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Abstract

Acoustic solution of interior domains is of great interest. Solving acoustic pressure fields faster with lower com-
putational requirements is demanded. A novel solution technique based on the analytic solution to the Helmholtz
equation in rectangular domain is presented. This semi-analytic solution is compared with the finite element
method, which is taken as the reference. Results show that presented method is as precise as the finite element
method. As the semi-analytic method doesn’t require spatial discretization, it can be used for small and very large
acoustic problems with the same computational costs.
c© 2013 University of West Bohemia. All rights reserved.
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1. Introduction

Numerical methods that are used to simulate acoustic properties inside or outside an acoustic
domain are under constant development. Sound, as we hear it, is composed of many tones, that
propagate at certain excitation frequencies. These frequencies must not be close to each other.
Moreover it is probable that they span from lower over middle to high excitation frequencies.
The wide range is a computational difficulty. Many computational methods exist. However
limits of their usability restrict them to a limited range of acoustic frequencies. One of the most
widely used methods for computing interior problems, the finite element method [14], is gener-
ally suitable only for lower excitation frequencies. As the frequency rises and the element size
diminishes, pollution error deviates the correct solution. Boundary element method [4] is sim-
ilar to the finite element method. This method is often used, when exterior or sound radiation
problems are to be solved. Usability limits of these two method are given by the number and the
size of used elements. The higher the excitation frequency is, the higher is the number of nodes
and the smaller the elements become. At some element size numerical errors start to depreciate
the solution. Then other methods, as e.g. the statistical energy analysis [13] has to be deployed.
However there may be a range of excitation frequencies that is already too high for finite and
boundary element method and too low for the statistical energy analysis. To address this “non-
solvable” frequency range many extensions to before-mentioned methods were developed. Or
new approaches based on some analytic properties were proposed. Approach based on the su-
perposition theory and the integro-modal approach [1] is presented in [6]. Another possibility is
to try to solve directly the Helmholtz equation (3). Either by an iterative procedure as in [10] or
by the use of variational theory as in [8]. The paper [3] presents improved element free Galerkin
method. Approaches that are based on the analytic solution to the Helmholtz equation are also
under development. So called Trefftz methods [5] use as approximation functions harmonic
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and evanescent exponential functions that are the solution of the underlying partial differential
equation in a rectangular or a block domain. Recently developed wave-based method [11] be-
longs to the group of Trefftz methods. However the methods based on analytic solution require
simpler geometry.

In this text a novel approach based on analytic solution to Helmholtz equation in a rectangu-
lar domain (3) is described. Full derivation of the approximation functions and the application
on a car-like interior cavity is described.

2. Mathematical description of the acoustic problem

Fluctuation of the acoustic pressure p in two-dimensional space is described in general by wave
equation [12]

∂2p

∂x2
+

∂2p

∂y2
=

1

c2
0

∂2p

∂t2
. (1)

In this text time-harmonic acoustic pressure behavior is considered

p(x, y, t) = p0(x, y) exp(jωt), (2)

where j =
√
−1, c0 [m/s] being the speed of sound in the acoustic fluid of the density

� [kg/m3] and ω [s−1] being the radial excitation frequency. The equation (1) is transformed
into Helmholtz equation [7]

∂2p0

∂x2
+

∂2p0

∂y2
+ k2p0 = 0, (3)

where the wave number k = ω/c0. For the sake of notation simplicity, let’s denote the acoustic
pressure amplitudes p0(x, y) as p(x, y).

The equation (3) is defined on a bounded region Ω. On the boundary Γ following types of
boundary conditions may be applied.

• Normal acoustic velocity v̄ on the boundary Γv is prescribed by Neumann boundary con-
ditions

j

�ω

∂p(x, y)

∂�n
= v̄ on Γv. (4)

�n being the outward pointing normal of the domain Ω.

• Acoustic pressure p̄ on the boundary Γp is prescribed by Dirichlet boundary conditions

p(x, y) = p̄ on Γp. (5)

The solution of (3) in Cartesian coordinates in rectangular domain Ω is defined according
to [7] as

p(x, y) = (A cos αx + B sin αx) (C cos βy + D sin βy) . (6)

The constants A, B, C, D and the wave numbers α and β are to be determined from the
boundary conditions. Additionally for α and β holds

α2 + β2 = k2. (7)
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3. Finite element method

The finite element method, as proposed in [2, 15] operates with elements and nodes, that are
defined in the domain Ω. Amplitudes of the acoustic pressure in an element pe

f are described
by polynomial functions (8). The superscript e denotes elements and the subscript f denotes
the finite element method. In two dimensional problems the polynomials are usually bilinear
functions g(xe, ye). In that case pe

f is defined as

pe
f (x

e, ye) =

mn∑
i=1

pe
i · gi(x

e, ye), (8)

where xe, ye are element local coordinates and pe
i are the unknown acoustic pressures in mn

element’s nodes. The vector pe
f = [pe

1, . . . , p
e
mn

]T ·ejωt stores nodal pressures pe
i of the element’s

nodes. As stated in [2], for every element mass matrix Me
f , damping matrix Be

f , stiffness
matrix Ke

f and the vector of known nodal pressures be
f can be derived. Resulting damped

element equations of motion are

Me
f

∂2pe
f

∂t2
+ Be

f

∂pe
f

∂t
+ Ke

fpe
f = be

f . (9)

The domain Ω consists of multiple elements. Total number of nodes in Ω is m. Mass, damping
and stiffness matrices and right hand side vectors of individual elements are composed together
to form global matrices of the whole system. Resulting steady-state acoustic problems are
described by (

−ω2Mf + jωBf + Kf

)
pf = bf . (10)

The vector pf = [p1, . . . , pm]T stores all unknown nodal acoustic pressures in Ω. Matrices in
(10) are frequency independent and in case undamped system is being solved damping matrix
Bf becomes zero.

The number of used elements and nodes is driven by the highest excitation component of ω.
Eight elements per the shortest wavelength λmin = (2πc0)/ωmax are said to secure proper and
precise solution.

4. Semi-analytic solution

Presented semi-analytic method was derived from the solution (6) and a specific set of boundary
conditions applied to rectangular domain Ω.

4.1. Derivation of the basis functions

The approximation of the solution is based on the analytic solution (6). Derivation of the linear
combination of the semi-analytic solution requires only Neumann boundary conditions. A spe-
cific set of boundary conditions is applied to the rectangular domain Ω with dimensions Lx and
Ly, see Fig. 1. Unlike Dirichlet boundary conditions, that have to be continuous in the corners
of the domain, Neumann boundary conditions may be discontinuous.

The course of the normal acoustic velocity excitation function v̄ along the boundary Γv is
in Fig. 1. Three of the four domain sides have zero normal acoustic velocity. On the last side a
non-zero normal acoustic velocity function is prescribed. Substituted boundary conditions for
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M. Tukač et al. / Applied and Computational Mechanics 7 (2013) 77–86

�� Lx

�

�
Ly

�x

�
y

�̄v�n2 = 0

�
v̄�n4 = 0

�v̄�n1 = v̄(y)� v̄�n3 = 0

Ω : p(x, y)

Fig. 1. Normal acoustic velocity boundary condi-
tions for one domain problem
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Fig. 2. Schematic procedure of computing rectan-
gular cavities with non-zero boundary conditions
on all sides

one domain are as follows:

v�n1(0, y) : −v̄(y) =
jα

�ω
(−A sin α0 + B cos α0)(C cos βy + D sin βy), (11)

v�n2(x, 0) : 0 =
jβ

�ω
(A cos αx + B sin αx)(−C sin β0 + D cos β0), (12)

v�n3(Lx, y) : 0 =
jα

�ω
(−A sin αLx + B cos αLx)(C cos βy + D sin βy), (13)

v�n4(x, Ly) : 0 =
jβ

�ω
(A cos αx + B sin αx)(−C sin βLy + D cos βLy). (14)

In the course of manipulation of equations (11)–(14) it can be assumed, that the space coordi-
nates x, y, and the wavenumbers α and β can be non-zero values. Then the following relations
can be determined:

D = 0 and βn = n
π

Ly
, n = 0, . . . , nF . (15)

Every wave number βn is related to αn by (7). Though αn can be easily computed. From (13)
the equation for An

An = Bn
1

tan(αnLx)
(16)

is obtained. Substituting of (15), (16) and αn into (6) and combining newly-emerged Bn ·Cn =
Hn also in (19) the final pressure approximation (17) in one rectangular domain is obtained as

p̃(x, y) =

nF∑
n=0

Hn

(
1

tan(αnLx)
cos αnx + sin αnx

)
cos βny. (17)

In matrix notation,
p̃ = A� · h�, (18)

the basis functions are stored in a row vector A� = [A0, . . . , AnF
] and the unknown coefficients

Hn are stored in a column vector h� = [H0, . . . , HnF
]T . Pressure approximation p̃ for the set of

boundary conditions from Fig. 1 is a linear combination for unknown coefficients Hn.
From (11) a relation between the boundary value function v̄(y) and the unknown coefficients

Hn is obtained as
Hnαn cos βnym = −�ω

j
v̄(ym). (19)
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Unknown Hn from (19) can be obtained e.g. by using the least square method. In that case the
boundary function v̄ is evaluated at discrete positions y = ym.

The number of basis functions nF is derived from the requirement that the wavelength cor-
responding to the highest n is at least half the length of the wavelength in the acoustic fluid
excited at the radial frequency ω.

4.2. Extension to more excited sides

Acoustic pressure approximation in (17) can only solve problems with one combination of
boundary conditions. However, domain Ω can generally be excited on all sides by non-zero
normal acoustic velocities. Acoustic problem is a linear problem of seeking a solution to a
partial differential equation (1). For linear problems superposition theorem is valid.

Thus the solution of a rectangular domain excited on all sides is computed as the sum of four
properly modified solutions (17). The scheme is in Fig. 2. The non-zero excitation functions
can be discontinuous in the corners. As with only one excited side, the approximation for all
excited sides can be written in matrix form. A row vector A = [A�

1, . . .A
�
4] collects all basis

functions of all four approximations and the column vector h = [h�
1, . . . , h

�
4]

T stores all the
unknown coefficients.

4.3. Application of the weighted residuals method

The unknown coefficients Hn can be obtained from (19) using least square method. This works
for both the problem with single excited side and for the problem with all excited sides. In the
latter case it requires computing the coefficients four times, individually for each side.

There may exist an acoustic domain, that is composed of two or more rectangular domains.
In that case evaluating four individual solutions represents a problem for the coupling. Indepen-
dently obtained solutions can not describe properly the continuity conditions on the common
boundary between the domains.

Next, let assume an acoustic problem consisting of two rectangular domains. Between the
domains there is interface boundary Γi. The outer boundary can be excited by both Dirichlet or
Neumann boundary conditions.

System of linear equations is a convenient way of solving linear problems. As long as the ap-
proximation p̃ from (17) is a linear combination of basis function, Galerkin weighted residuals
method described in [9] can be used. Using Galerkin weighted residuals method the unknown
coefficient in p̃ are determined from a system of linear equations. In the Galerkin modification
of weighted residuals method basis functions in p̃ are used as the weighting functions. The
method minimizes the residuals in the domains Ω and on the boundary Γ. The residuals

RΩ =
∂2p̃

∂x2
+

∂2p̃

∂y2
+ k2p̃ on Ω, (20)

RΓv =
j

�ω

∂p̃

∂�n
− v̄ on Γv, (21)

RΓp = p̃ − p̄ on Γp (22)

are the difference between the exact solution and the approximation. However RΩ is in every
domain identically equal to zero, because the basis functions are solution of the equation (3).
Application of Galerkin weighted residuals method leads to the following equation in the case
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Fig. 3. Scheme of coupling of two domains when the Galerkin weighted residuals method is used

of one domain ∫
Γp

j

�ω

∂AT

∂�n
A dΓp︸ ︷︷ ︸

Cp

·h +

∫
Γv

AT j

�ω

∂A

∂�n
dΓv︸ ︷︷ ︸

Cv

·h =

∫
Γp

j

�ω

∂AT

∂�n
p̄ dΓp︸ ︷︷ ︸

bp

+

∫
Γv

AT v̄ dΓv︸ ︷︷ ︸
bv

. (23)

On the boundary Γi both pressure and velocity continuity have to be enforced. Both require-
ments represent a boundary condition. The pressure continuity is applied to the domain on the
“left” side of the interface and the velocity continuity condition to the “right” domain. Let’s
denote the domains around the boundary ΩL and ΩR. The residuals on the interface are

RL
Γi

= p̃L − p̃R, (24)

RP
Γi

=
j

�ω

∂p̃L

∂�nL
+

j

�ω

∂p̃R

∂�nR
. (25)

Equations (26) and (27) show the extension of the formulation (23) for a problem with two
acoustic domains. The extension adds these members

. . . +

∫
Γi

j

�ω

∂ALT

∂�nL
AL dΓi︸ ︷︷ ︸

CL
Bp

·hL +

∫
Γi

j

�ω

∂ALT

∂�nL
AR dΓi︸ ︷︷ ︸

CLR

·hR = . . . , (26)

. . . +

∫
Γi

j

�ω

∂ART

∂�nR
AL dΓi︸ ︷︷ ︸

CRL

·hL +

∫
Γi

j

�ω

∂ART

∂�nR
AR dΓi︸ ︷︷ ︸

CR
Bv

·hR = . . . (27)

4.4. Resulting system of equations

Assembled matrices in (23) form a system of linear equations. Problem of one domain is solved
with

[Cp + Cv] · h = bv + bp. (28)
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Fig. 4. Course of acoustic pressure boundary conditions. Points P1 and P2 are depicted as well as the
interior boundaries of individual domains

In case more domains are coupled together, the system is extended with the matrices from
(26) and (27). In this text only the situation of two coupled domains is shown

[
CL

p + CL
v + CL

Bp CLR

CRL CR
p + CR

v + CR
Bv

]
·
(

hL

hR

)
=

(
bL

p + bL
v

bR
p + bR

v

)
. (29)

Extension of the system (29) for more domains is straightforward. Unlike FEM, derived matri-
ces are frequency dependent and the matrix elements have to be recomputed for every excitation
frequency.

5. Application on a car-like acoustic cavity

Proposed acoustic solution was compared to the finite element solution on an example of a
car-like interior.

5.1. Acoustic domain and the boundary conditions

The shape, depicted in Fig. 4, represents simplified car interior. Semi-analytic method is de-
signed for the use on convex acoustic domains, that resemble rectangles. To fulfil this demand,
the car-like cavity was divided into seventeen nearly rectangular domains, see Fig. 4. The whole
system is solved using the Galerkin weighted residuals method applied to (17).

Only acoustic pressure boundary conditions are applied. The course and the location of
applied boundary conditions is shown in the Fig. 4. Maximum amplitude of the excitating
acoustic pressure is p̄max = 2 Pa. The course of the boundary condition function is continuous.
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Fig. 5. Acoustic pressure from the finite element
analysis. Excitation frequency of f = 350 Hz

Fig. 6. Acoustic pressure from semi-analytic
method. Excitation frequency of f = 350 Hz

Fig. 7. Acoustic pressure from the semi-analytic
method. Excitation frequency of f = 296 Hz,
which is also one of computed system eigenfre-
quencies

Fig. 8. Acoustic pressure from the semi-analytic
method. Excitation frequency of f = 438 Hz,
which is also one of computed system eigenfre-
quencies

5.2. Results

In the finite element analysis an convergence study was carried out. Model with 965 nodes
was chosen as the optimal one. For finer meshes the improvement of accuracy was negligible.
Matrices of the semi-analytic method are frequency dependent. Maximum number of unknowns
Hn of the whole system was 748. This represents 22.5 % less unknowns in comparison with the
finite element analysis. Computed transfer functions of both semi-analytic and the finite element
methods in the points P1 and P2 are depicted in Fig. 9 and Fig. 10, respectively. Computation
was done in the frequency range of

f = [144, . . . , 474] Hz.

The solution of the system excited at f = 350 Hz computed by the finite element method is
in Fig. 5 and the results of the semi-analytic method are in Fig. 6. Figs. 7 and 8 show the
computed acoustic pressure at frequencies of f = 296 Hz and f = 438 Hz, respectively. These
frequencies are the eigenfrequencies of the whole system.

The frequency characteristics show the sound pressure level (30). Sound pressure level was
computed as follows

Lsp = 20 log10

p

|pref |
, (30)

where pref = 20 · 10−6 Pa. As long as the excitation frequency is different from the eigenfre-
quency of the system, the results exhibit very good agreement with the finite element analysis
results, that were taken as reference. Outside of the eigenfrequencies the relative error is lower
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Fig. 9. Transfer functions of the acoustic pressure in the point P1

Fig. 10. Transfer functions of the acoustic pressure in the point P2

than three percent. The semi-analytic method predicts the eigenfrequencies of the system very
accurately. Pressure fields for excitation frequencies of f = 296 Hz in Fig. 7 and f = 438 Hz
in Fig. 8 are correctly predicted. However these frequencies are the system eigenfrequencies
and the amplitudes are deviated from the reference finite element solution. In case the excita-
tion frequency equals any system eigenfrequency, the set of the independent basis functions A
becomes linearly dependent. Thus the system of linear equations becomes badly conditioned.
The precision of the results of such a system is lowered and the numerical results are deviated
from the reference solution.

The bad conditioning could be avoided if damping was introduced. The example has only
pressure boundary conditions and thus the system is undamped. When part of the boundary has
impedance boundary condition, the system is damped. Then the maximum sound pressure level
of a damped system is reduced and the precision improved. Basis functions of a damped semi-
analytic method are supposed not to become linearly dependent, when the excitation frequency
coincides with the eigenfrequency of the system. Implementation of impedance boundary con-
ditions is the subject of further development.

6. Conclusion

A novel semi-analytic method for solving acoustic problems was suggested. It is based on
the exact solution to the Helmholtz equation (3) in a rectangular domain. Acoustic pressure
approximation (17) is in the form of linear combination. Derivation of basis functions A as well
as the derivation of the system of linear equations was presented. Results of the semi-analytic
method were compared with the finite element analysis. A study on a car-like cavity was carried
out. The results of the undamped model show very good agreement. Acoustic pressure in points
P1 and P2 for the excitation frequency that corresponds to the eigenfrequency of the system is
a little deviated, however introduction of damping via impedance boundary conditions should
restore good correspondence.
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The semi-analytic method is based on the analytic solution. With its lower computational
requirements it has the potential to solve problems, where other methods such finite element
method would require too much computational force.
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