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Abstract

In this paper, we analyze an orthotropic, layered (0 ◦/90◦) and (0◦/core/0◦) sandwich cylinders under pressurized
load with a diaphragm supported boundary conditions which is considered as a two dimensional (2D) plane strain
boundary value problem of elasticity in (r, z) direction. A simplified numerical cum analytical approach is used
for the analysis. Boundary conditions are satisfied exactly by using an analytical expression in longitudinal (z)
direction in terms of Fourier series expansion. Resulting first order simultaneous ordinary differential equations
(ODEs) with boundary conditions prescribed at r = r i, ro defines a two point boundary value problem (BVP),
whose equations are integrated in radial direction through an effective numerical integration technique by first
transforming the BVP into a set of initial value problems (IVPs). Numerical solutions are first validated for their
accuracy with 1D solution of an infinitely long cylinder. Stresses and displacements in cylinders of finite lengths
having various l/R and h/R ratios are presented for future reference.
c© 2011 University of West Bohemia. All rights reserved.
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1. Introduction

Composites have seen an ever increasing use in the process industry during the last twenty
five years. Their use as a material of choice for pressure vessels and components is due to the
fact that they possess longer life in a corrosive environment, low weight but high strength and
stiffness, and the capability to tailor directional strength properties to design needs. Compos-
ite cylinders are widely used in various engineering applications such as aerospace vehicles,
nuclear pressure vessels, piping and many other engineering structures and need accurate anal-
ysis of deformations and stresses induced by applied pressure loading. The classic problem of
an infinitely long elastic cylinder of an isotropic material under internal and external pressure
was analyzed first by Lame in 1847 (given in [16]) for isotropic and by [12] for anisotropic
and layered materials. This particular problem has been studied by many during later years.
In paper [9], authors obtained stresses and displacements by the use of three dimensional (3D)
elasticity theory and several shell theories in a long isotropic circular cylinder subjected to an
axisymmetric radial line load and compared results with the shell theories of Love and Flugge.
An elasticity solution by using a Love function approach for semi-infinite circular cylindrical
shell subjected to a concentrated axisymmetric radial line load at the free end was presented
in [3]. The problem of an infinite circular cylindrical shell subjected to periodically spaced
band loads using 3D elasticity theory and the shell theories of Love (and Donnell), Flugge, and
a theory developed by Reissner and Nagdhi was solved in [10]. An approximate solution to the
Navier equations of the 3D elasticity for an axisymmetric orthotropic infinitely long circular
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cylinder subjected to internal and external pressure, axial loads, and closely spaced periodic
radial loads was obtained in [13]. An exact solution for a thick, transversely isotropic, simply
supported finite length circular cylindrical shell subjected to axisymmetric load using a transfer
matrix approach are obtained in [1]. Clamped-clamped and clamped-simply supported cylin-
drical shells by a so-called segmentation numerical integration technique was analyzed by [8].
The same technique for elastic analysis of cylindrical pressure vessels with various end closures
using Love’s classical shell theory used in [15].

In this paper, governing differential equations from theory of 3D anisotropic elasticity,
which govern the behaviors of a finite length circular orthotropic cylinder in a state of sym-
metric plane strain in (r, z) under sinusoidal pressurized loading which is a function of both
radial and axial coordinates, are taken. By assuming a global analytical solution in the lon-
gitudinal direction (z) which satisfies the two end boundary conditions exactly, dimensional
reduction is done with this process, the 2D generalized plane strain problem is reduced to a 1D
problem in the radial coordinate. The equations are reformulated to enable application of an
efficient and accurate numerical integration technique developed and proposed for the solution
of BVP [7].

In addition, one dimensional elasticity equations of an infinitely long symmetric cylinder are
utilized to formulate the mathematical model suitable for numerical integration. These equa-
tions are summarized in the Appendix. This has been done with a view to check and compares
the results of the present formulation of finite length cylinder under uniform internal/external
pressure load, when the length of the cylinder tends to infinity.

The basic governing equations

Basic governing equations of a symmetric cylinder which is considered plane strain in (r, z)
direction [12] in cylindrical coordinates (Fig. 1) is written as:
Equilibrium equations
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Stress-strains relations for cylindrically orthotropic material
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Stresses in terms of strains can be written as follows:⎧⎨
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in which
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where Δ = (1 − νrθνθr − νθzνzθ − νzrνrz − 2νθrνzθνrz), C21 = C12, C32 = C23, C31 = C13.
Stresses in terms of displacement components can be cast as follows:
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and boundary conditions in the longitudinal and radial directions are

u = σz = 0 for z = 0, l ; σr = τrz = 0 for r = ri ; σr = −p(z) , τrz = 0 for r = r0 (2)

in which l is the length, ri is the inner radius and ro is the outer radius of a hollow cylinder.
Load p(z) can be represented in terms of Fourier series in general form as follows:

p(z) =
N∑

i=1,3,5,...

pi sin
iπz

l
(3a)

in which pi is the Fourier load coefficient which can be determined by using the orthogonality
conditions and for sinusoidal loading

p(z) = p0 sin
πz

l
, (3b)

p0 is the maximum intensity of distributed pressure. The positive coordinates and loadings on a
cylinder are shown in Fig. 1a, b.

2. Mathematical formulation

Radial direction r is chosen to be a preferred independent coordinate. Four fundamental depen-
dent variables, displacements u and w and corresponding stresses σr and τrz that occur naturally
on a tangent plane r = constant, are chosen in the radial direction. Circumferential stress σθ

and axial stress σz are treated here as auxiliary variables since these are found to be dependent
on the chosen fundamental variables [16]. A set of four first order partial differential equa-
tions in independent coordinate r which involve only fundamental variables is obtained through
algebraic manipulation of Eqs. (1a)–(1f). These are
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a)

b)

Fig. 1. a) Coordinate system and geometry of cylinder, b) finite cylinder under sinusoidal external pres-
sure loading

and the auxiliary variables
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Variations of the four fundamental dependent variables which completely satisfy the bound-
ary conditions of simple (diaphragm) supports at z = 0, l can then be assumed as

u(r, z) =U(r) sin
πz

l
, w(r, z) = W (r) cos

πz

l
,

σr(r, z) = σ(r) sin
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l
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l
. (5)

Substitution of Eq. (5) in Eq. (4a) and simplification, resulting from orthogonality condi-
tions of trigonometric functions, leads to the following four simultaneous ordinary differential
equations involving only fundamental variables. These are
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3. Solution

The above system of first order simultaneous ordinary differential equations (Eq. (6a)) together
with the appropriate boundary conditions at the inner and outer edges of the cylinder (Eq. (2))
forms a two-point BVP. However, a BVP in ODEs cannot be numerically integrated as only a
half of the dependent variables (two) are known at the initial edge and numerical integration
of an ODE is intrinsically an IVP. It becomes necessary to transform the problem into a set of
IVPs. The initial values of the remaining two fundamental variables must be selected so that the
complete solution satisfies the two specified conditions at the terminal boundary [7]. This tech-
nique has been successfully applied to the solutions of plate’s problems [4–6, 8, 15]. However,
this approach was not used for cylindrical problems in that literature. Runge-Kutta fourth order
algorithm with modifications suggested by Gill [2] is used for the numerical integration of the
IVPs. A computer code in FORTRAN 77 was written to perform the numerical integration.

4. Numerical Results

Nondimensionalized parameters are defined for pressure loading as follows:

r =
r

R
, (u, w) =

Er

pR
(u, w), (σr, σθ, σz, τrz) =

1

p
(σr, σθ, σz, τrz).

Following material properties [11] are taken for orthotropic (0◦) for Graphite-epoxy material-
fibers are oriented in circumferential direction and layered (0◦/90◦) cylinders.

Layer-1 (fibers are oriented in circumferential direction 0-degree)

Er =9.65× 106, Eθ = 148× 106, Ez = 9.65× 106, Gzr = 3.015× 106,

νθr =0.3, νzr = 0.6, νθz = 0.3.

Layer-2 (fibers are oriented in axial direction 90-degree)

Er =9.65× 106, Eθ = 9.65× 106, Ez = 148× 106, Gzr = 4.55× 106,

νθr =0.6, νzr = 0.3, νθz = 0.019 5.
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Following material properties [14] are taken for the (0◦/core/0◦) sandwich cylinder:
Face Material properties are

Er =6.894× 106, Eθ = 172.36× 106, Ez = 6.894× 106, Gzr = 1.378× 106,

νθr =0.25, νzr = 0.25, νθz = 0.25.

Core Material properties are

Er =3.44× 106, Eθ = 0.275× 106, Ez = 0.275× 106, Gzr = 0.413× 106,

νθr =0.019 9, νzr = 0.019 9, νθz = 0.25.

Table 1. Non-dimensional radial stress, radial displacement and hoop stress for simple diaphragm sup-
ported orthotropic composite cylinder for h/R = 1/5, 1/20, 1/50

Quantity h/R r Present – Finite Length Cylinder

Analytical
elasticity
solution

Lekhnitskii [12]

Numerical
solution

for infinitely
long cylinder

l/R
1 4 100–200

σr (z = l/2) 1/5 0.9 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
1 0.526 3 0.532 0 0.532 4 0.537 1 0.537 1
1.1 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

1/20 0.975 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
1 0.514 1 0.515 3 0.515 3 0.516 4 0.515 3
1.02 5 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

1/50 0.99 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
1 0.506 2 0.506 7 0.506 7 0.507 1 0.507 1
1.01 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

u (z = l/2) 1/5 0.9 0.299 5 0.316 2 0.317 0 0.323 1 0.323 1
1 0.334 4 0.343 5 0.343 8 0.340 5 0.340 5
1.1 0.384 5 0.400 3 0.401 1 0.406 6 0.406 6

1/20 0.975 1.321 5 1.326 2 1.326 4 1.327 9 1.326 4
1 1.322 7 1.325 1 1.325 1 1.324 3 1.325 1
1.025 1.327 1 1.331 8 1.332 0 1.333 4 1.332 0

1/50 0.99 3.286 7 3.288 6 3.288 7 3.289 3 3.289 3
1 3.281 2 3.282 2 3.282 2 3.281 9 3.281 9
1.01 3.277 1 3.279 0 3.279 0 3.279 6 3.279 6

σθ (z = l/2) 1/5 0.9 4.925 3 5.284 6 5.304 3 5.506 2 5.304 3
1 5.279 7 5.426 6 5.430 6 5.383 4 5.430 6
1.1 5.831 5 5.973 3 5.978 0 5.969 3 5.978 0

1/20 0.975 20.598 4 20.764 3 20.773 7 20.887 5 20.773 7
1 20.439 0 20.476 7 20.477 6 20.465 5 20.477 6
1.025 20.340 3 20.319 2 20.316 1 20.250 9 20.316 1

1/50 0.99 50.730 3 50.851 0 50.858 4 50.956 3 50.858 4
1 50.475 3 50.490 3 50.490 6 50.485 8 50.490 6
1.01 50.246 5 50.183 8 50.179 0 50.100 5 50.179 0
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Table 2. Non-dimensional radial stress, radial displacement and hoop stress for simple diaphragm sup-
ported orthotropic laminated (0◦/90◦) composite cylinder for h/R = 1/5, 1/20, 1/50

Quantity h/R r Present – Finite Length Cylinder

Analytical
elasticity
solution

Lekhnitskii [12]

Numerical
solution

for infinitely
long cylinder

l/R
1 4 100–200

σr (z = l/2) 1/5 0.9 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
1 0.924 8 0.983 3 0.982 8 0.982 8 0.980 1
1.1 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

1/20 0.975 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
1 0.947 4 0.951 5 0.951 4 0.951 4 0.951 4
1.025 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

1/50 0.99 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
1 0.943 9 0.944 3 0.944 3 0.944 3 0.944 3
1.01 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

u (z = l/2) 1/5 0.9 0.543 8 0.593 3 0.593 0 0.591 3 0.593 0
1 0.577 3 0.601 7 0.599 1 0.591 4 0.599 1
1.1 0.605 1 0.631 0 0.628 8 0.620 3 0.628 8

1/20 0.975 2.431 6 2.435 8 2.434 9 2.446 2 2.434 9
1 2.420 0 2.416 3 2.414 8 2.397 8 2.414 8
1.025 2.400 1 2.396 9 2.395 5 2.378 0 2.395 5

1/50 0.99 6.103 8 6.094 7 6.093 6 6.124 5 6.119 9
1 6.082 3 6.070 0 6.068 7 6.033 4 6.106 2
1.01 6.052 7 6.040 7 6.039 4 6.003 7 6.076 0

σθ (z = l/2) 1/5 0.9 9.085 5 10.131 4 10.144 4 10.076 0 10.144 4
1 1.063 5 1.178 5 1.181 1 1.181 1 1.181 1
1.1 1.220 5 1.172 4 1.163 9 1.163 9 1.163 9

1/20 0.975 38.175 3 38.485 2 38.486 0 38.478 8 38.486 0
1 2.893 2 2.965 1 2.968 5 2.968 6 2.968 5
1.025 3.022 8 2.927 6 2.919 9 2.920 0 2.919 9

1/50 0.99 94.773 9 94.878 1 94.877 0 94.879 6 94.877 0
1 6.533 3 6.595 7 6.599 3 6.600 0 6.599 3
1.01 6.657 3 6.551 2 6.543 6 6.544 3 6.543 6

Radial and hoop quantities are maximum at z = l/2 whereas axial quantities are maxi-
mum at z = 0, l. Analytical solution for radial stress, hoop stress and radial displacement
from exact theory of anisotropic elasticity for infinitely long plane strain cylinder is given in
Lekhnitskii [12]. These are used to validate and check the present results throughout wherever
applicable. Comparisons of the results are given in Tables 1, 2 and 3.

Three sets of numerical results are presented in the above tables, i.e., results from the present
finite length cylinder formulation, computations on the analytical formulae available for in-
finitely long cylinder [12] and numerically integrated values of the BVP of the infinitely long
cylinder (see Appendix).

Here, first a long cylinder is subjected to a sinusoidal pressure load; the results within the
limited central length zone only are compared with the plane strain one dimensional solutions.
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Table 3. Non-dimensional radial stress, radial displacement and hoop stress for simple diaphragm sup-
ported sandwich composite cylinder for h/R = 1/5, 1/20, 1/50

Quantity h/R r Present – Finite Length Cylinder

Analytical
elasticity
solution

Lekhnitskii [12]

Numerical
solution

for infinitely
long cylinder

l/R
1 4 100–200

σr (z = l/2) 1/5 0.9 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
1 0.548 2 0.552 8 0.553 1 0.553 1 0.553 1
1.1 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

1/20 0.975 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
1 0.520 2 0.521 3 0.521 4 0.521 4 0.521 4
1.025 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

1/50 0.99 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
1 0.508 7 0.509 1 0.509 2 0.509 2 0.509 4
1.01 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

u (z = l/2) 1/5 0.9 0.967 4 0.996 4 0.996 7 0.996 2 0.996 5
1 1.060 6 1.087 0 1.087 0 1.134 0 1.086 9
1.1 1.149 8 1.179 3 1.179 6 1.179 9 1.180 2

1/20 0.975 4.040 7 4.049 6 4.049 7 4.049 0 4.049 7
1 4.057 4 4.065 1 4.065 1 4.109 5 4.065 1
1.025 4.073 8 4.082 7 4.082 8 4.082 9 4.082 8

1/50 0.99 10.022 4 10.025 8 10.025 8 10.025 2 10.025 8
1 10.024 9 10.027 8 10.027 8 10.071 0 10.027 8
1.01 10.027 4 10.030 8 10.030 8 10.030 9 10.030 8

σθ (z = l/2) 1/5 0.9 26.616 4 27.621 1 27.647 8 27.673 7 27.647 8
1 0.053 9 0.056 2 0.056 2 0.056 2 0.056 2
1.1 26.599 8 27.088 3 27.081 2 27.068 6 27.081 2

1/20 0.975 103.329 3 103.791 4 103.809 4 103.826 8 103.809 4
1 0.173 8 0.174 3 0.174 3 0.174 3 0.174 3
1.025 99.877 7 99.867 2 99.853 8 99.839 7 99.853 8

1/50 0.99 252.821 8 253.143 0 253.159 4 253.175 4 253.159 4
1 0.411 6 0.411 9 0.411 9 0.411 9 0.411 9
1.01 248.728 1 248.584 2 248.569 6 248.555 1 248.569 6

A good agreement is obtained. It is clearly seen that for long cylinders with higher l/R
ratios, the results are close to the elasticity solution given by Lekhnitskii [12], for thick, moder-
ately thick and thin cases.

Figs. 2–4 show the through thickness variation of basic as well as auxiliary hoop quantities
for orthotropic cylinder for various l/R and h/R ratios. It is seen from Fig. 2 that radial stress
varies linearly through thickness; radial displacement is linear for thick orthotropic cylinder
whereas reverse trend is seen in thin cylinder. From Fig. 3 it can be seen that hoop stress varies
parabolically in case of thick cylinder whereas it varies linearly in case of thin orthotropic
cylinder. Parabolic variation of shear stress is seen in Fig. 4, axial displacement is constant
through thickness as seen in Fig. 4. Numerical results for laminated (0◦/90◦) and sandwich
(0◦/core/0◦) cylinder are presented in Figs. 5–7 and Figs. 8–9.
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a) b)

c) d)

Fig. 2. Distribution of radial stress σr and radial displacement u through thickness subjected to sinusoidal
loading for orthotropic cylinder

a) b)

Fig. 3. Distribution of hoop stress σθ through thickness subjected to sinusoidal loading for orthotropic
cylinder
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a) b)

Fig. 4. Distribution of shear stress τrz and axial displacement w through thickness subjected to sinusoidal
loading for orthotropic cylinder

a) b)

c) d)

Fig. 5. Distribution of radial stress σr and radial displacement u through thickness subjected to sinusoidal
loading for layered (0◦/90◦) cylinder
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a) b)

Fig. 6. Distribution of hoop stress σθ through thickness subjected to sinusoidal loading for layered
(0◦/90◦) cylinder

a) b)

Fig. 7. Distribution of shear stress τrz and axial displacement w through thickness subjected to sinusoidal
loading for layered (0◦/90◦) cylinder

a) b)

Fig. 8. Distribution of radial stress σr and radial displacement u through thickness subjected to sinusoidal
loading for sandwich cylinder
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a) b)

Fig. 9. Distribution of hoop stress σθ through thickness subjected to sinusoidal loading for sandwich
cylinder

5. Conclusions

Numerical analysis of orthotropic, laminated fiber reinforced composite and sandwich cylin-
ders under sinusoidal pressure loading is presented. Homogeneous and anisotropic media are
considered under conditions of simply (diaphragm) supported cylinder. Exact analytical solu-
tions are available only for infinitely long cylinders. The present results of cylinders of finite
length are not only new but are also very accurate. Proposed numerical technique was found to
be efficient, since 1) the derivation involves mixed variables, both displacements and stresses.
2) The continuity conditions between the layers are satisfied automatically while performing
the numerical integration in radial coordinate.

Appendix: 1D Formulation for Orthotropic and Layered Cylinder
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σr

C11
− C12

C11

u

r
,

dσr

dr
=

σr

r

(
C21

C11
− 1

)
+

u

r2

(
C22 −

C21C12

C11

)
, (A2)

where

νrθ =
νθr
Eθ

Er, C11 =
Er

(1− υrθυθr)
, C12 =

υrθEθ

(1− υrθυθr)
, C22 =

Eθ

(1− υrθυθr)
, C21 = C12.
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Nomenclature

r, θ, z Cylindrical coordinates
u, v, w Displacement components
σr, σθ, σz Normal stress components on planes normal to r, θ, and z axes
τzr Shearing stress components in cylindrical coordinates
εr, εθ, εz Unit elongations (normal strains) in cylindrical coordinates
γzr Shearing strain component in cylindrical coordinates
Cij Material constants for orthotropic material
ν Poisson’s ratio
ri Inner radius of the cylinder
r0 Outer radius of the cylinder
l Length of the cylinder
p Uniform external pressure
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u, w Nondimensionalized displacement components
σr, σθ, σz Nondimensionalized normal stress components
τrz Nondimensionalized shearing stress in cylindrical coordinates
r Nondimensionalized radius
R Mean radius (r0+ri)
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