ϱ represents the local fluid den-
sity normalized by a reference value ϱ0, with variations arising from temperature differences
in atmospheric flows or salinity gradients in oceanic environments, following the Boussinesq
approximation detailed in (19).

2.3.1. Test case 1: Classical shear layer

The canonical KH instability emerges from velocity discontinuities across density interfaces,
representing the fundamental mechanism for mixing in stratified geophysical flows ranging
from cloud-top entrainment to deep ocean thermocline erosion [61]. The velocity field initial-
ization employs a hyperbolic tangent profile that smoothly transitions between opposing flows

u(z) = ubot + (utop − ubot) ·
1

2

[
1 + tanh

(
z − zmid

δ

)]
, (58)

where zmid = Lz/2 is the vertical midpoint, and the shear layer thickness δ = 0.05m is se-
lected to adequately resolve the predicted instability wavelength while maintaining computa-
tional tractability. The prescribed velocities utop = 1.0m s−1 and ubot = −1.0m s−1 generate a
velocity jump ∆U = 2.0m s−1 representative of strong shear zones observed in atmospheric jet
streams and oceanic western boundary currents.

The density stratification incorporates a two-layer structure with ϱtop = 1.0 kg m−3 repre-
senting warm, fresh surface water or heated atmospheric air, while ϱbot = 1.2 kg m−3 corre-
sponds to cold, saline deep water or dense cool air masses. This 20% density variation mimics
strong pycnoclines encountered in tropical oceans where solar heating creates sharp temperature
gradients, or atmospheric inversions where radiative cooling produces stable stratification [68].
The resulting bulk Richardson number Ri = g∆ϱδ/(ϱ0∆U2) = 0.25 coincides exactly with the
marginal stability threshold derived through linear analysis, where perturbation growth rates
transition from exponential to algebraic [29, 49].

The selection of critical Richardson number ensures examination of the competition be-
tween shear production that generates turbulent kinetic energy and buoyancy forces that sup-
press vertical motion, a balance central to understanding mixing efficiency in geophysical
flows [52]. Instability initiation requires seeding through small-amplitude perturbations

u′(x, z) = ε sin

(
4πx

Lx

)
exp

[
−
(
z − zmid

δ

)2
]
, (59)

where ε = 0.01∆U provides sufficient amplitude for growth while remaining within the linear
regime, and the wavelength λ = Lx/2 matches the most unstable mode predicted by stability
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analysis for this parameter regime [23]. Operating at Re = 1 000 places the flow in a transi-
tional regime where initial laminar billows undergo secondary instabilities leading to turbulent
breakdown, analogous to processes observed in nocturnal atmospheric jets [1] and tidally-driven
oceanic shear layers [50].

2.3.2. Test case 2: Double shear layer

Geophysical flows frequently exhibit multiple shear interfaces due to complex stratification
patterns, necessitating understanding of interaction dynamics between adjacent unstable layers.
Atmospheric examples include the dual jet structure where subtropical and polar jets create
multiple critical layers [58], while oceanic manifestations appear in equatorial undercurrents
with alternating velocity maxima [60]. The velocity profile incorporates two hyperbolic tangent
interfaces

u(z) = umax

[
tanh

(
z − z1

δ

)
− tanh

(
z − z2

δ

)
− 1

]
, (60)

with interface positions z1 = Lz/2−s/2 and z2 = Lz/2+s/2 separated by distance s = 0.3m,
approximately six shear layer thicknesses ensuring initial independence while permitting sub-
sequent interaction. The reduced thickness δ = 0.04m compared to the single-layer case main-
tains adequate resolution of individual interfaces despite the increased complexity.

The density configuration adopts a 3-layer stratification with heavy fluid (ϱ = 1.5 kg m−3)
occupying the upper and lower regions, while light fluid (ϱ = 1.0 kg m−3) resides in the cen-
tral jet region. This arrangement replicates atmospheric temperature inversions where warm
air masses become trapped between cooler layers, commonly observed in urban heat islands
and frontal systems where differential advection creates complex thermal structures [13]. The
inverted density gradient at each interface promotes symmetric instability development with
opposing buoyancy forces, enabling investigation of billow interaction mechanisms including
vortex pairing, amalgamation, and competitive growth observed in laboratory experiments and
field observations [8].

Operating parameters Re = 2 000 and Ri = 0.1 create strongly shear-dominated conditions
where instability growth occurs rapidly with minimal buoyancy suppression. The enhanced
Reynolds number relative to Test case 1 captures increased nonlinear interactions arising from
proximity effects between developing billows, while the reduced Richardson number ensures
vigorous turbulent transition with enhanced mixing rates characteristic of high-shear environ-
ments [46]. This configuration elucidates momentum transport mechanisms in complex shear
flows where traditional single-interface assumptions break down.

2.3.3. Test case 3: Rotating shear layer

Planetary rotation introduces fundamental modifications to shear instability through the Cori-
olis force, affecting both linear growth rates and nonlinear evolution pathways in geophysical
flows [70]. Although the two-dimensional formulation precludes explicit rotation terms, we
incorporate rotational effects through a background geostrophic shear that approximates the
influence of planetary vorticity

u(z) = ushear(z) + f

(
z − Lz

2

)
, (61)

where the base shear profile ushear follows (58) and the linear term with coefficient f = 0.5 s−1

represents an effective Coriolis parameter scaled to the domain dimensions, corresponding to
mid-latitude conditions at approximately 45◦ latitude when accounting for aspect ratio effects.
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Enhanced density stratification with ϱtop = 1.0 kg m−3 and ϱbot = 1.3 kg m−3 produces
a 30% density variation characteristic of strong seasonal thermoclines in subtropical oceans
where solar heating creates pronounced near-surface stratification [38]. The increased density
contrast relative to the non-rotating case compensates for rotational stabilization, which inhibits
vertical motion through the Taylor-Proudman constraint and modifies the instability structure
through potential vorticity conservation [36]. This stronger stratification maintains comparable
instability growth rates despite the additional rotational constraint, reflecting observations from
rotating tank experiments and oceanic measurements showing reduced mixing efficiency under
rotation [5].

Configuration parameters Re = 1 500 and Ri = 0.3 place the flow above the canonical sta-
bility threshold, accounting for rotational stabilization that shifts the marginal stability boundary
to higher Richardson numbers. The intermediate Reynolds number balances resolution require-
ments with computational cost while capturing essential dynamics of rotationally-influenced
mixing relevant to submesoscale oceanic processes where balanced and unbalanced motions in-
teract [47]. This idealized framework provides insights into mixing suppression mechanisms in
rotating stratified environments characteristic of atmospheric boundary layers at mid-latitudes
where inertial oscillations modulate turbulent transport [44].

2.3.4. Test case 4: Forced turbulence

Geophysical turbulence rarely exists in isolation but rather maintains quasi-equilibrium through
continuous energy injection balancing dissipative losses, whether from wind stress at the ocean
surface, breaking internal waves in the thermocline, or convective instability in the atmospheric
boundary layer [14]. Stochastic forcing represents these energy sources through a spectrum of
large-scale modes

Fu(x, z, t) =

Nf∑
kx=1

Nf∑
kz=1

Af√
k2
x + k2

z

sin

(
2πkxx

Lx

+ ϕkx,kz

)
cos

(
2πkzz

Lz

)
, (62)

Fw(x, z, t) =

Nf∑
kx=1

Nf∑
kz=1

Af√
k2
x + k2

z

cos

(
2πkxx

Lx

)
sin

(
2πkzz

Lz

+ ϕkx,kz

)
, (63)

where Nf = 5 modes concentrate energy injection at scales exceeding the natural instabil-
ity wavelength, preventing direct interference with billow formation while maintaining energy
cascade toward dissipation scales.

The forcing amplitude Af = 0.1m s−2 is calibrated to sustain turbulent fluctuations with-
out overwhelming stratification effects, analogous to moderate wind forcing in the ocean mixed
layer or thermal convection in atmospheric boundary layers. Random phases ϕkx,kz ensure
statistical homogeneity while maintaining divergence-free forcing consistent with incompress-
ibility constraint (38). The spectral distribution following k−1 scaling in amplitude concentrates
energy at large scales, mimicking atmospheric storm systems injecting momentum into ocean
surface layers or internal wave breaking cascading energy to smaller scales [18].

Weak stratification with ϱtop = 1.0 kg m−3 and ϱbot = 1.1 kg m−3 represents a 10% density
variation typical of ocean mixed layers where turbulent stirring homogenizes properties while
maintaining sufficient stratification for buoyancy effects [12]. This modest density contrast
permits vigorous turbulence development characteristic of convective boundary layers where
thermal plumes penetrate into stably stratified regions above, generating entrainment and mix-
ing analogous to cloud-top processes [63]. The forcing mechanism modifies the momentum
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equation through additional source terms in the predictor step (36), maintaining energy input
throughout the simulation duration.

Enhanced resolution using a 384 × 192 grid at Re = 5 000 and Ri = 0.15 enables resolu-
tion of an extended inertial range spanning approximately two decades in wavenumber space,
sufficient for examining cascade dynamics and spectral flux characteristics in stratified turbu-
lence [42]. The moderate Richardson number below the critical threshold ensures sustained
turbulence without relaminarization, facilitating investigation of mixing efficiency dependen-
cies relevant to parameterization development for climate models where subgrid-scale turbulent
fluxes must be represented [19]. Extended integration to tfinal = 30 s allows statistical equi-
librium establishment where forcing, cascade, and dissipation balance, providing ensemble-
averaged quantities for comparison with theoretical predictions and observational scaling laws.

Each test case employs adaptive time-stepping via criterion (54) ensuring numerical sta-
bility across varying flow conditions while maximizing computational efficiency. Integration
periods of tfinal = 10, 15, 20, and 30 seconds for respective cases capture complete instability
life cycles from linear growth through nonlinear saturation to turbulent decay or statistical equi-
librium. The vorticity field computed through equation (55) provides primary visualization of
coherent structures and turbulent eddies, while density evolution quantifies irreversible mixing
fundamental to diapycnal transport in stratified geophysical systems [74]. These idealized ex-
periments establish a hierarchy of complexity from simple shear layers to forced turbulence,
enabling systematic investigation of parameter dependencies governing mixing efficiency in
atmospheric and oceanic flows [16, 59].

2.4. Data analysis

Following completion of the four numerical experiments, a post-processing statistical analy-
sis framework was implemented to quantify the dynamical evolution of KH instabilities across
the parameter space explored. This analysis operates independently of the numerical solver,
processing the NetCDF output files generated from each test case to extract quantitative mea-
sures of flow complexity, mixing efficiency, and statistical properties. The framework leverages
NumPy [21] for array operations, SciPy [71] for statistical functions, and xarray [30] for effi-
cient manipulation of the multi-dimensional NetCDF datasets produced by the solver.

The analysis begins by loading the stored velocity fields u(x, z, t) and w(x, z, t), the density
field ϱ(x, z, t), and the computed vorticity ωz(x, z, t) from each of the four test cases: classi-
cal shear layer (Test case 1), double shear layer (Test case 2), rotating shear layer (Test case
3), and forced turbulence (Test case 4). For each field variable ϕ, representing either the den-
sity perturbation ϱ or the spanwise vorticity ωz consistent with the formulation in (32)–(35),
Shannon entropy serves as the fundamental measure of spatial disorder following established
applications in geophysical fluid dynamics [28]. The spatial entropy is computed as

H(ϕ) = −
Nbins∑
i=1

pi log pi, (64)

where pi represents the probability in bin i, computed as

pi =
ni ∆b

Ntotal
(65)

with ni being the count in bin i, ∆b the bin width from a 50-bin histogram, Ntotal the total
number of valid grid points excluding boundary regions, and Nbins = 50. This metric quantifies
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information content in the spatial patterns emerging from the KH instability, with higher val-
ues indicating increased complexity as the flow transitions from the organized laminar billows
characteristic of early evolution to the chaotic turbulent states observed in the mature phase,
particularly evident in the forced turbulence scenario (Test case 4) as demonstrated by [57] for
small-scale universality in turbulence.

Beyond simple entropy, a comprehensive complexity index was developed specifically for
these four test scenarios to capture multiple aspects of flow structure evolution, addressing the
absence of established complexity metrics tailored for KH instabilities in the current litera-
ture [17]. This weighted metric combines gradient-based spatial variability computed from the
velocity and density fields, statistical moments, and entropy through

C(ϕ) = w1H(ϕ) + w2σ∇(ϕ) + w3σ̄(ϕ) + w4 log(1 + |κ(ϕ)|), (66)

where the gradient complexity quantifies spatial variability through

σ∇(ϕ) =

√√√√√var

√(
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
. (67)

The normalized standard deviation provides scale-independent variance assessment

σ̄(ϕ) =
σ(ϕ)

ϕmax − ϕmin + ε
(68)

with ε = 10−10 preventing division by zero, and the excess kurtosis captures departure from
Gaussian behavior

κ(ϕ) =
µ4

σ4
− 3, (69)

characteristic of intermittent turbulence. The weights (w1, w2, w3, w4) = (0.3, 0.3, 0.2, 0.2)
were selected to balance contributions from different complexity aspects, emphasizing equally
the information-theoretic content and local gradient variations while incorporating global sta-
tistical properties relevant to each test case’s distinct dynamics.

The gradients required for complexity calculations, consistent with the spatial discretiza-
tion employed in the numerical solver, see (40)–(41), utilize second-order central differences
implemented through NumPy’s gradient function(

∂ϕ

∂x

)
i,j

=
ϕi,j+1 − ϕi,j−1

2∆x
, (70)(

∂ϕ

∂z

)
i,j

=
ϕi+1,j − ϕi−1,j

2∆z
, (71)

where ∆x = Lx/(Nx − 1) and ∆z = Lz/(Nz − 1) match the grid spacings from the com-
putational domain discretization. This numerical differentiation scheme maintains consistency
with the second-order accuracy of the solver while providing efficient computation for the large
datasets generated from each test case, particularly the high-resolution forced turbulence simu-
lation with its 384× 192 grid.

Basic statistical characterization employs standard moments computed for each field at se-
lected time snapshots throughout the simulation duration. For each test case, the mean

µ(ϕ) =
1

N

N∑
i=1

ϕi, (72)

140



S. H. S. Herho et al. / Applied and Computational Mechanics 19 (2025) 125–156

standard deviation

σ(ϕ) =

√√√√ 1

N − 1

N∑
i=1

(ϕi − µ)2, (73)

skewness

γ1(ϕ) =
1

N

N∑
i=1

[
ϕi − µ

σ

]3
, (74)

and excess kurtosis

γ2(ϕ) =
1

N

N∑
i=1

[
ϕi − µ

σ

]4
− 3 (75)

provide comprehensive distributional characterization, where N represents valid non-NaN data
points from the interior domain excluding boundary regions. These moments enable detection
of departures from Gaussian behavior as turbulence develops differently in each test case, with
skewness indicating asymmetry in mixing processes and kurtosis revealing intermittency in
energy dissipation, particularly pronounced in the forced turbulence scenario [17, 56].

Normality assessment employs multiple complementary tests to characterize the evolution
from near-Gaussian initial conditions imposed by (58)–(59) to the heavy-tailed distributions
characteristic of developed turbulence observed in all four test cases. The Shapiro-Wilk test,
optimal for sample sizes up to 5 000 points [53], computes the statistic

W =

(
n∑

i=1

aix(i)

)2

n∑
i=1

(xi − x̄)2
, (76)

where x(i) are the ordered statistics, and ai are tabulated coefficients maximizing power for de-
tecting non-normality. The Anderson-Darling test provides superior sensitivity to tail deviations
critical for the intermittent turbulence observed particularly in Test case 2 and Test case 4 [62],
computing

A2 = −n−
n∑

i=1

2i− 1

n

[
lnF (Yi) + ln

(
1− F (Yn+1−i)

)]
, (77)

where Yi are the ordered observations and F represents the standard normal cumulative distri-
bution function after standardization. The Jarque-Bera test given by

JB =
n

6

[
γ2
1 +

γ2
2

4

]
(78)

specifically targets skewness and kurtosis departures, while D’Agostino’s K2 from equation

K2 = Z2
1(γ1) + Z2

2(γ2) (79)

provides an omnibus test through standardized transformations [11]. This battery of tests en-
sures robust detection of non-Gaussian behavior across the different flow regimes represented
by the four test cases.

Given the consistently non-Gaussian nature of turbulent fields revealed by normality tests
across all scenarios, nonparametric statistical comparisons prove essential for inter-scenario
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analysis between the four test cases. The Kruskal-Wallis test enables simultaneous comparison
across all four scenarios without distributional assumptions [37], computing

H =
12

N(N + 1)

k∑
j=1

R2
j

nj

− 3(N + 1), (80)

where Rj represents the sum of ranks for scenario j, i.e.,

Rj =

nj∑
i=1

rij (81)

with nj being the sample size for the j-th scenario (extracted from each test case output),
N =

∑k
j=1 nj representing the total sample size across all four test cases, and rij denoting

the rank of observation i in scenario j. This test, asymptotically χ2 distributed with k − 1 = 3
degrees of freedom for our four test cases, identifies whether significant differences exist among
the scenarios’ statistical properties. Subsequently, pairwise Mann-Whitney U tests isolate spe-
cific differences between test case pairs through the statistic from equation

U1 = n1n2 +
n1(n1 + 1)

2
−R1, (82)

providing robust comparisons unaffected by outliers common in turbulent data [45]. The Fried-
man test

χ2
r =

12

nk(k + 1)

k∑
j=1

R2
j − 3n(k + 1) (83)

complements these analyses for repeated measures when examining temporal evolution within
each test case.

Mixing efficiency quantification follows simplified formulations appropriate for the two-
dimensional simulations produced by our solver. Full three-dimensional energy budgets cannot
be computed from the fields u, w, and ϱ, necessitating simplified metrics. The instantaneous
mixing parameter can be expressed as

Γ(t) = σϱ(t) · ωrms(t), (84)

where the density standard deviation is defined as

σϱ(t) =
√

var(ϱ), (85)

and the root-mean-square vorticity as

ωrms(t) =
√
⟨ω2

z⟩, (86)

with angle brackets denoting spatial averaging over the domain, captures the essential coupling
between stratification and vortical motions driving irreversible mixing. This formulation proves
particularly relevant for comparing the baseline shear layer (Test case 1) with the enhanced mix-
ing observed in forced turbulence (Test case 4). While more sophisticated measures incorporat-
ing background potential energy evolution exist [74], this formulation provides computational
efficiency suitable for extensive parameter studies while maintaining physical relevance to the
mixing processes observed across our four test scenarios [46].
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Temporal evolution analysis tracks all metrics across the simulation time spans: tfinal =
10 s for Test case 1, 15 s for Test case 2, 20 s for Test case 3, and 30 s for Test case 4. This
enables identification of distinct dynamical stages characteristic of KH evolution [59], defined
as early (t ∈ [0, 0.25tfinal]), growth (t ∈ (0.25tfinal, 0.50tfinal]), mature (t ∈ (0.50tfinal, 0.75tfinal]),
and late (t ∈ (0.75tfinal, tfinal]) phases, corresponding to linear instability, nonlinear saturation,
fully developed turbulence, and viscous decay or equilibrium phases, respectively. The entropy
growth rate defined as

Ḣ =
H(tfinal)−H(t0)

tfinal − t0
(87)

quantifies the rate of disorder increase for each test case, while the stage-weighted overall com-
plexity is

Coverall =
∑
s∈S

ws⟨C⟩s (88)

with weights (wearly, wgrowth, wmature, wlate) = (0.15, 0.25, 0.35, 0.25) emphasizing the mature tur-
bulence phase where mixing efficiency peaks, provides a scalar metric for comparing the four
test scenarios.

All post-processing computations incorporate data preprocessing to handle numerical arti-
facts from the solver output and ensure statistical validity. The data flattening with NaN removal

ϕvalid =
{
ϕi,j : ϕi,j /∈ {NaN,±∞}

}
(89)

eliminates undefined values that may arise from boundary conditions or numerical instabili-
ties in the simulation. When dataset sizes from the high-resolution simulations (particularly
Test case 4) exceed computational feasibility for certain statistical tests, the following random
subsampling without replacement is used:

Nsample = min(Nvalid, 10 000), (90)

points maintains statistical significance while ensuring tractability, following standard practices
in turbulence statistics where spatial correlations decay rapidly beyond the integral scale [42].

This statistical framework, implemented as a separate post-processing pipeline operating on
the NetCDF outputs from our four demonstration test cases, provides robust quantification of the
complex spatiotemporal dynamics characterizing KH instability evolution across the explored
parameter space of Reynolds (Re = 1 000–5 000) and Richardson (Ri = 0.1–0.3) numbers
representative of diverse geophysical flow regimes.

3. Results

The numerical experiments were conducted on a Fedora Linux 39 (Budgie) system equipped
with an Intel i7-8550U processor (8 cores at 4.00 GHz) and 32 GB of RAM. All simulations
utilized the Python-based solver implementation with NumPy array operations and Numba JIT
compilation for computational efficiency. The four test cases were executed sequentially with
varying spatial resolutions and temporal integration periods to capture the distinct dynamics of
each KH instability configuration.

Table 1 presents the computational parameters employed across the four test scenarios. The
basic shear layer simulation utilized a 256 × 128 grid over a 2.0 × 1.0m domain, integrating
for 10.0 seconds with Reynolds number 1 000 and Richardson number 0.25. Total computa-
tion time including post-processing was 149.12 seconds, with the core simulation requiring
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Table 1. Computational parameters and performance metrics for the four KH instability test cases

Test case Grid size tfinal [s] Re Ri
Simulation Total

time [s] time [s]
Basic shear layer 256× 128 10.0 1 000 0.25 76.41 149.12
Double shear layer 256× 128 15.0 2 000 0.10 114.20 222.82
Rotating KH 256× 128 20.0 1 500 0.30 201.51 368.14
Forced turbulence 384× 192 30.0 5 000 0.15 1 465.58 1 863.37

76.41 seconds. The double shear layer configuration maintained the same grid resolution but
extended the integration period to 15.0 seconds, operating at Re = 2 000 and Ri = 0.1, com-
pleting in 222.82 seconds total time. The rotating KH instability case increased the simulation
duration to 20.0 seconds with Re = 1 500, Ri = 0.3, and rotation rate f = 0.5 s−1, requiring
368.14 seconds for completion. The forced KH turbulence simulation employed enhanced res-
olution of 384 × 192 grid points, running for 30.0 seconds at Re = 5 000 and Ri = 0.15 with
forcing amplitude 0.1m s−2, necessitating 1 863.37 seconds total computation time.

Statistical analysis of the density fields revealed consistent non-Gaussian distributions across
all test cases and time snapshots. The basic shear layer exhibited initial density mean of
1.100 kg m−3 with standard deviation 0.095 kg m−3, evolving to mean 1.066 kg m−3 and stan-
dard deviation 0.083 kg m−3 by t = 7.47 s. Spatial entropy increased from 1.667 at initialization
to 2.340 at the final measurement time, indicating progressive disorder development. The com-
plexity index evolved from 0.811 to 0.945, reaching maximum value of 0.950 at t = 1.414 s.
All normality tests (Shapiro-Wilk, Anderson-Darling, Jarque-Bera, and D’Agostino K2) con-
sistently rejected the null hypothesis of normality with p-values less than 0.001, confirming the
fundamentally non-Gaussian nature of the turbulent density distributions.

Fig. 1 illustrates the density field evolution for the basic shear layer test case, showing the
progression from initial stratification (t = 0.00 s) through early billow formation (t = 2.42 s)
and developed vortex structures (t = 4.95 s) to late-stage mixing patterns (t = 7.47 s). The
velocity quivers reveal the characteristic KH roll-up structure, with the flow transitioning from
the organized laminar state to increasingly chaotic patterns as turbulent breakdown proceeds.

The double shear layer configuration demonstrated more complex statistical behavior with
initial three-layer density stratification yielding mean 1.352 kg m−3 and standard deviation
0.228 kg m−3. The configuration evolved through pronounced mixing phases, achieving maxi-
mum density complexity of 1.005 at t = 3.221 s. Spatial entropy increased substantially from
0.608 to 1.982 over the 15-second simulation period. The density field exhibited persistent neg-
ative skewness ranging from −0.862 to −1.568, indicating asymmetric mixing favoring lower
density values. Vorticity statistics revealed extreme intermittency with kurtosis values reaching
24.889 at t = 3.72 s, substantially exceeding Gaussian expectations.

Fig. 2 demonstrates the distinctive dual-billow development in the double shear layer con-
figuration, with symmetric instability growth visible at t = 3.72 s and subsequent vortex in-
teraction leading to merged turbulent structures by t = 11.17 s. The interaction between the
two separated shear interfaces produces significantly enhanced mixing compared to the single-
interface case, as quantified by the elevated mixing efficiency metrics in Table 2.

The rotating KH instability case incorporated rotational effects through a linear background
shear with coefficient 0.5 s−1. Initial conditions featured enhanced density stratification with
30% variation between layers (1.0 to 1.3 kg m−3). The density field maintained relatively sta-
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Fig. 1. Density field evolution with velocity quiver plots for the basic shear layer test case (Re = 1 000,
Ri = 0.25) at four time instances: t = 0.00 s showing initial stratification, t = 2.42 s displaying early
billow formation, t = 4.95 s demonstrating developed vortex structures, and t = 7.47 s presenting late-
stage mixing patterns. Color contours indicate density values from 1.008 to 1.200 kg m−3, with white
arrows representing velocity vectors scaled to 1m s−1 reference magnitude

ble statistical properties after initial development, with mean values stabilizing around 1.085–
1.086 kg m−3 from t = 4.93 s onward. Spatial entropy exhibited modest growth from 1.644
to 2.160, indicating rotational suppression of mixing. Vorticity fields displayed extreme posi-
tive skewness reaching 4.029 at t = 9.95 s with kurtosis values exceeding 35, characteristic of
rotationally-modified intermittency patterns.

Table 2. Comparative statistical metrics and complexity indices across the four test scenarios. Max
Cϱ: maximum density complexity index (66); Max Cω: maximum vorticity complexity index (66); Ḣϱ:
density entropy growth rate (87); Ḣω: vorticity entropy growth rate (87); Mean Γ: time-averaged in-
stantaneous mixing parameter (84); Coverall: stage-weighted overall complexity (88). Negative entropy
growth rates for vorticity indicate increasing spatial organization despite overall disorder growth in den-
sity fields

Test case Max Cϱ Max Cω Ḣϱ [s−1] Ḣω [s−1] Mean Γ Coverall

Basic shear layer 0.950 2.994 0.067 −0.064 0.456 0.800
Double shear layer 1.005 3.278 0.090 −0.036 1.287 0.845
Rotating KH 0.912 3.735 0.026 −0.030 0.761 0.881
Forced turbulence 1.094 3.868 0.012 −0.041 0.302 0.907
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Fig. 2. Density field evolution with velocity quiver plots for the double shear layer test case (Re = 2 000,
Ri = 0.1) showing: t = 0.00 s with distinct three-layer initial stratification (ϱ = 1.5, 1.0, 1.5 kg m−3),
t = 3.72 s displaying dual billow development at separated interfaces, t = 7.45 s demonstrating vortex
interaction and pairing, and t = 11.17 s presenting merged turbulent structures. Enhanced mixing occurs
through interaction between the two shear interfaces separated by 0.3m

The rotational effects are evident in Fig. 3, where coherent vortex structures persist through
t = 14.98 s, contrasting with the more dissipated structures in non-rotating cases. The imposed
rotation inhibits vertical mixing while maintaining organized flow patterns, as reflected in the
lower entropy growth rates and higher overall complexity index shown in Table 2.

The forced KH turbulence simulation exhibited sustained turbulent characteristics through
continuous energy injection via spectral forcing across five modes. Initial density stratifica-
tion of 10 % (1.0 to 1.1 kg m−3) evolved under forcing amplitude 0.1m s−2. Density statistics
showed reduced variation with standard deviations remaining near 0.045 kg m−3 throughout the
simulation. Maximum complexity index of 1.094 occurred at t = 3.311 s. The system achieved
statistical quasi-equilibrium after approximately 15 seconds, with entropy values fluctuating
around 2.1. Mean mixing efficiency averaged 0.302 across the 30-second integration period,
lower than unforced cases despite higher Reynolds number.

Fig. 4 shows the sustained turbulent state achieved through continuous spectral forcing, with
complex small-scale structures maintained throughout the 30-second simulation period. The
persistent forcing prevents relaminarization but paradoxically results in lower mixing efficiency
than the double shear layer case, highlighting the importance of instability generation pathways
over simple Reynolds number scaling.

Temporal evolution metrics revealed distinct growth characteristics across scenarios. The
basic shear layer achieved maximum vorticity complexity of 2.994 at t = 1.717 s with en-
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Fig. 3. Density field evolution with velocity quiver plots for the rotating KH instability test case
(Re = 1 500, Ri = 0.3, f = 0.5 s−1) at: t = 0.00 s showing initial 30% density stratification, t = 4.93 s
displaying rotationally-modified billow development, t = 9.95 s demonstrating sustained coherent struc-
tures, and t = 14.98 s presenting quasi-steady rotating vortices. Rotation inhibits vertical mixing while
maintaining organized flow patterns throughout the 20-second simulation

tropy growth rate of 0.067 per second for density and −0.064 per second for vorticity. The
double shear layer demonstrated enhanced mixing with mean mixing efficiency of 1.287, sub-
stantially exceeding single-interface configurations. Maximum vorticity complexity reached
3.278 at t = 0.101 s, indicating rapid initial instability development. The rotating case showed
suppressed entropy growth rates of 0.026 per second for density and −0.030 per second for
vorticity, confirming rotational stabilization effects. The forced turbulence case maintained the
lowest entropy growth rate of 0.012 per second for density, consistent with sustained equilib-
rium conditions.

Table 2 summarizes the comparative statistical metrics across all four scenarios, revealing
systematic differences in complexity evolution and mixing efficiency. The maximum density
and vorticity complexity indices (Max Cϱ and Max Cω) quantify peak structural organization,
while entropy growth rates (Ḣϱ and Ḣω) measure the temporal evolution of disorder. The time-
averaged mixing parameter (Mean Γ) and stage-weighted overall complexity (Coverall) provide
integrated metrics for inter-scenario comparison, demonstrating the non-monotonic relationship
between flow parameters and mixing efficiency.

Inter-scenario statistical comparisons using the Kruskal-Wallis test confirmed significant
differences in density field distributions across all four cases (H-statistic p < 0.001). Pairwise
Mann-Whitney U tests revealed significant differences (p < 0.001) between all scenario com-
binations for density fields. Vorticity field comparisons showed more nuanced results, with no
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Fig. 4. Density field evolution with velocity quiver plots for the forced KH turbulence test case
(Re = 5 000, Ri = 0.15) on 384×192 grid showing: t = 0.00 s initial weak stratification, t = 7.43 s dis-
playing forced turbulent structures, t = 14.95 s demonstrating sustained mixing patterns, and t = 22.48 s
presenting statistical equilibrium state. Continuous spectral forcing maintains turbulent fluctuations pre-
venting relaminarization throughout the extended 30-second simulation period

significant difference between the basic shear layer and the double shear layer (p = 0.126) or
between the basic shear layer and the forced turbulence (p = 0.096), while all other pairwise
comparisons yielded significant differences (p < 0.001).

Normalized complexity indices computed across evolutionary stages demonstrated consis-
tent patterns. Early stage complexity (t < 25% of simulation time) ranged from 0.874 to 1.000,
with the forced turbulence achieving maximum values. Growth stage indices (25–50%) varied
from 0.752 to 0.886. Mature stage complexity (50–75%) showed convergence across scenarios
with values between 0.792 and 0.895. Late stage indices (t > 75%) ranged from 0.810 to 0.889.
Overall weighted complexity scores, emphasizing the mature turbulence phase, yielded 0.800
for the basic shear layer, 0.845 for the double shear layer, 0.881 for the rotating KH instabil-
ity, and 0.907 for the forced KH turbulence, indicating progressively enhanced complexity with
increased forcing and Reynolds number.

4. Discussion

The emergence of non-Gaussian distributions with extreme kurtosis values demonstrates the
intermittent nature of stratified turbulence within these idealized configurations [8]. These
statistical signatures arise from coherent structure dynamics rather than random fluctuations,
characteristic of the simplified two-dimensional framework employed. The pronounced neg-
ative skewness in density distributions indicates asymmetric entrainment processes, wherein
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lighter fluid preferentially penetrates heavier layers through mechanisms documented in labo-
ratory investigations [13]. While these idealized test cases exclude three-dimensional effects
and realistic boundary conditions present in geophysical flows, they isolate fundamental mix-
ing mechanisms that remain obscured in more complex simulations. The controlled parame-
ter space enables systematic investigation of Richardson and Reynolds number dependencies
without confounding factors inherent in field observations or comprehensive numerical weather
prediction models.

Richardson number variations fundamentally alter the mixing dynamics through modifica-
tion of the shear-to-buoyancy ratio, as demonstrated across the four canonical configurations.
The enhanced mixing efficiency at Ri = 0.1 with dual interfaces derives from constructive
interference between adjacent instability zones [46]. Vortex pairing across separated shear
layers generates secondary circulations absent in single-interface configurations, amplifying
cross-gradient transport beyond linear superposition predictions. External forcing paradoxi-
cally diminishes mixing efficiency despite elevated Reynolds numbers, revealing fundamental
distinctions between autonomous instability development and imposed turbulence [14]. Contin-
uous large-scale energy injection disrupts the natural cascade sequence, preventing formation of
optimally-sized billows that maximize buoyancy flux. This mechanism, observable only in ide-
alized simulations where forcing parameters remain precisely controlled, explains observations
of reduced mixing efficiency in wind-driven oceanic layers compared to internal shear events at
equivalent dissipation rates [19].

Rotational constraints manifest through modified entropy evolution rates, confirming the-
oretical predictions of geostrophic adjustment within the limitations of two-dimensional dy-
namics [70]. The imposed horizontal rigidity redirects energy into barotropic modes, suppress-
ing vertical transport essential for diapycnal mixing. Vorticity concentration in filamentary
structures, evidenced by extreme statistical moments, characterizes rotationally-constrained
turbulence wherein horizontal anisotropy dominates the energy cascade [36]. While the two-
dimensional formulation cannot capture baroclinic instabilities or inertial waves that modulate
mixing in three-dimensional rotating flows, it isolates the fundamental competition between
rotation and stratification effects. The simplified framework enables direct comparison with
theoretical predictions unavailable for fully three-dimensional turbulent flows where analytical
solutions remain intractable.

Complexity index evolution delineates distinct dynamical phases corresponding to linear
instability theory, validated through these controlled numerical experiments. Early-stage rapid
growth follows exponential amplification predicted by stability analysis, with growth rates
maximized near the marginal stability threshold [29, 49]. The accelerated transition in multi-
interface configurations confirms theoretical predictions of mode coupling between adjacent
unstable regions [23]. Convergence of mature-phase complexity values across diverse initial
conditions reveals universal turbulence characteristics emerging from idealized configurations.
The anisotropic energy cascade, characterized by horizontal k−5/3 scaling and steeper vertical
slopes, emerges independently of forcing mechanisms [42]. This universality, clearly observ-
able in simplified test cases, indicates that developed stratified turbulence reaches canonical
energy distributions regardless of generation pathways.

The computational implementation leveraging NumPy array operations and Numba JIT
compilation demonstrates the feasibility of high-resolution simulations on modest hardware
platforms. The Fedora Linux system with 32 GB RAM successfully executed all test cases,
with the most demanding forced turbulence simulation requiring approximately 31 minutes for
30 seconds of physical time on a 384 × 192 grid. The fractional-step projection method main-
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tains second-order accuracy for pressure and diffusion while the FST solver achieves machine
precision for the pressure Poisson equation with O(N logN) complexity. The adaptive time-
stepping algorithm balances accuracy and efficiency, automatically adjusting between CFL and
viscous stability constraints. This computational efficiency enables parameter studies previ-
ously requiring supercomputing resources, democratizing access to fundamental fluid dynamics
research. The Python implementation provides transparency and reproducibility often lacking
in legacy Fortran codes, while Numba optimization achieves performance within a factor of two
of compiled languages.

Statistical distribution differences between scenarios exceed parametric test capabilities, ne-
cessitating nonparametric approaches validated through these idealized cases. Density field
distinctions across all configurations contrast with partial vorticity field similarities, suggesting
greater universality in rotation generation than scalar transport mechanisms. This dichotomy
parallels three-dimensional simulations wherein vorticity statistics exhibit enhanced self-similar-
ity compared to mixing properties [17]. Reynolds number scaling exhibits non-monotonic
mixing efficiency relationships, contradicting classical turbulence theory but consistent with
the pathway-dependent mechanisms isolated in these test cases [56]. Alternative instabilities,
particularly the Holmboe mode, achieve superior mixing through asymmetric structures that
enhance diapycnal transport [7].

Thermodynamic considerations reconcile apparent entropy paradoxes in vorticity evolution
observed across all idealized scenarios. Local organization into coherent structures decreases
configurational entropy while global dissipation increases thermal entropy [28]. This duality
characterizes geophysical turbulence wherein structure formation and irreversible mixing pro-
ceed simultaneously. Current parameterization schemes inadequately represent the identified
mixing dependencies revealed through systematic parameter variation in controlled conditions.
Richardson number-based formulations assuming monotonic relationships fail to capture multi-
interface enhancement and forcing-induced suppression [40]. Accurate subgrid-scale represen-
tation requires encoding turbulence generation mechanisms beyond instantaneous flow proper-
ties [32].

The idealized two-dimensional framework deliberately excludes spanwise secondary insta-
bilities that amplify mixing in natural flows, enabling isolation of primary instability mecha-
nisms. Three-dimensional perturbations increase mixing efficiency through additional overturn-
ing modes absent in planar simulations [59]. Rotational cases particularly benefit from spanwise
instabilities that generate helical structures capable of enhanced vertical transport despite Corio-
lis constraints [35]. Nevertheless, the two-dimensional results provide essential baseline under-
standing and computational benchmarks for more complex three-dimensional simulations. The
developed complexity metrics provide quantitative benchmarks for model validation beyond
conventional statistical measures. LES frequently misrepresent intermittency characteristics,
propagating errors into mixing predictions [63]. The composite metrics incorporating entropy,
gradients, and higher moments enable comprehensive fidelity assessment throughout instability
evolution stages, establishing standards for future model development and validation protocols.

5. Conclusion

This study presents kh2d-solver, a Python-based numerical framework for investigating ideal-
ized two-dimensional KH instabilities across diverse parameter regimes relevant to geophys-
ical fluid dynamics. The implementation successfully captures fundamental mixing mecha-
nisms through four canonical test cases spanning Reynolds numbers from 1 000 to 5 000 and
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Richardson numbers from 0.1 to 0.3, demonstrating that modern Python scientific comput-
ing tools can achieve computational efficiency comparable to traditional compiled languages
while maintaining code transparency and accessibility. The systematic statistical analysis re-
veals non-monotonic relationships between flow parameters and mixing efficiency, with double
shear layer configurations achieving 4.3× higher mixing rates than forced turbulence despite
lower Reynolds numbers, indicating that instability pathways play a crucial role in determin-
ing mixing effectiveness beyond simple intensity measures. The developed complexity metrics
combining Shannon entropy, gradient variability, and higher-order statistical moments provide
quantitative benchmarks for model validation that complement conventional mean and variance
comparisons, offering additional tools for assessing turbulence parameterizations in climate and
ocean models. While the two-dimensional framework deliberately excludes three-dimensional
secondary instabilities and realistic boundary conditions, this simplification enables isolation of
primary mechanisms that may be obscured in comprehensive simulations, contributing useful
baseline understanding for interpreting more complex flows. The open-source implementation
facilitates access to high-fidelity instability simulations, enabling researchers and students with
modest computational resources to investigate fundamental questions in stratified turbulence
that traditionally required more extensive computing facilities. Future extensions should incor-
porate three-dimensional effects, non-Boussinesq dynamics, and variable diffusivities to bridge
the gap between these idealized configurations and realistic geophysical fluid dynamics appli-
cations, while maintaining the computational efficiency and transparency that characterize the
present framework.
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