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Abstract

In this paper, an exponential shear deformation theory is presented for the buckling analysis of thick isotropic
plates subjected to uniaxial and biaxial in-plane forces. The theory accounts for a parabolic distribution of the
transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and
bottom surfaces of the plate without using shear correction factors. Governing equations and associated boundary
conditions of the theory are obtained using the principle of virtual work. The simply supported thick isotropic
square plates are considered for the detailed numerical studies. A closed form solutions for buckling analysis of
square plates are obtained. Comparison studies are performed to verify the validity of the present results. The
effects of aspect ratio on the critical buckling load of isotropic plates is investigated and discussed.
c© 2012 University of West Bohemia. All rights reserved.
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1. Introduction

When plate is subjected to in-plane compressive forces, and if forces are sufficiently small the
equilibrium of plate is stable. If the small additional disturbance result in a large response and
the plate does not return to its original equilibrium configuration, the plate is said to be unstable.
The onset of instability is called buckling. The magnitude of the in-plane compressive axial
forces at which the plate becomes unstable is termed the critical buckling load. The magnitude
of the critical buckling load depends on geometry, material properties, as well as on the buckling
mode shape.

To predict the critical buckling load of plate, a number of plate theories have been pro-
posed based on considering the transverse shear deformation effect. The well-known classical
plate theory (CPT) which neglects the transverse shear deformation effect provides reasonably
good results for thin plates and overpredicts the critical buckling loads for thick plates. The
Reissner [7] and Mindlin [5] theories are known as the stress based and displacement based
first-order shear deformation plate theory (FSDT) respectively, and account for the transverse
shear effects by the way of linear variation of in-plane displacements through the thickness of
plate. However, these theories do not satisfy the zero traction boundary conditions on the top
and bottom surfaces of the plate, and need to use the shear correction factor to satisfy the con-
stitutive relations for transverse shear stresses and shear strains. These shear correction factors
are depends on the geometric parameters, boundary conditions and loading conditions.
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To overcome the drawbacks of the FSDT, a number of higher order shear deformation plate
theories are developed. A recent reviews of such refined shear deformation theories are pre-
sented by Ghugal and Shimpi [1], Wanji and Zhen [13] and Kreja [4]. Recently Shimpi and
Patel [9,10] has developed two variable plate theory for the static and dynamic analysis of thick
plate whereas Kim et al. [3] extended this theory for the buckling analysis of isotropic and
orthotropic plates. Thai and Kim [12] employed Levy type solution for the buckling analysis
of thick plate using two variable plate theory. Ghugal and Pawar [2] applied hyperbolic shear
deformation theory for the buckling analysis of plates in which in-plane displacement field uses
hyperbolic functions in terms of thickness coordinate to include the shear deformation effect.

In this paper, a displacement based an exponential shear deformation theory (ESDT) pre-
sented by Sayyad and Ghugal [8] is extended for the buckling analysis of thick isotropic square
plates subjected to uniaxial and biaxial in-plane loads. Governing equations and associated
boundary conditions are derived from the principle of virtual work. The Navier’s solution is
employed for solving the governing equations of square plates with all simply supported edges.
The detail procedure of Navier’s solution technique is given by Szilard [11]. Comparison stud-
ies are performed to verify the validity of the present results. The effects of aspect ratio on the
critical buckling loads of isotropic plates are studied and discussed in detail.

2. Theoretical formulation
2.1. Isotropic plate under consideration

Consider a rectangular plate of sides ‘a’ and ‘b’ and a constant thickness of ‘h’ made up of
isotropic material and subjected to in-plane compressice forces (N0

xx, N0
yy and N0

xy) as shown in
Fig. 1. The co-ordinate system (x, y, z) chosen and the coordinate parameters are such a that,
the plate occupies a region given by Eq. (1)

0 ≤ x ≤ a, 0 ≤ y ≤ b, −h/2 ≤ z ≤ h/2. (1)

Fig. 1. Plate subjected to in-plane forces

2.2. The displacement field

The displacement field of the proposed plate theory is given by Sayyad and Ghugal [8]

u(x, y, z) = −z
∂w(x, y)

∂x
+ z exp

[
−2

(z

h

)2
]

φ(x, y),

v(x, y, z) = −z
∂w(x, y)

∂y
+ z exp

[
−2

(z

h

)2
]

ψ(x, y), (2)

w(x, y, z) = w(x, y).
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Here u, v and w are the displacements in the x, y and z-directions respectively. The exponential
function in terms of thickness coordinate in both the in-plane displacements u and v is associ-
ated with the transverse shear stress distribution through the thickness of plate. The functions φ
and ψ are the unknown functions associated with the shear slopes. The strain field obtained by
using strain-displacement relations can be given as

εx =
∂u

∂x
= −z

∂2w

∂x2
+ f(z)

∂φ

∂x
,

εy =
∂v

∂y
= −z

∂2w

∂y2
+ f(z)

∂ψ

∂y
,

γxy =
∂u

∂y
+

∂v

∂x
= −2z

∂2w

∂x∂y
+ f(z)

(
∂φ

∂y
+

∂ψ

∂x

)
, (3)

γzx =
∂u

∂z
+

∂w

∂x
=

df(z)

dz
φ,

γyz =
∂v

∂z
+

∂w

∂y
=

df(z)

dz
ψ,

where f(z) = z exp
[
−2

(
z
h

)2
]
, df(z)

dz
= exp

[
−2

(
z
h

)2
] [

1 − 4
(

z
h

)2
]
.

2.3. Stress-strain relationships

The stress-strain relations of an isotropic plate can be written as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σx

σy

τxy

τzx

τyz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
E

1 − μ2

⎡
⎢⎢⎢⎢⎣

1 μ 0 0 0
μ 1 0 0 0
0 0 1−μ

2
0 0

0 0 0 1−μ
2

0
0 0 0 0 1−μ

2

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εx

εy

γxy

γzx

γyz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (4)

where E is the Young’s modulus and μ is the Poisson’s ratio of the material.

3. Governing equations and boundary conditions

The principle of virtural work of the plate can be written as

∫ z=h/2

z=−h/2

∫ y=b

y=0

∫ x=a

x=0

[σxδεx + σyδεy + τyzδγyz + τzxδγzx + τxyδγxy] dx dy dz −
∫ y=b

y=0

∫ x=a

x=0

q(x, y)δw dx dy − (5)

∫ y=b

y=0

∫ x=a

x=0

[
N0

xx

∂2w

∂x2
+ N0

yy

∂2w

∂y2
+ 2N0

xy

∂2w

∂x∂y

]
δw dx dy = 0,

where q(x, y)is the transverse load acting in the downword z direction on surface z = −h/2.
Substituting Eqs. (3)–(4) into Eq. (5) and integrating through the thickness of the plate, the
governing differential equations and associated boundary conditions in-terms of stress resultants
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are as follows:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
+ N0

xx

∂2w

∂x2
+ N0

yy

∂2w

∂y2
+ 2N0

xy

∂2w

∂x∂y
+ q(x, y) = 0,

∂Nsx

∂x
+

∂Nsxy

∂y
− NTcx = 0, (6)

∂Nsy

∂y
+

∂Nsxy

∂x
− NTcy = 0.

The boundary conditions at x = 0 and x = a obtained are of the following form:

Either Vx = 0 or w is prescribed,

either Mx = 0 or
∂w

∂x
is prescribed, (7)

either Nsx = 0 or φ is prescribed,
either Nsxy = 0 or ψ is prescribed.

The boundary conditions at y = 0 and y = b obtained are of the following form:

Either Vy = 0 or w is prescribed,

either My = 0 or
∂w

∂y
is prescribed, (8)

either Nsxy = 0 or φ is prescribed,
either Nsy = 0 or ψ is prescribed.

Reaction at the corners of the plate is of the following form:

Either Mxy = 0 or w is prescribed. (9)

The stress resultants appear in the governing equations and boundary conditions are given as:

(Mx, My, Mxy) =

∫ h/2

−h/2

(σx, σy, τxy)z dz,

(Nsx, Nsy, Nsxy) =

∫ h/2

−h/2

(σx, σy, τxy)f(z) dz,

(NTcx, NTcy) =

∫ h/2

−h/2

(τzx, τyz)
df(z)

dz
dz, (10)

Vx =
∂Mx

∂x
+ 2

∂Mxy

∂y
,

Vy =
∂My

∂y
+ 2

∂Mxy

∂x
.

The governing differential equations in-terms of unknown displacement variables used in the
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displacement field (w, φ and ψ) obtained are as follows:

D1

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
− D2

(
∂3φ

∂x3
+

∂3φ

∂x∂y2
+

∂3ψ

∂y3
+

∂3ψ

∂x2∂y

)
=

q(x, y) + N0
xx

∂2w

∂x2
+ N0

yy

∂2w

∂y2
+ 2N0

xy

∂2w

∂x∂y
,

D2

(
∂3w

∂x3
+

∂3w

∂x∂y2

)
− D3

(
∂2φ

∂x2
+

1 − μ

2

∂2φ

∂y2

)
+ D4φ − D3

(
1 + μ

2

)
∂2ψ

∂x∂y
= 0, (11)

D2

(
∂3w

∂y3
+

∂3w

∂x2∂y

)
− D3

(
1 − μ

2

∂2ψ

∂x2
+

∂2ψ

∂y2

)
+ D4ψ − D3

(
1 + μ

2

)
∂2φ

∂x∂y
= 0.

The associated consistent boundary conditions in-terms of unknown displacement variables
obtained along the edges x = 0 and x = a are as below:

D1

[
∂3w

∂x3
+ (2 − μ)

∂3w

∂x∂y2

]
−

D2

[
∂2φ

∂x2
+ (1 − μ)

∂2φ

∂y2
+

∂2ψ

∂x∂y

]
= 0 or w is prescribed,

D1

(
∂2w

∂x2
+ μ

∂2w

∂y2

)
− D2

(
∂φ

∂x
+ μ

∂ψ

∂y

)
= 0 or

∂w

∂x
is prescribed,

D2

(
∂2w

∂x2
+ μ

∂2w

∂y2

)
− 2D3

(
∂φ

∂x
+ μ

∂ψ

∂y

)
= 0 or φ is prescribed, (12)

D3

(
∂ψ

∂x
+

∂φ

∂y

)
− D2

∂2w

∂x∂y
= 0 or ψ is prescribed.

The associated consistent boundary conditions in-terms of unknown displacement variables
obtained along the edges y = 0 and y = b are as below:

D1

[
∂3w

∂y3
+ (2 − μ)

∂3w

∂x2∂y

]
−

D2

[
∂2ψ

∂y2
+ (1 − μ)

∂2ψ

∂x2
+

∂2φ

∂x∂y

]
= 0 or w is prescribed,

D1

(
μ

∂2w

∂x2
+

∂2w

∂y2

)
− D2

(
μ

∂φ

∂x
+

∂ψ

∂y

)
= 0 or

∂w

∂y
is prescribed,

D3

(
∂ψ

∂x
+

∂φ

∂y

)
− D2

∂2w

∂x∂y
= 0 or φ is prescribed, (13)

D2

(
μ

∂2w

∂x2
+

∂2w

∂y2

)
− 2D3

(
μ

∂φ

∂x
+

∂ψ

∂y

)
= 0 or ψ is prescribed.

The boundary condition in-terms of unknown displacement variables (w, φ and ψ) obtained
along the corners of plate is:

2D1
∂2w

∂x∂y
− D2

(
∂φ

∂y
+

∂ψ

∂x

)
= 0 or w is prescribed, (14)

where constants appeared in governing equations and boundary conditions are as follows:

D1 =
Eh3

12(1 − μ2)
, D2 =

A0E

(1 − μ2)
, D3 =

B0E

(1 − μ2)
, D4 =

C0E

2(1 + μ)
(15)
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and

A0 =

∫ h/2

−h/2

zf(z) dz, B0 =

∫ h/2

−h/2

f 2(z) dz, C0 =

∫ h/2

−h/2

[
df(z)

dz

]2

dz. (16)

4. Buckling analysis of isotropic plates subjected to in-plane forces

The critical buckling loads of simply supported, isotropic, square plate will be determined in this
paper by using the Navier solution. For the buckling analysis, we assume that the only applied
loads are the in-plane forces and all other forces are zero, i.e. q(x, y) = 0. The governing
equations of plate in case of static buckling when, N0

xx = −N0, N0
yy = kN0

xx and N0
xy = 0 are

given by

D1

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
− D2

(
∂3φ

∂x3
+

∂3φ

∂x∂y2
+

∂3ψ

∂y3
+

∂3ψ

∂x2∂y

)
=

−N0

(
∂2w

∂x2
+ k

∂2w

∂y2

)
,

D2

(
∂3w

∂x3
+

∂3w

∂x∂y2

)
− D3

(
∂2φ

∂x2
+

1 − μ

2

∂2φ

∂y2

)
+ D4φ − D3

(
1 + μ

2

)
∂2ψ

∂x∂y
= 0, (17)

D2

(
∂3w

∂y3
+

∂3w

∂x2∂y

)
− D3

(
1 − μ

2

∂2ψ

∂x2
+

∂2ψ

∂y2

)
+ D4ψ − D3

(
1 + μ

2

)
∂2φ

∂x∂y
= 0.

The following are the boundary conditions of the simply supported isotropic plate

w = ψ = Mx = Nsx = 0 at x = 0 and x = a, (18)
w = φ = My = Nsy = 0 at y = 0 and y = b. (19)

4.1. The Navier’s solution

The following displacement functions w(x, y), φ(x, y), and ψ(x, y) are chosen to automatically
satisfy the boundary conditions in Eqs. (18)–(19)

w(x, y) =

∞∑
m=1

∞∑
n=1

wmn sin αx sin βy,

φ(x, y) =
∞∑

m=1

∞∑
n=1

φmn cos αx sin βy, (20)

ψ(x, y) =
∞∑

m=1

∞∑
n=1

ψmn sin αx cos βy,

where α = mπ/a, β = nπ/b and wmn, φmn and ψmn are unknown coefficients. Substitute Eq.
(20) in the set of three governing differential Eq. (17) resulting the following matrix form

⎧⎨
⎩

⎡
⎣K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤
⎦ − N0

⎡
⎣N11 0 0

0 0 0
0 0 0

⎤
⎦
⎫⎬
⎭

⎧⎨
⎩

wmn

φmn

ψmn

⎫⎬
⎭ = 0, (21)

where

190



A. S. Sayyad et al. / Applied and Computational Mechanics 6 (2012) 185–196

K11 = D1(α
4 + β4 + 2α2β2),

K12 = −D2(α
3 + αβ2),

K13 = −D2(β
3 + α2β),

K22 = D3

[
1 − μ

2
β2 + α2

]
+ D4, (22)

K23 = D3

(
1 + μ

2

)
αβ,

K33 = D3

[
1 − μ

2
α2 + β2

]
+ D4,

N11 = α2 + kβ2.

For nontrivial solution, the determinant of the coefficient matrix in Eq. (21) must be zero. This
gives the following expression for buckling load:

N0 =

K11

∣∣∣∣K22 K23

K32 K33

∣∣∣∣ − K12

∣∣∣∣ K21 K23

K31 K33

∣∣∣∣ + K13

∣∣∣∣ K21 K22

K31 K32

∣∣∣∣
N11

∣∣∣∣ K22 K23

K32 K33

∣∣∣∣
. (23)

For each choice of m and n, there is a corresponsive unique value of N0. The critical buckling
load is the smallest value of N0(m, n).

5. Numerical results and discussion

A simply supported square (a = b) plate subjected to the loading conditions, as shown in Fig. 2,
is considered to illustrate the accuracy of the present theory in predicting the buckling behavior
of the isotropic plate.

(a) uniaxial compression

(b) biaxial compression (c) tension in the x direction and
compression in the y direction

Fig. 2. The loading conditions of square plate for (a) uniaxial compression, (b) biaxial compression and
(c) tension in the x direction and compression in the y direction
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Results obtained for critical buckling load and the effects of aspect ratio on the critical
buckling load of isotropic plates is investigated and discussed in detail. For verification purpose,
corresponding results are also generated by higher order shear deformation theory (HSDT) of
Reddy [6], classical plate theory (CPT) and first order shear deformation theory (FSDT) of
Mindlin [5]. The exact elasticity solution for buckling analysis of plate is not available in the
literature. Following material properties of isotropic plates are used

E = 210 GPa and μ = 0.3,
E = 70 GPa and μ = 0.33.

(24)

For convenience, the following nondimensional buckling load is used:

N̄cr =
N0a

2

Eh3
. (25)

5.1. Discussion of results

The results of critical buckling load of simply supported square plates are presented in Tab-
les 1–6 and Figs. 3–5. Tables 1–3 shows the comparison of critical buckling load for the steel
plates whereas Tables 4–6 shows the comparison of critical buckling load for the aluminum
plates subjected to in-plane forces. In case of plate subjected to uniaxial compression (Fig. 2a)
and biaxial compression (Fig. 2b), buckling load is critical when mode for the plate is (1, 1)
whereas in case of plate subjected to tension in x direction and compression in y direction
(Fig. 2c), buckling load is critical when mode for the plate is (1, 2).

Table 1. Comparison of non-dimensional critical buckling load (N̄cr) of square plates subjected to uni-
axial compression (k = 0, E = 210 GPa and μ = 0.3)

Mode for the plate Aspect Ratio (S = a/h)
(m, n) Theory 5 10 20 50 100
(1, 1) Present (ESDT) 2.960 3 3.424 2 3.565 4 3.607 2 3.613 2

Reddy (HSDT) 2.951 2 3.422 4 3.564 9 3.606 8 3.613 0
Mindlin (FSDT) 2.949 8 3.422 2 3.564 9 3.607 1 3.613 0
CPT 3.615 2 3.615 2 3.615 2 3.615 2 3.615 2

Table 2. Comparison of non-dimensional buckling load (N̄cr) of square plates subjected to biaxial com-
pression (k = 1, E = 210 GPa and μ = 0.3)

Mode for the plate Aspect Ratio (S = a/h)
(m, n) Theory 5 10 20 50 100
(1, 1) Present (ESDT) 1.480 2 1.712 1 1.782 7 1.803 8 1.806 5

Reddy (HSDT) 1.475 6 1.711 2 1.782 5 1.803 4 1.806 5
Mindlin (FSDT) 1.474 9 1.711 1 1.782 5 1.803 5 1.806 5
CPT 1.807 6 1.807 6 1.807 6 1.807 6 1.807 6
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Table 3. Comparison of non-dimensional critical buckling load (N̄cr) of square plates subjected tension
in the x direction and compression in the y direction (k = 1, E = 210 GPa and μ = 0.3)

Mode for the plate Aspect Ratio (S = a/h)
(m, n) Theory 5 10 20 50 100
(1, 2) Present (ESDT) 4.879 8 6.613 3 7.277 7 7.489 8 7.521 2

Reddy (HSDT) 4.827 4 6.602 4 7.275 4 7.489 3 7.520 1
Mindlin (FSDT) 4.815 8 6.601 0 7.275 3 7.489 5 7.521 1
CPT 7.531 7 7.531 7 7.531 7 7.531 7 7.531 7

Table 4. Comparison of non-dimensional critical buckling load (N̄cr) of square plates subjected to uni-
axial compression (k = 0, E = 70 GPa and μ = 0.33)

Mode for the plate Aspect Ratio (S = a/h)
(m, n) Theory 5 10 20 50 100
(1, 1) Present (ESDT) 2.999 1 3.488 6 3.638 8 3.683 3 3.689 8

Reddy (HSDT) 2.989 3 3.486 6 3.638 3 3.683 3 3.689 6
Mindlin (FSDT) 2.987 7 3.486 5 3.638 3 3.683 2 3.690 0
CPT 3.691 9 3.691 9 3.691 9 3.691 9 3.691 9

Table 5. Comparison of non-dimensional critical buckling load (N̄cr) of square plates subjected to biaxial
compression (k = 1, E = 70 GPa and μ = 0.33)

Mode for the plate Aspect Ratio (S = a/h)
(m, n) Theory 5 10 20 50 100
(1, 1) Present (ESDT) 1.499 5 1.744 3 1.819 4 1.841 6 1.844 9

Reddy (HSDT) 1.494 7 1.743 3 1.819 2 1.841 6 1.844 8
Mindlin (FSDT) 1.493 9 1.743 3 1.819 2 1.841 5 1.845 0
CPT 1.845 9 1.845 9 1.845 9 1.845 9 1.845 9

Table 6. Comparison of non-dimensional critical buckling load (N̄cr) of square plates subjected tension
in the x direction and compression in the y direction (k = 1, E = 70 GPa and μ = 0.33)

Mode for the plate Aspect Ratio (S = a/h)
(m, n) Theory 5 10 20 50 100
(1, 2) Present (ESDT) 4.908 3 6.717 2 7.420 8 7.646 8 7.680 3

Reddy (HSDT) 4.852 3 6.705 5 7.418 4 7.646 5 7.680 4
Mindlin (FSDT) 4.839 8 6.704 0 7.418 3 7.646 5 7.681 0
CPT 7.691 5 7.691 5 7.691 5 7.691 5 7.691 5
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Fig. 3. The effect of aspect ratios on the critical buckling load of square plate subjected to uniaxial
compression

Fig. 4. The effect of aspect ratios on the critical buckling load of square plate subjected to biaxial
compression

Fig. 5. The effect of aspect ratios on the critical buckling load of square plate subjected to tension in the
x direction and compression in the y direction
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From the examination of Tables 1–6, it is observed that, the critical buckling load obtained
by present theory (ESDT) and Reddy’s theory (HSDT) is in excellent agreement with each other
even though the plate is very thick due to inclusion of effect of transverse shear deformation.
It is also observed that, the value of critical buckling load is increased with increase in aspect
(a/h) ratio. As compared to ESDT and HSDT, FSDT underestimates the values of critical
buckling load in all cases due to use of shear correction factor (5/6) whereas CPT overestimates
the same due to neglect of transverse shear deformation. In case of CPT, critical buckling load
is independent of aspect ratio. Figs. 3–5 shows that, for the higher value of aspect (a/h) ratio,
the results obtained by ESDT, HSDT, FSDT and CPT are more or less same.

6. Conclusions

An exponential shear deformation theory (ESDT) presented by Sayyad and Ghugal [8] has been
applied in this paper for buckling behavior of thick isotropic plates. From the numerical results
and discussions following conclusions are drawn.

1. The theory takes account of transverse shear effects and parabolic distribution of the
transverse shear strains through the thickness of the plate, hence it is unnecessary to use
shear correction factors.

2. It can be concluded that the presented theory can accurately predict the critical buckling
loads of the isotropic plates.

3. Critical buckling load is increased with increase in aspect ratio.
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