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Abstract

When analyzing the scatter and discrepancies arising among the fracture toughness resulting for different materials
and given mixity ratio KIIC /KIC three factors seems to be influential in contributing to the still unsatisfactory
state of affairs in this field: a) the lack of established requirements as regards geometry and minimal in- and out-of-
plane dimensions of specimens regulating the test for determining mode-II fracture toughness KIIC or, in the more
general case, its equivalent in mixed mode cases, b) the role played by the micro-cracking present in the process
zone, acknowledged as a microstructural phenomenon already pointed out by Kalthoff and co-workers, needs to be
experimentally investigated, and is not considered in the mainly analytical and numerical focussing pursued here,
and c) the insufficient attention paid to the particularity of the stress fields around the crack front before and after
the daughter crack is formed. In this work, the last question is addressed with the intention of contributing to the
clarification of some points with regard to crack instability under mode-II and mixed-mode loading, in particular,
why it is difficult to formulate a sufficiently simple failure model for mechanical components or real structures
for which the type of load or the geometry results in stress states from which the potential of mixed mode failure
arises.
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1. Introduction

The transition of a mode-I crack to a mixed-mode one with the formation of a daughter crack
kinked with respect to the original mother crack implies a modification of the stress intensity
tensor encompassing different constraint conditions. This emphasizes the significance of ana-
lyzing the influence of the constraint conditions before and after the formation of the daughter
crack in order to interpret the instability criterion as initiation (before) and the crack growth rate
(after) as propagation.

In this work a tensor approach is proposed to consider the real situation of the stress intensity
field at the crack. In a certain respect it can be considered an extension of the model handled
in [11], in which the existence of different stress intensity factors before and after the crack
kinking is underlined indicates that the consideration of the potential mode-I situation in the
prospective propagation direction before kinking does not correspond to the regular mode-I state
as would be present in the mother crack subjected to mode-I loading. Although the constraint
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state for mode II is not thickness dependent, at least in the “before” state, it denotes different
constraint conditions than in the case of regular mode-I in the prospective direction.

When analyzing the scatter and discrepancies arising among the fracture toughness resulting
for different materials and given mixity ratio KIIC/KIC three factors seems to be influential and
to contribute to the continuing, unsatisfactory state of the situation:

a) The lack of established requirements as regards geometry and minimal in- and out-of-
plane dimensions of specimens regulating the test for determining mode-II fracture tough-
ness KIIC or, in the more general case, its equivalent in mixed mode cases. This fact
contrasts with the mode-I case, for which linear elastic or small scale yielding fracture
mechanics and a state of plane strain dominating at the crack tip are ensured by the re-
quirements made explicit by the ASTM and ESIS standards.

b) The role played by the micro-cracking present in the process zone, being acknowledged
as a microstructural phenomenon already pointed out by Kalthoff and co-workers [7],
needs to be experimentally investigated, and is not considered in the mainly analytical
and numerical focussing pursued here. This is the reason why the fracture toughness
under mode-II KIIC cannot be directly related to that under mode-I KIC .

c) The insufficient attention paid to the particularity of the stress fields around the crack front
before and after the daughter crack is formed. According to the tensor approach proposed
in [10] the orientation of the prospective crack necessarily follows the direction predicted
using the maximal tangential stress model if initiation is assumed always to succeed under
model-I loading. Further, the transition between the stress fields before and after the
kinked (daughter) crack is formed must be taken into consideration [11]. In fact, the
stress field, represented by the stress intensity tensor, around the mother crack front before
the crack kinks to the prospective direction differentiates from the regular mode-I stress
intensity tensor present at the crack front of the daughter crack. The specific features of
crack kinking under mode-II and mixed-mode fatigue loading are also recognized and
discussed.

In this work, some aspects of the mode-II and mixed-mode problem are handled, in particu-
lar, why it is difficult to formulate a sufficiently simple failure model for mechanical components
or real structures for which the type of load or the geometry result in stress states from which
the potential of mixed mode failure arises.

2. Stress and strain tensors near the crack front under a general load

In the following, the general expression of the stress field in the proximity of the crack front is
derived using a tensor approach and then particularized for the cases of pure mode-I and pure
mode-II.

2.1. General definitions

The following tensor magnitudes are defined in the stress field [13] σij(z, r, θ; B):

a) Stress intensity field tensor:

φij(r, θ, z; B) =
√

2πrσij(r, θ, z; B). (1)
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b) Spatial stress intensity tensor:

k∗
ij(θ, z; B) = lim

r→0
φij(r, θ, z; B) = lim

r→0

√
2πrσij(r, θ, z; B). (2)

c) Stress intensity tensor:

kij(z; B) = k∗
ij(θ, z; B)|θ=θcr = lim

r→0

√
2πrσij(r, θ, z; B)|θ=θcr . (3)

d) Spatial constraint tensor corresponding to the second term of Williams’ expansion:

t∗ij(θ, z; B) = lim
r→0

[
σij(r, θ, z; B) −

k∗
ij√
2πr

]
. (4)

e) Constraint tensor:

tij(z; B) = t∗ij(θ, z; B)|θ=θcr = lim
r→0

[
σij(r, θ, z; B) −

k∗
ij√
2πr

]
|θ=θcr . (5)

f) Constraint function:

ψij(r, z; B) = φ(r, θ, z; B)|θ=θcr =
√

2πrσij(r, θ, z; B)|θ=θcr . (6)

Using expressions (2) and (4), the stress tensor σij in the proximity of a straight crack tip
in a plane normal to the crack front at the point (r, θ, z) for a given specimen thickness B (see
Fig. 1) can be expressed in polar coordinates as a Williams’ expansion [13]:

σij(r, θ, z; B) =
kij(θ, z; B)√

2π
r−1/2 + t∗ij(θ, z; B)r0 + Oij(r

1/2, θ, z; B), (7)

where Oijrepresents the remaining higher terms. A justification for the extension of this formula
to the component σzz(r, θ, z; B) is provided in the next subsection.

Fig. 1. Crack front and associated coordinate systems (Cartesian and polar)

By identifying (7) with the conventional formulation of Williams’ expansion for the general
case of mixed-mode I–II, k∗

ij can be expressed, indistinctly, in terms of KI or KII , but consid-
ering the preponderance of the mode-II component in the case to be handled, the reference to
KII is preferred.

k∗
ij(θ, z; B) = KII(z; B)f

(K)
ij (θ),

t∗ij(θ, z; B) = Tstress(z; B)f
(T )
ij (θ),

(8)

where KII is the stress intensity factor for mode-II, defined as KII(z; B) = lim
r→0

√
2πrτxy(z; B),

Tstress is the classical T-stress (see [10, 11]) and fij(θ) are the geometric functions with super
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index (T ) or (K) referred, respectively, to the tensors k∗
ij and t∗ij , which can be expressed in

terms of the inverse of the mixity ratio 1/α = KI/KII as:

f (K)
rr =

1

4

[
1

α

(
5 cos

θ

2
− cos

3θ

2

)
+

(
−5 sin

θ

2
+ 3 sin

3θ

2

)]
,

f
(K)
rθ = f

(K)
θr =

1

4

[
1

α

(
sin

θ

2
+ sin

3θ

2

)
+

(
cos

θ

2
+ 3 cos

3θ

2

)]
,

f
(K)
θθ =

1

4

[
1

α

(
3 cos

θ

2
+ cos

3θ

2

)
+

(
−3 sin

θ

2
− 3 sin

3θ

2

)]
, (9)

f (K)
zz = ν

(
2

1

α
cos

θ

2
− sin

θ

2

)
,

f (K)
rz = f (K)

zr = f
(K)
θz = f

(K)
zθ = 0

and

f (T )
rr = cos2 θ,

f
(T )
θθ = sin2 θ,

f (T )
zz =

Eεzz

Tstress

− ν, (10)

f
(T )
rθ = f

(T )
θr = f (T )

rz = f (T )
zr = f

(T )
θz = f

(T )
zθ = 0,

as can be verified from the literature [1, 5, 11, 13]. The extension of these formulae to the
component σzz(r, θ, z; B) is justified in the next subsection.

The critical orientation can be ascertained from the assumption that failure succeeds un-
der mode-I conditions. This condition requires that the stress intensity tensor kij becomes a
diagonal one, what implies that frθ = 0. The following equation in θcr is then obtained:

sin
θcr

2
+ sin

3θcr

2
+ α

(
cos

θcr

2
+ 3 cos

3θcr

2

)
= 0, (11)

or
α =

sin θcr

1 + sin θcr − 3 cos θcr
(12)

from which after some algebra the value of θcr can be found in terms of the mixity ratio α
resulting from the particular loading case considered. Note that this condition is equivalent to
the failure criterion controlled by the maximal tangential stress as proposed by Erdogan and
Sih [2].

Accordingly, under pure mode-I loading, i.e., α = 0, it results in θcr = 0 for which

kij(0; B) = KI(0; B)

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 2ν

∣∣∣∣∣∣
and

tij(0; B) = Tstress(0; B)

∣∣∣∣∣∣
1 0 0
0 0 0

0 0 Eεzz(0;B)
Tstress(0;B)

− ν

∣∣∣∣∣∣ , (13)
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in this case KI has been referred to by obvious reasons. For pure mode-II, the kij and tij tensors
can be derived for the mother crack orientation, i.e., θ = 0. In this case, T

(II)
stress = 0 due to the

anti-symmetric load and boundary conditions at the crack so that:

kij(0; B) = KII(0; B)

∣∣∣∣∣∣
0 0 0
0 1 0
0 0 ν

∣∣∣∣∣∣ and tij(0; B) =

∣∣∣∣∣∣
0 0 0
0 0 0
0 0 0

∣∣∣∣∣∣ , (14)

where KII is now taken as the reference magnitude.
Nevertheless, according to [7] the instability conditions resulting during the failure process,

i.e. for θ = θcr = 70.5, implies necessarily investigating the stress fields before and after
the secondary or daughter kinked crack is formed. In fact, these two states reveal significantly
different stress states.

a) Before the daughter crack is formed (primarily for crack initiation)

kij(0; B) = KII(0; B)

∣∣∣∣∣∣
0 0 0
0 1 0
0 0 ν

∣∣∣∣∣∣ and tij(0; B) =

∣∣∣∣∣∣
0 0 0
0 0 0
0 0 0

∣∣∣∣∣∣ , (15)

b) After the daughter crack is formed (primarily for crack propagation)

kij(0; B) = KI(0; B)

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 2ν

∣∣∣∣∣∣
and

tij(0; θcr) = Tstress(0; B)

∣∣∣∣∣∣
cos2 θcr 0 0

0 sin2 θcr 0
0 0 Eεzz

Tstress
− ν

∣∣∣∣∣∣ . (16)

Thus, the tensor approach demonstrates that for pure mode-II loading and consequently for
mixed-mode, the stress intensity tensor kij at the state before differs substantially from that
corresponding to the state after, irrespective of the crack length a, provided the latter is small.
This applies not only to the in-plane singularity controlled by krr and kθθ but also the out-of-
plane singularity controlled by kzz. Accordingly, the stress state before, i.e., the one supposedly
determining the crack instability condition or crack initiation, can be labelled as a spurious
mode-I state, and cannot be identified with that arising from a regular mode-I failure, as is
generally accepted [2]. Further, because the constant stress tensor tij for pure-mode-II is null,
none or negligible in-plane and out-of-plane constraint effects due to specimen thickness or
crack ratio are expected, since such an influence could be assigned only to the higher terms of
the tensor expansion. This has been confirmed by earlier research performed by Kalthoff and
co-workers at the University of Bochum [6, 9] performed on steel and aluminium alloys, see
Fig. 2.

In the case of mixed-mode, increasing mode-I participation, i.e., diminishing mixity ratio,
promotes the potential influence of the constraint effect, in particular of the specimen thickness
on the crack instability.

Once the daughter crack is formed, i.e. for the state after, the stress intensity tensor kij

as well as the constant stress tensor recover the structure of the regular mode-I implying the
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Fig. 2. Dependency and non-dependency of fracture toughness with respect to specimen thickness,
respectively, for mode-I and mode-II (from [6])

presence of constraint effects during the crack propagation. In any case, in the first stages
of crack propagation the relative size of crack and process zones should have an influence
on the crack propagation conditions, an aspect that points out the possible influence of the
material fracture properties during the failure sequence. This would explain the different ratios
KIIC/KIC observed for different materials, see [12] and [9], and therefore the impossibility of
deducing directly KIIC from KIC (see [7]). Since this corresponds to the propagation phase,
different crack velocities should be observed for specimens with different thicknesses

2.2. Strain relations at the crack front

So far, the expression of the out-of-plane stress σzz(r, θ, z; B) has not been justified yet. Apply-
ing the generalized Hooke’s law εij = 1+ν

E
σij − ν

E
σkkδij , allows deriving the expression

εzz(z, r, θ; B) =
σzz(r, θ, z; B) − ν [σrr(r, θ, z; B) + σθθ(r, θ, z; B)]

E
. (17)

According to [4] εzz(z, r, θ; B) cannot be singular in r what implies from (17)

σzz(r, θ, z; B) − ν [σrr(r, θ, z; B) + σθθ(r, θ, z; B)] �= ∞ for r → 0. (18)

Accordingly, for any position at the crack front, perhaps with the exception of locations close
to z = ±B/2 not considered here, σzz(r, θ, z; B) must necessarily be singular with the same
order of singularity as σrr(r, θ, z; B) and σθθ(r, θ, z; B), so that the Williams’ expansion is also
extensible to

σzz(r, θ, z; B) =
k∗

zz(θ, z; B)√
2πr

+ t∗zz(θ, z; B) + . . . , (19)

thus
k∗

zz(θ, z; B) = kzz(z; B)f (K)
zz (θ) = KII(z; B)f (K)

zz (θ), (20)

validating (7) and (8). From above it follows

εzz(r, θ, z; B) =
1

E

⎡
⎣ k∗

zz(θ, z; B) − ν [k∗
rr(θ, z; B) + k∗

θθ(θ, z; B)]√
2πr

+

t∗zz(θ, z; B) − ν[t∗rr(θ, z; B) + t∗θθ(θ, z; B)] + . . .

⎤
⎦ , (21)

so that the condition εzz(r, θ, z; B) �= ∞ at the crack front implies

k∗
zz(θ, z; B) − ν [k∗

rr(θ, z; B) + k∗
θθ(θ, z; B)] = 0 (22)
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and by considering (8) and (9), it follows

KI(z; B)f (K)
zz (θ) − ν

[
KI(z; B)f (K)

zz (θ) + KI(z; B)f (K)
zz (θ)

]
= 0 (23)

from which finally results (see [10])

f (K)
zz (θ) = ν(f (K)

zz (θ) + f (K)
zz (θ)) = 2ν

(
cos

θ

2
− α sin

θ

2

)
(24)

and

kzz(z; B) = k∗
zz(θcr, z; B) = KII(z; B)f (K)

zz (θcr) = 2νKII(z; B)

(
1

α
cos

θcr

2
− sin

θcr

2

)
, (25)

as it would be expected from (20).
Since the numerator of the first term of (21) does not depend on r, the following condition

must be accomplished:

lim
r→0

k∗
zz(θ, z; B) − ν [k∗

rr(θ, z; B) + k∗
θθ(θ, z; B)]√

2πr
= 0 (26)

so disregarding the higher terms in the Williams‘ expansion that results from (21)

εzz(r, θ, z; B)|r→0 =
1

E
[t∗zz(θ, z; B) − ν(t∗rr(θ, z; B) + t∗θθ(θ, z; B)] =

1

E

[
tzz(z; B)f (T )

zz (θ) − ν(T (z; B)f (T )
rr (θ) + T (z; B)f

(T )
θθ (θ)

]
=

1

E

[
tzz(z; B)f (T )

zz (θ) − νT (z; B)(f (T )
rr (θ) + f

(T )
θθ (θ))

]
= (27)

1

E

[
tzz(z; B)f (T )

zz (θ) − νT (z; B))
]
,

but since f
(T )
rr (θ) + f

(T )
θθ (θ) = cos2 θ + sin2 θ = 1 (see [10]), it results in

εzz(r, θ, z; B)|r→0 = εzz(r, z; B)|r→0 =
tzz(z; B) − νT (z; B)

E
, (28)

confirming that εzz(θ) is not dependent on θ for r = 0.

2.3. Results expected from the analytical

According to the analytical expressions derived for the different orientations of a crack subjected
to pure mode-II loading conditions the following results are predicted:

For θ = 0

kxx = kyy = 0,

kxy = KII(z; B) = lim
r→0

√
2πrτxy(z; B),

kzz = ν(kxx + kyy) = 0,

εzz|r=0 = 0, (29)
txx = tyy = 0, according to the load and boundary conditions,

tzz = 0, according to εzz|r=0 = 0 =
tzz − νtxx

E
.
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For θ = θcr = 70.5 (prospective crack propagation direction)

a) before the daughter crack is formed

krr = 0,

kzz = ν(krr + kθθ) = νkθθ,

εzz|r=0 = 0, (30)
trr = tθθ = 0, according to the load and boundary conditions,

tzz = 0, according to εzz|r=0
= 0 =

tzz − νtrr

E
.

b) after the daughter crack is formed

krr = kθ = 1.155KII , irrespective of the specimen thickness
kzz = ν(krr + kθθ) = 2 × 1.155 νKII

In close proximity to the crack front, varying as a function of the specimen thickness
B, this results in
tθθ = 0, according to the load and boundary conditions

εzz|r=0 �= 0 (31)

trr �= 0, according to the load and boundary conditions
tzz �= 0, according to εzz|r=0

= tzz−νtrr

E
.

3. Numerical calculations

With the aim of checking the analytical expressions found above, finite element calculations
were performed using the ANSYS code version for an Arcan-Richard specimen of different
specimen thicknesses and crack ratios. The Arcan-Richard specimen and corresponding exper-
imental setup are shown in Fig. 3.

Fig. 3. Arcan-Richard – specimen and Arcan-Richard fixture system, taken from [9]
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The specimen dimensions were (see Fig. 3): W = 50 mm, a/W = 0.3, 0.5 and 0.7 and
specimen thickness B = 5, 10 and 50 mm. A remote load P = 100 N for 2D-plane strain and
P = 100×B N for 3D model was applied, Young’s modulus is E = 2×105 MPa and Poisson’s
ration is ν = 0.34.

4. Results and discussion

The stress intensity factor K and the T-stress values were computed by means of the finite
element method and using the stress difference method [14]. As a first step, the 2D finite
element method solution was employed on the Arcan-Richard specimens to verify the accuracy
of the numerical model used. A typical finite element mesh and the boundary conditions used
in the computations are shown in Fig. 4 together with a detailed view of the small region near
the crack tip. The size of the smallest element in the crack tip is 5 × 10−5 mm.

Fig. 4. Load application and finite element mesh used in the finite element calculations: detailed view of
the small region near the crack tip

The analytical expressions deduced for the components of the stress intensity tensor kij and
those for the constant tensor tij should be validated by the numerical calculation, first for the
initial crack direction θ = 0 then for the prospective crack propagation direction θ = θcr for
both of the states: before and after the daughter crack is formed. In this work, only a selected
number of components have been considered, see section 4. The comparison of data from
literature (e.g. [8]) and from our numerical 2D-model (plane strain) is shown in Fig. 5 the data
are in good relation; the differences are smaller than 2 %. The influence of specimen thickness
on the fracture toughness is shown in the Fig. 6.

The real test conditions applied the Arcan-Richard specimen do not correspond an ideal
simulation of the mode-II test presented here. The influence of grips will be studied later, see
Fig. 3. As a result, the out-of-plane stress intensity component for θ = 0, k∗

zz|θ=0, is zero as
predicted, k∗

zz|θ=0 = 2νKI = 0.68KI , i.e., KI = 0 MPa m1/2. The same conclusions are for txx

and tzz, as well, see Fig. 7 for txx stress component. Finally, note that critical crack orientation
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Fig. 5. Comparison of results from the used numerical model with the literature data [8]. The loading
force P = 100 N

Fig. 6. Results of the stress intensity factors KII for the A-R specimen under expectedly mode-II condi-
tions for different specimen thickness and crack ratios. The loading force P = 100 × B N

Fig. 7. Example of results of the txx stress components for the A-R specimen under mode-II conditions
for different specimen thickness and crack ratios

from MTS — criteria [4] is θcr = 70.5 but in reality this can be influenced by an existence
of non zero mixity ratio α = KII /KI , equation (12). Consequently, k∗

θθ|θ=70.5 will be zero as
predicted. A more extensive numerical calculation must be performed if a detailed checking of
the analytical results expected according to the sets (29), (30) and (31) are pursued.

The role played by the micro-cracking present in the process zone, being acknowledged as
a microstructural phenomenon and already pointed out by Kalthoff and co-workers, needs to
be experimentally investigated, and is not considered in the mainly analytical and numerical
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focusing pursued here. This might be a reason why the fracture toughness under mode-II KIIC

cannot be directly related to that under mode-I KIC . All this evidences the necessity of stan-
dardizing the specification of minimum specimen sizes for determining the true valid values of
fracture toughness under mode-II and mixed-mode loading as suggested in [3, 4].

5. Conclusion

The main conclusions of this work are the following:

• A tensor approach is applied to derive the general analytical expressions of the stress and
strain state for mixed-mode conditions I–II at the crack front of Arcan-Richard specimens
encompassing as particular cases pure mode-I, pure mode-II conditions.

• For pure mode-II, the approach confirms two different stress and strain fields at the crack
front before and after the daughter crack forms implying also different in-plane and out-
of-plane constraint conditions in the crack surrounding. This also applied to mixed-mode
conditions.

• For the earlier state, a spurious mode-I state prevails in the prospective crack propaga-
tion direction θcr characterized by a zero stress intensity tensor component krr that one
presumably governing the crack initiation conditions. Near the crack front, no influence
of the specimen thickness on the constraint conditions is observed, and therefore no in-
fluence of specimen thickness on the fracture toughness is expected as long as a pure
mode-II stress state prevails along the initial crack direction θ = 0. This is confirmed by
earlier external research performed on steel and aluminium alloys.

• As soon as the daughter crack forms, i.e., in the so-called state after, a regular mode-I
stress state arises at the crack front. Constraint effects are observed as a result of the
specimen thickness and the influence of specimen thickness on the fracture toughness is
to be expected.

• As a result of the presence of a mode-I component, the influence of the specimen thick-
ness B and crack ratio a/W , though small, is noticeable both in the results of the compo-
nent kzz and of the tij components, trr and tzz that are close to zero.

• Further calculations are envisaged to analyze the stress relations in the state after, partic-
ularly in matters concerning constraint evolution during the crack growth process.

• The analytical derivations and the numerical calculations prove the utility of the tensor
approach proposed in this work.
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[5] Giner, E., Fernández-Zúñiga, D., Fernández-Sáez, J., Fernández-Canteli, A., On the Jx1-integral
and the out-of-plane constraint in a 3D elastic cracked plate loaded in tension. Int. J. of Solids and
Structures 47, 2010, pp. 934–946.
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