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Abstract

In the presented paper, the computational model of the turbine blade couple is investigated with the main attention
to the influence two harmonic excitation forces, having the same frequency and amplitude but with moderate delay
in time. Time delay between the exciting harmonic forces depends on the revolutions of bladed disk, on the number
of blades on a rotating disk and on the number of stator blades. The reduction of resonance vibrations realized by
means of dry friction between the shroud blade-heads increases roughly proportional to the difference of stator and
rotor blade-numbers and also to the magnitude of dry friction force.

From the analysis of blade couple with direct contact it was proved that the increase of friction forces causes
decrease of resonance peaks, but the influence of elastic micro-deformations in the contact surfaces (modeled e.g.
by the modified Coulomb dry friction law) is rather small.

Analysis of a blade couple with a friction element shows that the lower number of stator blades has negligible
influence on the amplitudes of both blades, but decreases amplitudes of the friction element oscillations. Similarly
the increase of friction forces causes a decrease of resonance peaks, but an increase of friction element amplitudes.
c© 2013 University of West Bohemia. All rights reserved.
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1. Introduction

The enormous great resonance vibrations of turbine blades are very dangerous and are often
the cause of serious crashes of power plants. The reduction of undesirable vibrations of turbine
blades is very often realized by using the blade damping heads. A lot of theoretical, numerical
and experimental studies were done in the Institute of Thermomechanics ASCR in cooperation
with the University of West Bohemia on the problems of ascertaining the dynamic properties of
bladed disks and of reduction of undesirable vibrations.

The main experimental set in laboratories of Institute of Thermomechanics ASCR is a model
of a turbine disk, with blades connected either by direct contact or by an inserted friction ele-
ment. There are many articles and books related to theoretical and experimental investigations
of friction properties, e.g. [4, 13]. However, the literature sources on friction properties are
mainly oriented to the study of friction properties at constant or slowly variable relative veloc-
ity in the friction contact surfaces, which is important e.g. for bearings, clutch, brakes, etc.,
but the friction at vibrations, where the contact velocity varies from positive to negative values
in one period, has been given small attention. As an example let us mention book [2], where
the friction processes are investigated on the various types of analytical models. Friction at
vibrating, particularly stick-slip motion, are solved in [1, 3, 16], mainly for sphere contacts.
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The application of friction contact to the damping of blades systems occurs very often in
praxis and also in technical literature. The friction properties in blade contact surfaces are ana-
lyzed in [5], properties of damper near the blade root are solved in [8] and [12]. The Influence
of contact stiffness is considered in [15]. Numerical analysis of shroud friction blades contact
by FE method is presented in [14]. No solution of phase-delayed excitation of blade couple
with friction contact has been found in any accessible literature.

For detail discovering of friction processes and their influence on blades vibrations, the dy-
namic tests of separated blade couple connected by [11] describes the influence of various math-
ematical models of dry friction forces (modified Coulomb [9], spring-dry friction model [6],
etc.) on the response curves of harmonically excited blade couple. In paper [7], there it is
shown the additional effect of elastic stops, fixed to the friction element in order to prevent
falling out of the slot during vibrations, both on reduction of amplitudes, but also on appear-
ance of instability regions and existence of chaotic oscillations.

The dynamic systems investigated in both papers have two or three degrees of freedom,
shown in Fig. 1 and were (unlike to here investigated system) excited only by one harmonic
force F0 cos ωt acting on the first blade. The right hand subsystem was without any external
excitation.

In the present paper, the same blades systems modeled by two or three degrees of freedom
mathematical models are investigated with the main attention to the influence of the second
excitation force, having the same frequency and amplitude but being moderately delayed in
time. Parameters of these mathematical models were determined from the experimental models
used in laboratory IT ASCR by means of eigenfrequency measurements and vibration amplitude
decay of blade after the abrupt switching of excitation in resonance.

Fig. 1. Friction connection of blades

The reduction of undesirable vibrations of blades is realized by using blade damping heads,
which are connected by either a direct friction contact (position a) or by inserted friction ele-
ments (position b), as seen in Fig. 1. In the first case, due to the de-twisting of both blades at
rotation, the pressure in the appropriate contact surface produces friction losses and in conse-
quence of this also the reduction of vibrations. In alternative b), the head tops of the blades are
provided with the friction surfaces creating the wedge-shaped inter-head slot. The friction ele-
ment is pushed in the slot by the centrifugal force under rotation or for non-rotating stationary
tests by the static force Fc.

The blades vibrate in bending and torsion modes. It has been shown in [3], that blades
in the real turbines have sufficiently high torsion eigenfrequencies and therefore their mutual
interaction with the first bending mode is negligible. In this contribution, only the bending
modes will be taken into account.
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Fig. 2. Measurement of blade couple with inserted friction element

Laboratory measurements of a blade couple were realized on two selected blades, the roots
of which were joined to the experimental disk, which was rigidly fastened to a steel plate base-
ment. The other blades, except for the mentioned couple, were fastened to the steel plate as
well — see Fig. 2.

2. Delay of excitation

In both cases of the blade-heads connection, the right blade is forced by a delayed harmonic
force F0 cos ω(t − Δt). The time delay Δt of periodic excitation depends on the revolutions

n =
60ωr

2π
(1)

of the bladed disk, on number lr of blades on rotating disk and on number ls of stator blades.
Basic frequency fe of excitation of an individual blade from the periodic distribution of pressure
on the outflow behind the stator blade row is

fe =
n

60
ls, ωe = 2πfe =

2π

60
nls. (2)

The next blade is excited by the same excitation frequency fe, but delayed on the time
interval Δt proportional to the angle between lr blades Δϕ = 2π/lr. This time interval is given
by

Δt = Δϕ/ωr =
2π

lr
/
2π

60
n =

60

lrn
. (3)

The exciting angular frequency at static experiments is ω = ωe. Using (1) and (2) gives

Δt =
60

lrn
=

60

lr
· 1

60ωe/2πls
=

2π

ω
· ls
lr

. (4)

The shifted excitation force acting on the second blade is

F0 cos ω(t − Δt) = F0 cos ω

(
t − 2π

ω
· ls
lr

)
= F0 cos

(
ωt− 2π · ls

lr

)
, (5)

where the delay is in the last formula expressed as phase angle shift, in the middle formula as
the time shift.
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L. Půst et al. / Applied and Computational Mechanics 7 (2013) 39–52

3. Vibrations of a blade couple with a direct friction contact

A simplified mathematical model of such a couple is shown in Fig. 3. This model consists
of two identical 1 DOF slightly damped subsystems connected by a direct friction contact.
Blade’s bending and damping were modeled by stiffness k and damping coefficient b, roughly
corresponding to the experimentally ascertained values. As this analysis is limited to the lowest
resonance frequency, the modeling by 1 DOF is eligible.

Fig. 3. Mathematical model of two blades system with direct friction contact

The analysis of up to now investigated model of blade couple with friction contact has been
solved at the assumption that blades vibrate only in the bending mode. If we neglect a torsion
vibration of blades, the velocities u̇1, u̇2 in the friction surfaces are

u̇1 = ẏ1, u̇2 = ẏ2. (6)

Differential equations of motion are

mÿ1 + bẏ1 + ky1 + Ft(u̇1 − u̇2)= F0 cos ωt,
mÿ2 + bẏ2 + ky2 − Ft(u̇1 − u̇2)= F0 cos ω(t − ΔT ),

(7)

where u̇1 − u̇2 = ẏ1 − ẏ2.
After substituting u̇1, u̇2 from (6) into (7) and using (5) we get equations with two unknown

quantities y1, y2:

mÿ1 + bẏ1 + ky1 + Ft(ẏ1 − ẏ2)= F0 cos ωt,

mÿ2 + bẏ2 + ky2 − Ft(ẏ1 − ẏ2)= F0 cos
(
ωt− 2π ls

lr

)
.

(8)

Expression Ft(ẏ1 − ẏ2) = Ft(u̇1 − u̇2) describes the dry friction forces in the heads slot.
Differential equations (7), (8) as well as (11) together with additional expressions (9), (10),

(12) were solved in MATLAB R2012a version, using Runge-Kutta 4th order integrating meth-
ods. The time steps were 0.000 1 s in order to describe the sudden jumps of dry friction forces
and other strong nonlinearities with sufficient accuracy. Numerical simulations give time his-
tories of motion y1(t), y2(t), y3(t), from which the maxima of yi i.e. amplitudes ai were ascer-
tained and plotted.
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4. Dry friction properties

Dry friction is very complicated, strongly nonlinear process and the generally used Coulomb’s
model is only the first approximation of real properties. For a better description of friction
process, the stick-slip (or micro slip-full slip) model is often used. The short survey of basic
mathematical models giving at least approximate true pictures of real forces is in [4]. The influ-
ence of application of some dry friction model on the blade couple vibration will be presented
in the next chapters.

The first improvement of the classical Coulomb friction law

Ft = Ft0 sgn (v) for |v| > 0,
−Ft0 < Ft < Ft0 for v = 0

(9)

is the modified Coulomb law, where instead of the sudden jump at zero velocity at the very low
velocity v, the complicated processes caused mostly by elastic micro-deformations of bodies
near the friction surfaces, accompanied by partial micro-slip in several points of the contact
area, are modeled by a oblique line, a linear increase of friction force, as shown in Fig. 4.

Fig. 4. Modified Coulomb friction characteristics

Micro-slips arise in the contact points, where owing to non-uniform distribution of contact
pressure a part of the area is less loaded or even without contact. Processes, which happen
during this motion period, are therefore always highly influenced by wear, geometry of contact
bodies, precision of surfaces, etc. Their mathematical model is therefore very uncertain and the
oblique line is the first approximation of the real micro-deformations and micro-slips processes.

Critical velocity vr [m/s] is a velocity, at which the micro-slip motion changes into full rela-
tive motion, Ft0 is Coulomb friction force, proportional to the normal pressure Ft0 = fFN [N].
Mathematical description of the simply modified Coulomb law with the constant dry friction
force Ft0 = ±fFN in the full slip phase of motion is:

Ft = Ft0

[
v

vr
H(vr − |v|) + sgn (v)H(|v| − vr)

]
, (10)

where H is the Heaviside function. Normal force FN [N] acts in the contact surface between the
modelled bodies. This force is in the real turbine blading realized by the un-twisting of blades
due to the centrifugal force at couples with direct contact, or by indentation of friction element
into slot between blades heads, again due to the centrifugal force at rotation.

This basic dry-friction model can be completed by further functions expressing e.g. a simple
linear increase or decrease of friction force at higher relative velocities. To express friction force
that at great velocity v settles on a constant value, it is possible to use the functions atan (v) or
exp(−v).
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5. Example of a system with direct friction contact

Applying equations (4) for parameters roughly corresponding to the experimental set, i.e. m =
0.2 kg, k = 100 000 N/m, F0 = 1 N, F1(t) = F0 cos ωt, F2(t) = F0 cos ω(t−Δt), the amplitude
response curves of all three coordinates y1, y2, u1−u2 can be calculated for several cases of time
delay (i.e. different number ls, lr of stator and rotor blades), friction forces, types of friction
characteristics and damping coefficients of the separate blades.

The acceleration of sweeping excitation frequency ω at simulation is sufficiently low

dω

dt
= accel = 0.25 rad/s2

so that the transient response is very close to the stationary one. It can be proved by recording
response curves of mathematical model with increasing and decreasing excitation frequency —
as shown in Fig. 5 for the twofold passing acceleration 0.5 rad/s2 and for the system with
inserted friction element. Damping of both blades is modeled by small viscous damping with
coefficients b1 = b2 = 0.1 Ns/m.

Fig. 5. Check of distortion at sweep excitation

The shifts of peaks is df = 0.03 Hz, which related to the resonance frequency gives error
smaller than 0.03 %.

6. Phase-shift effect on a system with direct Coulomb friction contact

If there is no phase shift between fully synchronized exciting forces, no relative motion in the
contact surface exists and the system is damped only by the small subsystem’s damping forces
bẏi, i = 1, 2. Resonance amplitudes in such a case are very high (the frequency range in
the figures is only 1.5 Hz). However due to delay of one harmonic exciting force against the
other, relative motion connected with the friction energy losses in the contact surface occurs
and resonance amplitudes get lower. For the equal subsystems with masses m = 0.2 kg and
spring stiffness k = 100 000 kg · s−2, the amplitude response curves a1(f), a2(f) are drawn in
Fig. 6 for dry friction force Ft = 0.2 N and for six blade-number ratios

ls/lr = 1; 0.9; 0.8; 0.7; 0.6; 0.5.
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a) b)

Fig. 6. Influence of excitation delay at dry friction force FT = 0.2

a) b)

Fig. 7. Influence of excitation delay at dry friction force FT = 0.3

a) b)

Fig. 8. Influence of excitation delay at dry friction force FT = 0.4

Similar curves are plotted in Fig. 7 for the higher dry friction force Ft = 0.3 N and again
for six blade-number ratios. Influence of the dry friction force Ft = 0.4 N is shown in Fig. 8.
It is evident that the damping increases with higher friction force and with greater difference
between the number ls of stator blades and number lr of rotor blades.

The elastic micro-deformations in contact surfaces (as well as small torsion deformations-
in this analysis neglected) can reduce the positive dry friction damping effect. It can be shown
on the case where a modified Coulomb dry friction model (see Fig. 4) is used.
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7. Phase-shift effect — modified Coulomb dry friction

The influence of elastic micro-deformations in the contact surfaces can be analyzed by using
various more sophisticated mathematical models. The simplest one is the modified Coulomb
dry friction model containing two parameters: critical velocity vr at which the partial micro-slip
motion changes into full slip motion and vice versa and the constant friction force Ft0 = ±fFN

in the full slip at higher velocities.
Because the maximum amplitude is the decisive value for the reliability of blades systems,

the influence of phase-shift excitation and critical velocity vr on the high of resonance amplitude
will be considered.

Response curves for four values of critical velocity vr = 0, 2, 4, 6 and for ratio of the number
of stator and rotor blades ls/lr = 0.7 are shown in Fig. 9. The greater is the critical velocity, the
smaller is the damping ability of friction connection. Interesting phenomenon is the increase
of first blade’s amplitudes in the under-resonance zone and the increase of the second blade’s
amplitudes in the over-resonance zone.

a) b)

Fig. 9. Influence of critical velocity vr at FT = 0.3 and at ratio ls/lr = 0.7

a) b)

Fig. 10. Influence of critical velocity vr at FT = 0.3 and at ratio ls/lr = 0.5

In order to estimate the damping contribution caused by the phase-shift excitation, one re-
sponse curve at in phase excitation ls/lr = 1 is plotted in each diagram.

For the same system parameters but for smaller ratio of the numbers of stator and rotor
blades ls/lr = 0.5, the response curves again for four values of critical velocity vr = 0, 2, 4, 6
are shown in Fig. 10. The quenching of amplitudes is now greater than in the previous case and
the damping ability of friction connection decreases again with growing critical velocity.
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Interesting phenomenon in this case is the identity of both sets of amplitude response curves
a1(f) and a2(f) (the phase response curves are however different), as well as the increase of
amplitudes both in the before-resonance and in the after-resonance zone with the increasing of
critical velocity vr.

8. Vibrations of a blade couple with friction element

Experimental research gives important results useful for design and development of new ma-
chines, but it is e.g. difficult to measure motion of friction element, dry friction forces and
friction coefficient during operation, etc.

Therefore the additional analytical and numerical solution of simplified mathematical model
with exact parameters is very useful and enables to complete knowledge of dynamic behavior
of studied system with new information. Experimental system in Fig. 1 can be modeled by a
simple three masses system shown in Fig. 11, where the blades are replaced by 1 DOF systems.

Fig. 11. Mathematical model of two blades system with friction element

Damping of both blades is in Fig. 11 modeled by small viscous damping with coefficients
b1 = b2 = 0.1 Ns/m. For elimination of gravitational force, the friction element m3 = 0.02 kg
was supported by a very weak spring with stiffness k3 = 100 N/m. Differential equations of
motion are then

m1ÿ1 + b1ẏ1 + k1y1 + g1(ẏ1 − ẏ3) = F0 cos ωt,

m2ÿ2 + b2ẏ2 + k2y2 + g2(ẏ2 − ẏ3) = F0 cos ω(t − Δt), (11)
m3ÿ3 + k1y3 + g1(ẏ1 − ẏ3) − g2(ẏ2 − ẏ3) = 0,

where the excitation frequency of force F0 cos ωt varies near to the eigenfrequencies of main
subsystems

ω ≈
√

k1/m1 ≈
√

k2/m2.

The nonlinear functions g1, g2 consist of nonlinear Coulomb dry friction damping forces:

gi = Fti sgn (ẏi − ẏ3), i = 1, 2, (12)

where H is the Heaviside function.
Motion of the investigated system is further solved by direct numerical solution of equations

(11), (12).
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9. Example of a blade couple with friction element

Only the dry frictions connect the three masses system. Amplitude response curves a1(f),
a2(f), a3(f) of systems with four different delays given by blades’ numbers ls/lr = 1; 0.8;
0.6; 0.5 are calculated and drawn in Fig. 12a–c for the equal main subsystems parameters:
m1 = m2 = 0.2 kg, k = 100 000 kg · s−2, m3 = 0.02 kg, dry friction damping force Ft = 0.3 N
and for stiffness of supporting spring k3 = 100 N/m. Response curves a1(f) of mass m1 are
almost identical with the response curves a2(f) of mass m2 and their forms are also unchanged
for various delays ls/lr = 1; 0.8; 0.6; 0.5, as can be seen from the records in Fig. 12a,b, where
the drawings of individual curves are vertically shifted for easy comparison. On the contrary,
the amplitudes a3 of the friction element m3 are strongly influenced by the change of delays
between excitation forces, as it is evident from the records in Fig. 12c for various ratios ls/lr.
Motion a3 of friction element m3 contains chaotic components, which are also contained, how-
ever in a smaller rate, in motions a1, a2 of the much greater masses m1 and m2.

a) b)

c)

Fig. 12. Influence of different blades ratio ls/lr = 0.5; 0.6; 0.8; 1 at FT = 0.3

Influence of dry friction forces Ft (Coulomb friction, equation (9)) on the response curves
is represented in Fig. 13a–c. Response curves a1(f) of mass m1 are again identical with the
response curves a2(f) of mass m2, but the increase of friction force Ft very strongly decreases
the maximum resonance amplitudes, as can be seen from the records in Fig. 13a,b.

Response curves of the amplitudes a3 of the friction element m3 are very flat without any
resonance peaks. Amplitude a3 has — at given F0 — constant value in the majority of frequency
range. With increasing friction force Ft, the mean value of amplitude a3 increases, as it is
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a) b)

c)

Fig. 13. Influence of different dry friction forces FT = 0.2–0.6 at ls/lr = 0.8

evident from the records in Fig. 13c for various friction forces. Motion a3 of friction element
m3 contains, except a constant value, also some oscillating components, but only in narrow
frequency ranges near to the rising parts of a1(f), a2(f) response curves.

Another properties were obtained, when instead of classical Coulomb friction law (9), the
modified Coulomb friction law (10) has been used. Influence of variation of critical velocity
vr on the amplitude response curves a1(f), a2(f), a3(f) of systems with five different critical
velocities vr = 0, 0.2, 0.4, 0.6, 0.8 m/s is presented in Fig. 14. Dry friction force Ft = 0.8 N
is for all response curves constant, as well as the constant excitation delay characterized by the
ratio blades’ numbers ls/lr = 0.8. From the diagrams plotted in Fig. 14a,b it is evident that the
increase of critical velocity vr causes moderate increase of resonance peaks of both masses, but
as it is shown in Fig. 14c, it causes qualitative change of friction element motion. At vr = 0
(Coulomb friction), the sudden jump of friction force excites irregular, chaotic motion, but at
vr > 0 (modified Coulomb friction), the smooth passage between opposite friction forces makes
the oscillation of friction element harmonic with smoothly variable amplitudes.
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a) b)

c)

Fig. 14. Influence of different critical velocity vr at FT = 0.3 and at ratio ls/lr = 0.8

10. Conclusion

• Present paper serves as further contribution to the systematic research of dynamic proper-
ties of turbine blade couple. The introduction of excitation with delay into a mathematical
model brings this model closer to a real situation in a working turbine.

• Phase shift of excitation can be expressed either by time delay or by phase (angle) delay.

• This delay is ascertained both by the revolution and by the ratio of numbers of stator and
rotor blades.

Blade couple with direct contact:

• The damping ability of blade heads with direct friction contact increases with the lower
number of stator blades.

• The increase of friction forces causes a decrease of resonance peaks.

• The elastic micro-deformations in contact surfaces (modelled e.g. by the modified Cou-
lomb dry friction law) decrease the damping ability, but this influence is rather small.
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Blade couple with friction element:

• The lower number of stator blades (increasing delay) has a negligible influence on the
amplitudes of both blades, but decreases amplitudes of friction element oscillations.

• The increase of friction forces causes decrease of resonance peaks, but an increase of
friction element amplitudes.

• Increase of critical velocity vr causes moderate increase of resonance peaks of both
masses and a qualitative change of friction element motion.

Note: This contribution is an extended text of paper [10].
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[6] Pešek, L., Půst, L., Influence of dry friction damping on bladed disk vibration. In: Vibration
Problems ICOVP 2011, Berlin, Springer, 2011, pp. 557-564.
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