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Modelling and modal properties of nuclear fuel assembly
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Abstract

The paper deals with the modelling and modal analysis of the hexagonal type nuclear fuel assembly. This very
complicated mechanical system is created from the many beam type components shaped into spacer grids. The
cyclic and central symmetry of the fuel rod package and load-bearing skeleton is advantageous for the fuel as-
sembly decomposition into six identical revolved fuel rod segments, centre tube and skeleton linked by several
spacer grids in horizontal planes. The derived mathematical model is used for the modal analysis of the Russian
TVSA-T fuel assembly and validated in terms of experimentally determined natural frequencies, modes and static
deformations caused by lateral force and torsional couple of forces. The presented model is the first necessary step
for modelling of the nuclear fuel assembly vibration caused by different sources of excitation during the nuclear
reactor VVER type operation.
c© 2011 University of West Bohemia. All rights reserved.
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1. Introduction

Nuclear fuel assemblies are in term of mechanics very complicated system of beam type, which
basic structure is formed from large number of parallel identical fuel rods, some guide thimbles
and centre tube, which are linked by transverse spacer grids to each other and with skeleton
construction [8]. The spacer grids are placed on several horizontal level spacings between
support plates in reactor core [9].

Dynamic properties of nuclear fuel assembly (FA) are usually investigated using global
models, whose properties are gained experimentally [4, 7]. Eigenfrequencies and eigenvectors,
investigated by measurement in the air, serve as initial data for parametric identification of the
FA global model considered as one dimensional continuum of beam type [2]. This considera-
tion is acceptable for a mathematical modelling and computer simulation of the whole nuclear
reactor vibration caused by seismic excitation [2] and pressure pulsations [10] in terms of FA
skeleton deformation. These global models of FA do not enable investigation of dynamic de-
formations and load of FA components and abrasion of fuel rods coating [5].

The goal of the paper is a development of analytical method for modelling and analysis of
the FA modal properties. Motivation of this research work was exchange the American nuclear
VVANTAGE 6 FA for Russian TVSA-T FA in NPP Temelı́n. The newly developed conser-
vative mathematical model and corresponding computer model of the hexagonal type nuclear
FA in parametric form enables to analyse modal properties, sensitivity to FA design parameters
and parametric identification of FA components on the basis of measured static deformations,
eigenfrequencies and eigenvectors. The presented methodology and FA detailed model is the
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first necessary step to modelling the dynamic response caused by forced and kinematics excita-
tion. Dynamic forces between fuel rods and spacer grids will be used for calculation of expected
lifetime period of nuclear FA in term of abrasion of fuel rods coating and fatigue live.

2. Mathematical models of FA subsystems

In order to model the fuel assembly, the system is divided into subsystems — identical rod
segments (S), centre tube (CT) and load-bearing skeleton (LS) fixed in bottom part in lower
piece (Fig. 1).

Fig. 1. Scheme of the fuel assembly
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Fig. 2. The FA cross-section

2.1. Model of the rod segment

Because of the cyclic and central symmetric package of fuel rods and guide thimbles with
respect to centre tube (Fig. 2), the FA decomposition of the identical rod segment s = 1, . . . , S
(on the Fig. 2 for S = 6) shall be applied. Each rod segment is composed of R fuel rods with
fixed bottom ends in lower piece and guide thimbles (GT) fully restrained in lower and head
pieces. The fuel rods and guide thimbles inside the segments are linked by transverse spacer
grids of three types (SG1−SG3) which elastic properties are expressed by linear springs placed
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Fig. 3. The spring between two rods replacing the stiffness of spacer grid g

on several level spacings g = 1, . . . , G (see Fig. 1).The fuel rods are embedded into spacer grids
with small initial tension, which wouldn’t fall below zero during core operation.

The mathematical model of the rod segments isolated from adjacent segments (without link-
ages between segments) was derived [11] in the special coordinate system

qs = [qT
1,s, . . . , q

T
r,s, . . . , q

T
R,s]

T , (1)

where qr,s is vector of nodal point displacements of one rod r (fuel rod or guide thimble) on the
level of all spacer grids g in the form

qr,s = [. . . , ξ(s)r,g , η
(s)
r,g , ϑ

(s)
r,g , ψ

(s)
r,g , . . .]

T , g = 1, . . . , G . (2)

Lateral displacements ξ
(s)
r,g , η

(s)
r,g in contact nodal points with spacer grid g are mutually per-

pendicular whereas displacements ξ
(s)
r,g are radial with respect to vertical central axis of FA.

Displacements ϑ(s)
r,g , ψ

(s)
r,g are bending angles of rod cross-section around lateral axes in contact

nodal points (see Fig. 3).
The conservative mathematical model of the arbitrary isolated rod segment s was derived

on the basis of Rayleigh beam theory in the form [11]

MSq̈s +

(
KS +

Q∑
q=1

G∑
g=1

Kq,g

)
qs = 0 , s = 1, . . . , S , (3)

where Q is the number of the transverse linear springs of one spacer grid inside one segment
and Kq,g is stiffness matrix corresponding to the coupling q by means of the spring kg on the
level of spacer grid g between two fuel rods u and v of the segment s. These coupling stiffnesses
are determined by polar coordinates ru, αu and rv, αv of the linked fuel rods [3] and nonzero
elements are localized at positions corresponding to displacements ξ

(s)
u,g, η

(s)
u,g, ξ

(s)
v,g, η

(s)
v,g in the

vector of generalized coordinates qs in (1). The mass Ms and stiffness Ks matrices of the fuel
rods and guide thimbles in one segment are block diagonal and have the form

Xs = diag[XR, . . . ,XGT , . . . ,XR] ∈ R4GR, X = M , K , (4)
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whereas matrices XR (XGT ) correspond to one mutually uncoupled fuel rod (guide thimble).
All fuel rods and guide thimbles are parallel and have identical boundary conditions (fuel rods
have fixed lower ends and guide thimbles are fully restrained).

2.2. Model of the centre tube

The fully restrained centre tube (see Fig. 1 and Fig. 2) is discretized into G nodal points on the
level of spacer grids g = 1, . . . , G by means of G+ 1 prismatic beam finite elements [6] in the
coordinate system

qCT = [. . . , xg, yg, ϑg, ψg, . . .]
T , g = 1, . . . , G , (5)

where lateral displacements xg, yg are oriented into axes x, y (Fig. 3). Mass and stiffness
matrices MCT , KCT are symmetric of order 4G.

2.3. Model of load-bearing skeleton

The load-bearing skeleton (further only skeleton) is created of S (on the Fig. 2 for S = 6) angle
pieces (AP) coupled by divided grid rim (GR) at all levels of spacer grids (Fig. 4). Each angle
piece with fixed bottom ends in lower piece is discretized into nodal points Cg in cross-section
centre of gravity on the level of spacer grids g = 1, . . . , G. The mathematical model of the
skeleton without of couplings with spacer grids is derived in the coordinate system

qLS = [qT
AP1

, . . . , qT
APs

, . . . , qT
APS

]T , (6)

where qAPs is vector of nodal points displacements for particular angle piece s on the level of
all grid rim g in the form

qAPs = [. . . , ξ
(s)
AP,g, η

(s)
AP,g, ϕ

(s)
AP,g, ϑ

(s)
AP,g, ψ

(s)
AP,g, . . .]

T , g = 1, . . . , G . (7)

Lateral displacements ξ(s)AP,g, η
(s)
AP,g of cross-section centre of gravity on the level of spacer grid

g are mutually perpendicular whereas displacement ξ(s)AP,g is radial (see Fig. 4). Displacements

ϕ
(s)
AP,g, ϑ

(s)
AP,g, ψ

(s)
AP,g are torsional and bending angles of angle piece cross-section around verti-

cal and lateral axes (in Fig. 4 indexes are let-out).

3
π

π
3

ξ

l

l

b

d

a

t

υψ
η

GR

AP

AP

t GR

AP1

AP2

ϕ
C

c
GR

Fig. 4. Scheme of the load-bearing skeleton (part)
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Mathematical model of the angle piece beam element between nodal points Cg−1 and Cg in
alternate coordinate system (indexes AP and (s) of coordinates are let-out)

q
(e)
AP = [ξg−1, ψg−1, ξg, ψg, ηg−1, ϑg−1, ηg, ϑg, ϕg−1, ϕg]

T (8)

is written by mass and stiffness matrices in the form [1]

M
(e)
AP = ρ

⎡⎣S−T
1 (AIφ + JηIφ′)S−1

1 0 0
0 S−T

2 (AIφ + JξIφ′)S−1
2 0

0 0 S−T
3 JpIψS

−1
3

⎤⎦ ∈ R10,10 , (9)

K
(e)
AP =

⎡⎣ S−T
1 E∗JηIφ′′S−1

1 0 0
0 S−T

2 E∗JξIφ′′S−1
2 0

0 0 S−T
3 GJkIψ′S−1

3

⎤⎦ ∈ R10,10 , (10)

where

Iχ =

∫ l

0

χT (x)χ(x)dx, Iχ′ =

∫ l

0

χ′T (x)χ′(x)dx, Iχ′′ =

∫ l

0

χ′′T (x)χ′′(x)dx, χ = Φ,Ψ ;

S1 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
1 l l2 l3

0 1 2l 3l2

⎤⎥⎥⎦ , S2 =

⎡⎢⎢⎣
1 0 0 0
0 −1 0 0
1 l l2 l3

0 −1 −2l −3l2

⎤⎥⎥⎦ , S3 =

[
1 0
0 l

]

and Φ(x) = [1, x, x2, x3], Ψ(x) = [1, x]. Every beam element is determined by parameters
ρ (mass density), A (cross-section area), Jξ, Jη (second moment of the cross-section area to
corresponding axes), Jp (polar second moment of area), Jk ∼ A4

40 Jp
, l (length), E (Young’s

modulus), G (shear modulus) and E∗ = E 1−ν
(1+ν)(1−2ν)

depends on Poisson’s ratio ν.
To transform the model into general coordinates qAP,s defined in (7) by mass and stiffness

matrices must be transformed in the form

Xe = P TX(e)P , X = M , K , (11)

where
q
(e)
AP = P q̃

(e)
AP , q̃

(e)
AP = [ξg−1, ηg−1, ϕg−1, ϑg−1, ψg−1, ξg, ηg, ϕg, ϑg, ψg]

T .

Structure of the mass and stiffness matrices of one angle piece is given by following scheme

XAP =
G∑

e=1

diag[0,Xe, 0], X = M , K (12)

with block matrices Xe determined in (11). Matrices of the first (lower) beam element in
(12) must be arranged in accordance with angle pieces boundary conditions. The hardening of
skeleton by welded grid rims within length lGR, height hGR and thickness tGR (see Fig. 4) is
respected by lateral beams fully restrained into adjacent angle pieces on the level of all spacer
grids. The total mass and stiffness matrices of the skeleton in the coordinate system (6) have
the form

MLS = diag[MAP +ΔMGR, . . . ,MAP +ΔMGR] ∈ R5GS ,
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KLS = diag[KAP , . . . ,KAP ] +

S∑
s=1

G∑
g=1

K
(s,s+1)
GR,g ∈ R5GS , (13)

where ΔMGR expresses additional mass matrix of the grid rims with mass concentrated into
ends points of adjacent angle pieces on the level of all spacer grids and K

(s,s+1)
GR,g is stiffness

matrix of one grid rim between adjacent angle pieces APs and APs+1 on the level of spacer
grid g.

3. Mathematical model of the fuel assembly

3.1. Structure of the fuel assembly model

The subsystems of FA are linked by spacer grids of different types for g = 1, g = 2, . . . , G− 1
and g = G. In consequence of radial and orthogonal fuel rods and guide thimbles displacements
mathematical models of segments are identical. Therefore the conservative model of the fuel
assembly in configuration space

q = [qT
1 , . . . , q

T
s , . . . , q

T
S , q

T
CT , q

T
LS]

T (14)

of dimension n = 4GRS + 4G+ 5GS can be written as

Mq̈ + (K +KS,S +KS,CT +KS,LS)q = 0 . (15)

The mass M and stiffness K matrices correspond to a fictive fuel assembly divided into mutu-
ally uncoupled subsystems. Therefore these matrices are block diagonal

M = diag[MS, . . . ,MS,MCT ,MLS], K = diag[K∗
S, . . . ,K

∗
S,KCT ,KLS] , (16)

where segment stiffness matrix K∗
S includes couplings between all fuel rods and guide thimbles

inside the segment. According to equation (3) it holds K ∗
S = KS +

Q∑
q=1

G∑
g=1

Kq,g .

3.2. Modelling of couplings between FA subsystems

The stiffness matrix K
(s,s+1)
i,j,g of one coupling by spacer grid g between fuel rod i at segment s

and fuel rod j at segment s+1 has similar structure as matrix Kq,g in (3). Nonzero elements are
localized at positions corresponding to displacements ξ (s)i,g , η

(s)
i,g and ξ

(s+1)
j,g , η

(s+1)
j,g in the vector

of generalized coordinates q in (14). The total coupling stiffness matrix between all segments
in the case of FA hexagonal type (s = 1, . . . , 6) has structure

KS,S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KS
1,1 KS

1,2 0 0 0 KS
1,6 0 0

KS
2,1 KS

2,2 KS
2,3 0 0 0 0 0

0 KS
3,2 KS

3,3 KS
3,4 0 0 0 0

0 0 KS
4,3 KS

4,4 KS
4,5 0 0 0

0 0 0 KS
5,4 KS

5,5 KS
5,6 0 0

KS
6,1 0 0 0 KS

6,5 KS
6,6 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)
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Elastic properties of the spacer grids between the first fuel rods in all segments s = 1, . . . , S

and the centre tube are expressed by stiffness k(g)
S,CT of the transverse springs on all level spacings

g = 1, . . . , G. The corresponding coupling stiffness matrix results from identity

∂ES,CT

∂q
= KS,CTq . (18)

The potential (deformation) energy of these couplings is

ES,CT =

S∑
s=1

G∑
g=1

1

2
k
(g)
S,CT (xg cosαs + yg sinαs − ξ

(s)
1,g)

2 , (19)

where in the case of hexagonal type of FA αs =
π
6
+ π

3
(s− 1) is radius vector angle of the first

fuel rod in segment s with respect to x axis. The total stiffness matrix between all segments and
the centre tube is

KS,CT =
S∑

s=1

G∑
g=1

k
(g)
S,CT

⎡⎢⎢⎢⎣
1 · · · − cosαs − sinαs
...

...
...

− cosαs · · · cos2 αs sinαs cosαs

− sinαs · · · sinαs cosαs sin2 αs

⎤⎥⎥⎥⎦ , (20)

where the introduced nonzero elements are localized at positions 4GR(s − 1) + 4(g − 1) + 1

corresponding to fuel rod coordinates ξ
(s)
1,g and 4GRS + 4(g − 1) + 1 ÷ 2 corresponding to

centre tube coordinates xg, yg in the vector of generalized coordinates q in (14). This matrix
for hexagonal type FA has structure

KS,CT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KCT
1,1 0 0 0 0 0 K1,CT 0
0 KCT

2,2 0 0 0 0 K2,CT 0
0 0 KCT

3,3 0 0 0 K3,CT 0
0 0 0 KCT

4,4 0 0 K4,CT 0
0 0 0 0 KCT

5,5 0 K5,CT 0
0 0 0 0 0 KCT

6,6 K6,CT 0
KCT,1 KCT,2 KCT,3 KCT,4 KCT,5 KCT,6 KCT,CT 0

0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

Every angle piece APs of the skeleton encircles fuel rods 10 and 19 of the segment s and fuel
rod 55 of the segment s − 1 (see Fig. 5). The potential (deformation) energy of one contact
lateral springs k(g)

S,AP between single fuel rod r of the segment s and angle pieces APs on level
spacings g is

E(s)
r,g =

1

2
k
(g)
S,AP [ξ

(s)
r,g cos(δ−αr)+ η(s)r,g sin(δ−αr)− ξ

(s)
AP,g cos δ− η

(s)
AP,g sin δ+ erϕ

(s)
AP,g]

2 . (22)

The corresponding coupling stiffness matrix K
(s)
r,g results from identity

∂E
(s)
r,g

∂q
= K(s)

r,gq , (23)
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whereas

K(s)
r,g = k

(g)
S,AP

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
· · · C2 SC · · · −C cos δ −C sin δ erC · · ·
· · · CS S2 · · · −S cos δ −S sin δ erS · · ·

...
...

...
...

...
· · · −C cos δ −S cos δ · · · cos2 δ sin δ cos δ −er cos δ · · ·
· · · −C sin δ −S sin δ · · · sin δ cos δ sin2 δ −er sin δ · · ·
· · · Cer Ser · · · −er cos δ −er sin δ e2r · · ·

...
...

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

and C = cos(δ − αr), S = sin(δ − αr). The introduced nonzero elements are localized at
positions 4GR(s− 1) + 4G(r− 1) + 4(g − 1) + 1÷ 2 corresponding to fuel rod r coordinates
ξ
(s)
r,g , η

(s)
r,g and 4GRS + 4G + 5G(s− 1) + 5(g − 1) + 1÷ 3 corresponding to angle piece APs

coordinates ξ(s)AP,g, η
(s)
AP,g, ϕ

(s)
AP,g.

x

y

α 19

s − 1

55

10

19
s

δ
C

δ

e10

19e

APs

(g)

S,APk

Fig. 5. Couplings between fuel rods of segments s and s− 1 and the angle piece APs

The total stiffness matrix between fuel rods of all segments and all angle pieces (skeleton)
is

KS,LS =
S∑

s=1

G∑
g=1

∑
r=10,19,55

K(s)
r,g . (25)

This matrix for hexagonal type FA has structure

KS,LS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KLS
1,1 0 0 0 0 0 0 K1,LS

0 KLS
2,2 0 0 0 0 0 K2,LS

0 0 KLS
3,3 0 0 0 0 K3,LS

0 0 0 KLS
4,4 0 0 0 K4,LS

0 0 0 0 KLS
5,5 0 0 K5,LS

0 0 0 0 0 KLS
6,6 0 K6,LS

0 0 0 0 0 0 0 0
KLS,1 KLS,2 KLS,3 KLS,4 KLS,5 KLS,6 0 KLS,LS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (26)

The coupling stiffness matrices KSS, KS,CT and KS,LS express interaction between appropri-
ate subsystems marked in subscripts. Therefore nonzero submatrices correspond to mutually
linked subsystems and zero submatrices express an absent of coupling between subsystems.
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3.3. Condensed model of the fuel assembly

The FA model (15) has to large DOF number n = 4GRS + 4G + 5GS for calculation of
the dynamic response excited by different sources of excitation. Therefore it is necessary to
compile the condensed FA model using the modal synthesis method [6]. The first step is the
modal analysis of the mutually isolated subsystems presented in section two

MSq̈s + (KS +

Q∑
q=1

G∑
g=1

Kq,g)qs = 0 =⇒ ΛS, VS ∈ RnS , nS = 4GR ,

MCT q̈CT +KCTqCT = 0 =⇒ ΛCT , VCT ∈ RnCT , nCT = 4G , (27)

MLSq̈LS +KLSqLS = 0 =⇒ ΛLS, VLS ∈ RnLS , nLS = 5GS ,

where ΛX , VX , X = S, CT, LS are spectral and modal matrices of the subsystems, fulfill-
ing the orthonormality conditions V T

X MXVX = E, V T
X KXVX = ΛX . Further we choose a

set of mS low-frequency eigenvectors of the rod segment which will be arranged in its modal
submatrix mVS ∈ RnS ,mS corresponding to spectral submatrix mΛS ∈ RmS ,mS . A set of other
rod segment eigenmodes of each segment will be neglected. The second step is the transforma-
tion of the global vector of generalized coordinates defined in (14) by means of modal matrices
(submatrices) of subsystems in the form

q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2
...
qS

qCT

qLS

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

mVS 0 . . . 0 0 0
0 mVS . . . 0 0 0
. . .
0 0 . . . mVS 0 0
0 0 . . . 0 VCT 0
0 0 . . . 0 0 VLS

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2
...
xS

xCT

xLS

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(28)

for short
q =mV x, mV ∈ Rn,m, m = SmS + 4G+ 5GS . (29)

The stiffness matrix of all couplings between subsystems is

KC = KS,S +KS,CT +KS,LS (30)

and according to (17), (21) and (26) for hexagonal type FA (S = 6) has block structure

KC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1,1 KS
1,2 0 0 0 KS

1,6 K1,CT K1,LS

KS
2,1 K2,2 KS

2,3 0 0 0 K2,CT K2,LS

0 KS
3,2 K3,3 KS

3,4 0 0 K3,CT K3,LS

0 0 KS
4,3 K4,4 KS

4,5 0 K4,CT K4,LS

0 0 0 KS
5,4 K5,5 KS

5,6 K5,CT K5,LS

KS
6,1 0 0 0 KS

6,5 K6,6 K6,CT K6,LS

KCT,1 KCT,2 KCT,3 KCT,4 KCT,5 KCT,6 KCT,CT 0
KLS,1 KLS,2 KLS,3 KLS,4 KLS,5 KLS,6 0 KLS,LS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (31)

The diagonal block matrices are

Ki,i = KS
i,i +KCT

i,i +KLS
i,i , i = 1, . . . , 6 .
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After the transformation (29) applied to FA model (15) the FA condensed conservative model

ẍ+ (mΛ+mV TKC
mV )x = 0 (32)

has m = SmS + 4G + 5GS DOF number. Matrices of the condensed model have the block
structure corresponding to FA decomposition

mΛ = diag[mΛS, . . . ,
mΛS,ΛCT ,ΛLS] ∈ Rm,m (33)

and

mV TKC
mV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K̃1,1 K̃1,2 0 0 0 K̃1,6 K̃1,CT K̃1,LS

K̃2,1 K̃2,2 K̃2,3 0 0 0 K̃2,CT K̃2,LS

0 K̃3,2 K̃3,3 K̃3,4 0 0 K̃3,CT K̃3,LS

0 0 K̃4,3 K̃4,4 K̃4,5 0 K̃4,CT K̃4,LS

0 0 0 K̃5,4 K̃5,5 K̃5,6 K̃5,CT K̃5,LS

K̃6,1 0 0 0 K̃6,5 K̃6,6 K̃6,CT K̃6,LS

K̃CT,1 K̃CT,2 K̃CT,3 K̃CT,4 K̃CT,5 K̃CT,6 K̃CT 0

K̃LS,1 K̃LS,2 K̃LS,3 K̃LS,4 K̃LS,5 K̃LS,6 0 K̃LS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (34)

where

K̃i,j =
mV T

S Ki,j
mVS ; K̃i,CT =mV T

S Ki,CTVCT ; K̃i,LS =mV T
S Ki,LSVLS ;

K̃CT,j = V T
CTKCT,j

mVS ; K̃LS,j = V T
LSKLS,j

mVS ; K̃CT = V T
CTKCT,CTVCT ;

K̃LS = V T
LSKLS,LSVLS ; i = 1, . . . , 6 ; j = 1, . . . , 6 .

Eigenfrequencies Ων and eigenvectors

xν = [xT
1,ν , . . . ,x

T
S,ν,x

T
CT,ν,x

T
LS,ν]

T , ν = 1, . . . , m

of FA are obtained from the modal analysis of the condensed model (32). Subvectors xs,ν (s =
= 1, . . . , S) corresponding to rod segments, xCT,ν to centre tube and xLS,ν to skeleton, can be
transformed according to (28) from the space of coordinates of the condensed model (32) to the
original configuration space of the generalized coordinates ob subsystems by

qX,ν =
mVXxX,ν , X = 1, . . . , S, CT, LS .

The eigenvalues calculated using condensed model (32) must be checked in light of accuracy
with respect to noncondensed model (15) for different number mS of applied rod segment mas-
ter eigenvectors on the basis of the cumulative relative error of the eigenfrequencies and the
normalized cross orthogonality matrix [11].

4. Application

The presented methodology and developed software in Matlab code was tested for the Russian
TVSA-T fuel assembly used in nuclear power plant Temelı́n [8]. This FA of the hexagonal type
(Fig. 1 and Fig. 2) has six rod segments (S = 6) and eight spacer grids (G = 8). Each segment
contains 52 fuel rods and 3 guide thimbles (R = 55) linked by 135 transverse springs between
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adjacent rods within stiffnesses k1 = 2·105, k2 = · · · = k7 = 1, 83·105, k8 = 2, 07·105 N/m on
particular levels of spacer grids g = 1, . . . , 8. The rod spacing is 12.75 mm. The noncondensed
FA model under consideration has n = 10 832 (nS = 1 760, nCT = 32, nLS = 240) DOF
number. The lowest FA eigenfrequencies are f1 = f2 = 3.43 Hz at temperature 20 ◦C and
f1 = f2 = 3.09 Hz at temperature 350 ◦C. Pairs of eigenfrequencies correspond to flexural
and breathing mode shapes and single eigenfrequencies correspond to torsion mode shapes.
The spectrum of nineteen lowest (up to 20 Hz) eigenfrequencies with the characteristics of
corresponding mode shapes is presented in Table 1. For the sake of completeness we introduce
measured flexural mode shapes at temperature 20 ◦C provided by ŠKODA, Nuclear Machinery,
Co.Ltd.

Table 1. Eigenfrequencies and characteristics of corresponding natural modes of the FA model

Eigenfrequencies [Hz] Characteristics of mode shapes

ν t = 350o t = 20o Measured

1 3.09 3.43 3.9 Flexural, 1.mode

2 3.09 3.43

3 4.13 4.58 Torsional, 1. mode

4 6.24 6.90 6.6 Flexural, 2. mode

5 6.24 6.90

6 8.71 9.46 Torsional, 2. mode

7 9.49 10.46 9.4 Flexural, 3. mode

8 9.49 10.46

9 11.74 12.56 Torsional, 3. mode

10 12.88 14.21 12.5 Flexural, 4. mode

11 12.88 14.21

12 14.24 15.22 Torsional, 4. mode

13 16.47 18.17 18.6 Flexural, 5. mode

14 16.47 18.17

15 17.23 18.60 Torsional, 5. mode

16 19.26 19.33 Breathing mode

17 19.26 19.33

18 19.79 19.98 Breathing mode

19 19.79 19.98

The spectrum of eigenfrequencies is very crowded especially for higher frequencies. The
flexural mode shapes (Fig. 6,7) are characterized by inphase deformations of all FA components
whereas spacer grids are practically non-deformed. The torsional mode shapes are character-
ized by maximal deformations of outsider fuel rods (Fig. 8) and spacer grids roll up practically
without their deformations. The breathing modes (Fig. 9, 10) corresponding to higher eigenfre-
quencies approximately from 20 Hz (see Table 1) are characterized by spacer grid deformations
and relatively high contact forces between fuel rods and spacer grids. All mode shapes in
Fig. 6–10 are vizualized on the FA cross-section on the level of the fourth (central) spacer grid.
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Fig. 6. The first FA mode shape (flexural mode)
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Fig. 7. The second FA mode shape (flexural mode)
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Fig. 8. The third FA mode shape (torsional mode)
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Fig. 9. The 16th FA mode shape (breathing mode)
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Fig. 10. The 17th FA mode shape (breathing mode)
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5. Conclusion

The described method enables to model effectively the flexural and torsional vibration of nu-
clear fuel assemblies. The special coordinate system of radial and orthogonal displacements
of the fuel assembly components — fuel rods, guide thimbles, centre tube and skeleton angle
pieces — enables to separate the system into several identical revolved rod segments character-
ized by identical mass and stiffness matrices, centre tube and load-bearing skeleton as subsys-
tems. The subsystems are linked by spacer grids of different types on particular levels of spacer
grids.

This new approach to modelling based on the system decomposition enables simple includ-
ing of model particular components with identified parameters into global FA model, to signifi-
cantly decrease of time demands of computing program assembladge and to save the computer
memory. The preliminary results of the modal analysis of the Russian TVSA-T fuel assembly
show, that in low-frequency spectrum of excitation (approximately up to 20 Hz) the flexural
and torsional mode shapes are employed and in high-frequency spectrum the breathing mode
shapes, characterized by spacer grid deformation on all levels, are employed.

The condensed FA model based on modal synthesis method with reduction of rod segment
DOF number, will be applied to calculation of forced vibration caused by pressure pulsations
and seismic excitation in terms of fuel assembly component deformations and abrasion of fuel
rods coating.
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