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Abstract

In this paper free torsional vibration of shafts is studied using a new approach of solving differential equations
called Adomian decomposition method (ADM). Applying this method to free torsional vibration of shafts means
a systematic and straightforward procedure for calculating both low and high frequency modes. In this paper
different boundary conditions are applied to both end of the shaft and first five natural frequencies and mode
shapes are calculated for four different cases. Obtained results are compared with results presented in literature.
These results demonstrate that ADM is a suitable approach for analysis of free torsional vibration of shafts which
provides precise results with high order of accuracy.
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1. Introduction

Rotating shafts are extensively implemented for power transmission in different industries.
Most machinery may encounter torsional vibration in their rotary elements. Such vibrations
could be caused by environmental shocks, random exciting torque, disturbance of electricity or
interaction of different parts of system like shafts and bearings. However, the most common
type of vibration which occurs in rotary systems is torsional vibration of elements due to res-
onance phenomenon. In such case, vibration amplitudes may grow quickly to an unacceptable
value, by approaching rotational speed to the natural frequencies of system. The demands for
higher operational speeds have been increased and resonance instability in such speeds can lead
to drastic accidents. Therefore, accurate prediction of natural frequencies is completely crucial
for a successful design of rotary systems and free vibrations analysis of shafts is the main prob-
lem in the area of rotary dynamics. Importance of this problem has persuaded many researchers
to work on this field [1–4]. The most important part of solving a vibration problem is the math-
ematical modelling. Calculations based on mathematical models, whether complex or simple,
can be of value in design, development and fault diagnosis in machines. Although, for solving
governing equation of motion of simple shafts, some analytical models have been presented,
they are not capable of solving more complicated problems [5]. By development of computers,
numerical methods like FEM, FDM or BEM were also developed which are efficiently capable
of solving complex problems [6]. However, these methods are not accurate and do not give the
exact results. The natural frequencies and the mode shapes obtained from such method are ap-
proximate. This inaccuracy is more evident in high natural frequencies and mode shapes which
refers to discretisation of problem object.
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In this study a new approach called Adomian Decomposition Method (ADM) is applied to
solve torsional vibration of shafts with high order of accuracy in both low and high natural fre-
quencies. ADM was first presented by George Adomian in the early 1980s [7–9]. This method
was applied to solve linear and nonlinear initial/boundary-value problems in physics [10]. Lots
of reviews and modifications have been done on this approach [11, 12]. The ADM has been
receiving much attention in recent years in the area of series solutions. A considerable research
work has been devoted recently to this method in order to solve wide class of linear and non-
linear equations [13, 14]. It has been found that, unlike other series solution methods, ADM is
easy to program in engineering problems, and provides immediate and visible solution terms
without linearisation and discretisation. However, it has not extended in engineering problems
properly except a few works. Lai et al. [15] investigated vibration of Euler-Bernoulli beams with
different boundary conditions using Adomian decomposition method. Farshidianfar et al. [16]
solved free vibration of stepped beam using ADM. They investigated a beam with different
cross-sections and also different materials in the step point and obtained natural frequencies
and mode shapes of the beam.

In this work we tried to deal with free vibration problem of shafts taking advantage of
ADM. Firstly, equations of motion of the shaft is written. Then by substituting series instead
of rotational displacement and applying the ADM, recursive relations for the terms of series are
obtained. A two-term polynomial with unknown coefficients is considered as the first term of
recursive relations. By employing this polynomial in recursive relations, all terms of series are
calculated. Applying boundary conditions at both ends of the shaft, a homogeneous system of
equations is obtained. A characteristic equation for natural frequencies is obtained by setting the
determinant of coefficient matrix to zero. After calculating natural frequencies, mode shapes
are also obtained calculating eigenvectors. In order to show capability and accuracy of this
method, obtained results are compared with analytical results of other researchers. Unlike FEM
and other numerical methods, calculated frequencies by ADM are in precise agreement with an-
alytical solution. Expanding this method to further vibration problems can lead to establishing
a powerful exact method in the area of free vibration analysis.

2. Solution Method

2.1. Adomian Decomposition Method

In this section, ADM for solving linear differential equations is briefly explained. Consider the
equation

Fy = g(x), (1)

in which F is a general differential operator that contains derivatives with different orders and
g(x) is a specific function. Fy could be decomposed as Fy = Ly + Ry such that L is an
invertible operator which contains a highest order of derivatives and R contains reminder order
of derivatives. Hence, Eq. (1) can be rewritten as

Ly + Ry = g(x) . (2)

Solving for Ly, one can obtain

y = ψ + L−1g − L−1Ry . (3)
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In Eq. (3), ψ is the constant of integral such that Lψ = 0. For solving Eq. (3) by ADM, y can
be written as series

y =

∞∑
k=0

yk. (4)

Substituting Eq. (4) into Eq. (3) yields
∞∑

k=0

yk = ψ + L−1g − L−1R

∞∑
k=0

yk. (5)

In above equation by assuming y0 = ψ + L−1g, the recursive formula is obtained as follows:

yk = −L−1Ryk−1, k ≥ 1. (6)

In practice all terms of series cannot be determined exactly, however the solutions can only be
approximated by a truncated series y =

∑n−1
k=0 yk [7].

2.2. Applying ADM to Free Vibration Formulation of Shafts

The circular shaft shown in Fig. 1a is considered. Fig. 1b illustrates a differential segment of the
shaft with length dx for which all internal torsional moment and deformations are displayed.
In this figure T represents torsional moment and θ denotes angular displacement. The equation
of motion of shaft is written using the equilibrium equation of the internal moments acting on
differential segment (

T +
∂T

∂x
dx

)
− T = ρIp dx

∂2θ

∂t2
, (7)

where Ip is polar moment of inertia of cross section and ρ is density of the shaft material.
Substituting T = IpG(∂θ/∂x) in Eq. (7) and considering IpG constant, one can obtain

∂2θ(x, t)

∂x2
=

1

c2

∂2θ(x, t)

∂t2
, (8)

where c2 = G/ρ and G is shear modulus of the shaft.

a) b)

Fig. 1. (a) Circular shaft, (b) Internal torsional moment and deformations of a differential segment of the
shaft

In Eq. (8), θ(x, t) can be separated into two functions

θ(x, t) = Φ(x)q(t), (9)

where Φ(x) is modal displacement and q(t) is a harmonic function of time. If ω denotes the
frequency of q(t) then

∂2θ(x, t)

∂t2
= −ω2Φ(x)q(t). (10)
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By substituting Eq. (9) and (10) into Eq. (8) and eliminating q(t), below differential equation is
derived

d2Φ(x)

∂x2
+

ω2

c2
Φ(x) = 0. (11)

This equation could be rewritten in non-dimensional form

d2Φ(X)

dX2
− λΦ(X) = 0, (12)

in which X = x/l, λ = −l2ω2/c2 and l is length of the shaft. The linear operator L in Eq. (12)
is defined as LΦ = d2Φ(X)/dX2. Furthermore, angular displacement Φ(X) can be written as
follows:

Φ(X) = ψ + L−1λΦ(X), (13)

where L−1 =
∫∫

. . .dX dX . Assuming Φ(X) ≈
∑n−1

k=0 ϕk(X) and substituting it into Eq. (13)
yields

n−1∑
k=0

ϕk(X) = ψ + λL−1
n−1∑
k=0

ϕk(X). (14)

As mentioned before, ψ is constant of integral such that Lψ = 0. Also, the first term of left side
series is considered equal to ψ + L−1g. Since Eq. (12) is a homogenous differential equation,
function g does not exist. Therefore,

ϕ0(X) = ψ = ϕ(0) + ϕ′(0)X. (15)

Hence, recursive formulae for equations are obtained as:

ϕk(X) = λ

∫ X

0

∫ X

0

ϕk−1(X) dX dX for k ≥ 1. (16)

By substituting ϕ0(X) into above recursive formula as first term, and expanding other terms,
ϕk(X) is obtained

ϕk(X) = λk

(
X2k

(2k)!
Φ(0) +

X2k+1

(2k + 1)!
Φ′(0)

)
. (17)

After achieving the general term of series, Φ(X) can be approximated as follows:

Φ(X) =

n−1∑
k=0

λk

(
X2k

(2k)!
Φ(0) +

X2k+1

(2k + 1)!
Φ′(0)

)
. (18)

By applying boundary conditions at the both ends, a homogenous system of equations with
two unknown is obtained. Setting determinant of coefficient matrix equal to zero produces a
characteristic equation for natural frequencies.

2.3. Boundary Conditions

In this part four common boundary conditions of shafts are discussed. In reality each end of the
shaft could have one of these conditions.
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Fixed end

Fixed end condition is shown in Fig. 2. In this condition angular displacement is equal to zero
(θ = 0).

This condition for the beginning of the shaft could be written as

θ(0, t) = 0 → Φ(0) = 0 (19)

and similarly, fixed condition at the end of the shaft is written as

θ(l, t) = 0 → Φ(1) = 0. (20)

Hence,

Φ(1) =
n−1∑
k=0

λk

(
Φ(0)

(2k)!
+

Φ′(0)

(2k + 1)!

)
= 0. (21)

Fig. 2. Fixed end boundary conditions

Free end

Free end condition is shown in Fig. 3. In this condition torsional moment is equal to zero
(T = IpG(∂θ/∂x) = 0).

This condition for the beginning of the shaft could be written as

dθ(x, t)

dx

∣∣∣∣
x=0

= 0 → Φ′(0) = 0 (22)

and similarly, free condition at the end of the shaft is written as

dθ(x, t)

dx

∣∣∣∣
x=l

= 0 → dΦ(X)

dX

∣∣∣∣
X=1

= 0. (23)

Hence,
dΦ(X)

dX

∣∣∣∣
X=1

=
n−1∑
k=1

λk Φ(0)

(2k − 1)!
+

n−1∑
k=0

λk Φ′(0)

(2k)!
= 0. (24)

Fig. 3. Free end boundary conditions
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Spring support

Spring support condition is shown in Fig. 4. Torsional moment is proportional to angular dis-
placement (T = ±KT θ) in this condition. KT is torsional spring constant.

This condition for the beginning of the shaft could be written as:

IpG
dθ(x, t)

dx

∣∣∣∣
x=0

= KT0θ(0, t) → KT0Φ(0) − IpG

l
Φ′(0) = 0 (25)

and similarly at the end of the shaft, this condition is written as

IpG
dθ(x, t)

dx

∣∣∣∣
x=l

= −KT1θ(l, t) → KT1Φ(1) +
IpG

l

dΦ(X)

dX

∣∣∣∣
X=1

= 0. (26)

Hence,

KT1

n−1∑
k=0

λk

(
Φ(0)

(2k)!
+

Φ′(0)

(2k + 1)!

)
+

IpG

l

(
n−1∑
k=1

λk Φ(0)

(2k − 1)!
+

n−1∑
k=0

λk Φ′(0)

(2k)!

)
= 0. (27)

Fig. 4. Spring supported conditions

Concentrated Rotary Mass

In some cases a concentrated rotary mass is added to the end of the shaft which produces rotary
inertia at this end. Fig. 5 displays a disk with mass moment of inertia Ji (i = 0, 1) added to
the ends. Here, moment equilibrium of the disk could be written to obtain equations of this
condition ∑

M = Jθ̈ → Ji
∂2θ

∂t2
= ±IpG

∂θ

∂x
(i = 0, 1). (28)

Fig. 5. Shaft with concentrated rotary mass at ends

Substituting Eqs. (9) and (10) into Eq. (28) and eliminating q(t) yields

−Jiω
2Φ = ±IpG

l

dΦ

dX
(i = 0, 1). (29)

This condition for the beginning of the shaft could be written as

J0ω
2Φ(0) +

IpG

l
Φ′(0) = 0 (30)
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and similarly, at the end of the shaft it could be obtained as follows:

−J1ω
2Φ(1) +

IpG

l

dΦ(X)

dX

∣∣∣∣
X=1

= 0. (31)

Hence,

−J1ω
2

n−1∑
k=0

λk

(
Φ(0)

(2k)!
+

Φ′(0)

(2k + 1)!

)
+

IpG

l

(
n−1∑
k=1

λk Φ(0)

(2k − 1)!
+

n−1∑
k=0

λk Φ′(0)

(2k)!

)
= 0. (32)

As observed so far, all the boundary conditions lead to homogenous equations which con-
tain unknowns Φ(0) and Φ′(0). Every shaft has one of these boundary conditions at each end.
Therefore, a homogenous system of equations with two unknowns has to be solved. For non-
trivial solution of equations, the determinant of coefficients matrix must be zero. Doing so gives
us the characteristic equation for calculating natural frequencies. Most of coefficients are series
in which increasing the order of series truncation (n) leads to increasing the number of achiev-
able natural frequencies and enhancing the accuracy of them, as well. In order to reach desired
accuracy, n should be increased until below stated relation is satisfied:∣∣Ωn

i − Ωn−1
i

∣∣ ≤ ε, (33)

where Ωn
i and Ωn−1

i are the i-th estimated eigenvalues corresponding to n and n−1 and ε is the
order of desired accuracy.

3. Numerical Study

In order to demonstrate the capability and the efficiency of ADM in solving vibration analysis
of shafts, four different specific cases are studied in this part. By applying mentioned relations
in previous section, one can obtain the natural frequencies of shaft with various boundary condi-
tions at each end. The procedure is coded as computer program to calculate natural frequencies
as accurate as possible. Material properties and geometries of the shaft are kept constant for
all cases and only boundary conditions are changed. Table 1 shows material properties and
geometries of the shaft.

Table 1. Material properties and geometries of the shaft

Length of the shaft (l) 1 000 mm
Radius of cross-section (r) 50 mm

Shear modulus (G) 79.3 GPa
Density (ρ) 7 800 kg/m3

Non-dimensional parameters of frequency (Ωn), rotary inertia of concentrated mass (S0, S1)
and spring constants (R0, R1) are defined:

Ωn = ωn
l

c
,

S0 =
J0

ρIpl
, S1 =

J1

ρIpl
,

R0 =
KT0l

GIp
, R1 =

KT1l

GIp
. (34)
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Case I : Fixed-Fixed

As first case, the shaft shown in Fig. 6 is considered. This shaft is completely fixed at both ends.
Therefore, Eqs. (19) and (21) should be applied{

Φ(0) = 0,∑n−1
k=1 λk Φ(0)

(2k−1)!
+

∑n−1
k=0 λk Φ′(0)

(2k)!
= 0.

(35)

Fig. 6. Fixed-Fixed shaft

For non-trivial solution of this system of equations, determinant of coefficient matrix should
be set to zero ∣∣∣∣∣ 1 0∑n−1

k=1
λk

(2k−1)!

∑n−1
k=0

λk

(2k)!

∣∣∣∣∣ = 0. (36)

Natural frequencies of the shaft could be achieved by solving Eq. (36). Table 2 presents the
frequencies calculated for different values of n (order of series truncation). As observed in this
table by increasing n, number of achievable frequencies and also accuracy of them increase and
obtained natural frequencies converge to their exact values.

For torsional vibration of Fixed-Fixed shaft there is an analytical solution [5]. The results
calculated by using analytical solution are also mentioned in the last row of Table 2 to be
compared with results obtained by ADM. As displayed in Table 2 by choosing n = 30, the first
five non-dimensional natural frequencies of the shaft with high order of accuracy are obtained.

After calculating natural frequencies, mode shapes are also achievable. By calculating
eigenvectors corresponding to each eigenvalue and substituting in Eq. (18), mode shapes of
Fixed-Fixed shaft are obtained. Fig. 7 displays calculated mode shapes for this case.

Fig. 7. The first five normalized mode shapes of Fixed-Fixed shaft

212



R. Tabassian / Applied and Computational Mechanics 7 (2013) 205–222

Table 2. Five non-dimensional natural frequencies of the fixed-fixed shaft

n Ω1 Ω2 Ω3 Ω4 Ω5

2 2.449 489 743
3 –
4 3.078 642 304
5 3.148 690 071 4.963 152 867
6 3.141 148 305 –
7 3.141 613 798 5.978 351 111
8 3.141 591 881 6.416 050 834 7.105 718 728
9 3.141 592 676 6.272 546 537 –

10 3.141 592 653 6.284 237 155 8.607 051 935
11 3.141 592 654 6.283 102 591 –
12 3.141 592 654 6.283 190 802 9.324 85 472
13 3.141 592 654 6.283 184 996 9.442 331 867 10.981 671 75
14 3.141 592 654 6.283 185 322 9.422 937 801 –
15 3.141 592 654 6.283 185 307 9.424 956 716 12.129 377 54
16 3.141 592 654 6.283 185 307 9.424 762 799 –
17 3.141 592 654 6.283 185 307 9.424 779 101 12.542 375 98
18 3.141 592 654 6.283 185 307 9.424 777 884 12.569 472 32 14.651 779 32
19 3.141 592 654 6.283 185 307 9.424 777 965 12.566 040 31 –
20 3.141 592 654 6.283 185 307 9.424 777 961 12.566 402 72 15.527 006 35
21 3.141 592 654 6.283 185 307 9.424 777 961 12.566 367 79 15.753 036 23
22 3.141 592 654 6.283 185 307 9.424 777 961 12.566 370 84 15.703 018 48
23 3.141 592 654 6.283 185 307 9.424 777 961 12.566 370 60 15.708 541 47
24 3.141 592 654 6.283 185 307 9.424 777 961 12.566 370 62 15.707 902 27
25 3.141 592 654 6.283 185 307 9.424 777 961 12.566 370 61 15.707 969 21
26 3.141 592 654 6.283 185 307 9.424 777 961 12.566 370 61 15.707 962 73
27 3.141 592 654 6.283 185 307 9.424 777 961 12.566 370 61 15.707 963 31
28 3.141 592 654 6.283 185 307 9.424 777 961 12.566 370 61 15.707 963 26
29 3.141 592 654 6.283 185 307 9.424 777 961 12.566 370 61 15.707 963 27
30 3.141 592 654 6.283 185 307 9.424 777 961 12.566 370 61 15.707 963 27

Gorman[5] 3.141 592 654 6.283 185 307 9.424 777 961 12.566 370 61 15.707 963 27

Case II: Fixed-Concentrated Rotary Mass

In this case as displayed in Fig. 8 a concentrated rotary mass is added to the free end of the
shaft.

Fig. 8. Fixed-Free shaft with concentrated rotary mass at free end

Concentrated mass rotary inertia at the end of the shaft is S1 = 1. Applying boundary
conditions for this shaft leads to below homogenous system of equations{

Φ(0) = 0,

J1ω
2
∑n−1

k=0 λk
(

Φ(0)
(2k)!

+ Φ′(0)
(2k+1)!

)
+ IpG

l

(∑n−1
k=1 λk Φ(0)

(2k−1)!
+

∑n−1
k=0 λk Φ′(0)

(2k)!

)
= 0.

(37)
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Non-trivial solution of this system of equations is obtained by setting the determinant of
coefficient matrix to zero∣∣∣∣∣ 1 0∑n−1

k=1
IpG

l
λk

(2k−1)!
+

∑n−1
k=0

J1ω2λk

(2k)!

∑n−1
k=1

IpG
l

λk

(2k)!
+

∑n−1
k=0

J1ω2λk

(2k+1)!

∣∣∣∣∣ = 0. (38)

The first five natural frequencies and the corresponding mode shapes calculated for this case
are presented in Table 3 and Fig. 9 respectively. As observed in Table 3 by choosing n = 25,
proper order of accuracy is achieved for the natural frequencies. In this case effects of rotary
inertia of concentrated mass on natural frequencies of the shaft are also studied. Table 4 shows
frequencies calculated for different values of rotary mass. It could be seen that by increasing
rotary inertia at the end of the shaft, natural frequencies decrease.

Table 3. Five non-dimensional natural frequencies of Fixed-Free shaft with concentrated rotary mass at
free end (S1 = 1)

n Ω1 Ω2 Ω3 Ω4 Ω5

2 0.851 517 928 2.876 615 584
3 0.860 573 158 –
4 0.860 330 327 3.394 367 058
5 0.860 333 616 3.426 817 116 5.203 408 673
6 0.860 333 589 3.425 737 707 –
7 0.860 333 589 3.425 599 900 6.159 194 051
8 0.860 333 589 3.425 619 779 6.546 823 759 7.290 816 112
9 0.860 333 589 3.425 618 396 6.428 419 631 –

10 0.860 333 589 3.425 618 462 6.438 134 110 8.736 254 249
11 0.860 333 589 3.425 618 459 6.437 235 888 –
12 0.860 333 589 3.425 618 459 6.437 302 052 9.434 569 641
13 0.860 333 589 3.425 618 459 6.437 297 977 9.545 654 697 11.084 634 88
14 0.860 333 589 3.425 618 459 6.437 298 188 9.527 635 393 –
15 0.860 333 589 3.425 618 459 6.437 298 179 9.529 497 610 12.216 967 00
16 0.860 333 589 3.425 618 459 6.437 298 179 9.529 320 727 –
17 0.860 333 589 3.425 618 459 6.437 298 179 9.529 335 421 12.622 122 31
18 0.860 333 589 3.425 618 459 6.437 298 179 9.529 334 338 12.648 265 09
19 0.860 333 589 3.425 618 459 6.437 298 179 9.529 334 409 12.644 971 24
20 0.860 333 589 3.425 618 459 6.437 298 179 9.529 334 405 12.645 317 81
21 0.860 333 589 3.425 618 459 6.437 298 179 9.529 334 405 12.645 284 54
22 0.860 333 589 3.425 618 459 6.437 298 179 9.529 334 405 12.645 287 44
23 0.860 333 589 3.425 618 459 6.437 298 179 9.529 334 405 12.645 287 21
24 0.860 333 589 3.425 618 459 6.437 298 179 9.529 334 405 12.645 287 22
25 0.860 333 589 3.425 618 459 6.437 298 179 9.529 334 405 12.645 287 22

Gorman[5] 0.860 333 589 3.425 618 459 6.437 298 179 9.529 334 405 12.645 287 22

Case III: Spring Support at Both Ends

Fig. 10 shows a shaft which is constrained by torsional springs at both ends. Torsional spring
constants for constrains are R0 = R1 = 10. Eqs. (25) and (27) should be applied for boundary
conditions:{

KT0Φ(0) − IpG
l

Φ′(0) = 0,

KT1

∑n−1
k=0 λk

(
Φ(0)
(2k)!

+ Φ′(0)
(2k+1)!

)
+ IpG

l

(∑n−1
k=1 λk Φ(0)

(2k−1)!
+

∑n−1
k=0 λk Φ′(0)

(2k)!

)
= 0.

(39)
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Fig. 9. The first five mode shapes of Fixed-Free shaft with concentrated rotary mass at free end

Table 4. Non-dimensional natural frequencies for different values of rotary mass

S1 Ω1 Ω2 Ω3 Ω4 Ω5

0.01 1.555 245 129 4.665 765 142 7.776 374 078 10.887 13 010 13.998 089 74
0.02 1.540 005 942 4.620 245 731 7.701 159 370 10.783 16 424 13.866 633 36
0.05 1.496 128 952 4.491 480 046 7.495 412 093 10.511 66 997 13.541 976 80
0.1 1.428 870 011 4.305 801 413 7.228 109 772 10.200 26 259 13.214 185 68
0.2 1.313 837 716 4.033 567 790 6.909 595 795 9.892 752 565 12.935 221 28
0.5 1.076 873 986 3.643 597 167 6.578 333 733 9.629 560 343 12.722 298 77
1 0.860 333 589 3.425 618 459 6.437 298 179 9.529 334 405 12.645 287 22
2 0.653 271 187 3.292 310 021 6.361 620 392 9.477 485 705 12.606 013 44
5 0.432 840 720 3.203 935 001 6.314 846 121 9.445 947 898 12.582 264 67

10 0.311 052 848 3.173 097 177 6.299 059 360 9.435 375 976 12.574 323 16
20 0.221 760 394 3.157 427 009 6.291 132 834 9.430 080 093 12.570 348 21
50 0.140 951 676 3.147 945 917 6.286 366 784 9.426 899 546 12.567 961 96

100 0.099 833 639 3.144 772 523 6.284 776 452 9.425 838 874 12.567 166 34

Fig. 10. Shaft with torsional springs at both ends

Non-trivial solution is obtained setting the determinant of coefficient to zero∣∣∣∣∣ KT0 − IpG
l∑n−1

k=1
IpG

l
λk

(2k−1)!
+

∑n−1
k=0

KT1λk

(2k)!

∑n−1
k=1

IpG
l

λk

(2k)!
+

∑n−1
k=0

KT1λk

(2k+1)!

∣∣∣∣∣ = 0. (40)

Solving Eq. (40) leads to natural frequencies of the shaft which are presented in Table 5.
In the last row of Table 5, the results obtained by Rao’s [17] for this case are presented to
be compared with ADM results. As observed, by increasing the value of n, obtained natu-
ral frequencies are converging to constant values and choosing appropriate n provides proper
agreement with Rao results. Corresponding mode shape are achieved replacing eigenvectors in
Eq. (18). The mode shapes obtained for spring supported shaft are illustrated in Fig. 11.
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Table 5. Five non-dimensional natural frequencies of the shaft with symmetric spring supports

n Ω1 Ω2 Ω3 Ω4 Ω5

2 2.082 630 404
3 –
4 2.590 311 893
5 2.631 043 158 4.375 761 700
6 2.627 496 687 –
7 2.627 682 451 5.165 133 582
8 2.627 675 224 5.335 597 438 6.583 034 180
9 2.627 675 438 5.304 839 307 –

10 2.627 675 433 5.307 519 740 7.690 710 327
11 2.627 675 433 5.307 312 380 –
12 2.627 675 433 5.307 325 461 8.050 383 722
13 2.627 675 433 5.307 324 769 8.068 997 608 10.129 520 65
14 2.627 675 433 5.307 324 800 8.066 968 923 –
15 2.627 675 433 5.307 324 799 8.067 148 604 10.821 490 45
16 2.627 675 433 5.307 324 799 8.067 134 691 10.923 203 30 12.451 768 64
17 2.627 675 433 5.307 324 799 8.067 135 634 10.907 174 84 –
18 2.627 675 433 5.307 324 799 8.067 135 578 10.908 859 18 13.504 137 52
19 2.627 675 433 5.307 324 799 8.067 135 581 10.908 694 16 13.968 730 04
20 2.627 675 433 5.307 324 799 8.067 135 581 10.908 708 57 13.806 938 14
21 2.627 675 433 5.307 324 799 8.067 135 581 10.908 707 43 13.820 661 81
22 2.627 675 433 5.307 324 799 8.067 135 581 10.908 707 51 13.819 038 29
23 2.627 675 433 5.307 324 799 8.067 135 581 10.908 707 51 13.819 206 26
24 2.627 675 433 5.307 324 799 8.067 135 581 10.908 707 51 13.819 190 31
25 2.627 675 433 5.307 324 799 8.067 135 581 10.908 707 51 13.819 191 69
26 2.627 675 433 5.307 324 799 8.067 135 581 10.908 707 51 13.819 191 58
27 2.627 675 433 5.307 324 799 8.067 135 581 10.908 707 51 13.819 191 59
28 2.627 675 433 5.307 324 799 8.067 135 581 10.908 707 51 13.819 191 59

Rao[17] 2.627675 5.307324 8.067135 10.90871 13.81919

Fig. 11. The first five mode shapes of the shaft with symmetric spring supports

In this case effects of rotational springs on natural frequencies of the shaft are also investi-
gated. Table 6 contains the results obtained for a shaft supported by symmetric springs. It could
be observed that by increasing spring constant at the ends natural frequencies approach to the
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natural frequencies of fixed-fixed shaft (Case I). Table 7 shows the results obtained for a shaft
with asymmetric spring supports, i.e. when the spring constant at the beginning is increased,
the spring constant at the end of the shaft is reduced. As observed in Table 7, the increase of
the spring constant at the left end causes that natural frequencies of the shaft approach to the
natural frequencies of Fixed-Free shaft [5].

Table 6. Effects of rotary springs on natural frequencies of the shaft with symmetric spring supports
(R0 = R1 = R)

R Ω1 Ω2 Ω3 Ω4 Ω5

10−5 0.004 472 132 3.141 599 020 6.283 188 490 9.424 780 08 12.566 372 21
5 × 10−5 0.009 999 958 3.141 624 484 6.283 201 223 9.424 788 57 12.566 378 57

10−4 0.014 142 018 3.141 656 314 6.283 217 138 9.424 799 18 12.566 386 53
5 × 10−4 0.031 621 459 3.141 910 931 6.283 344 458 9.424 884 06 12.566 450 19

10−3 0.044 717 633 3.142 229 144 6.283 503 601 9.424 990 16 12.566 529 77
5 × 10−3 0.099 958 352 3.144 772 531 6.284 776 453 9.425 838 87 12.567 166 34

10−2 0.141 303 613 3.147 945 981 6.286 366 792 9.426 899 55 12.567 961 96
5 × 10−2 0.314 916 173 3.173 104 919 6.299 060 357 9.435 376 27 12.574 323 29

10−1 0.443 520 788 3.203 994 477 6.314 854 018 9.445 950 26 12.582 265 67
5 × 10−1 0.960 188 874 3.431 014 305 6.438 197 151 9.529 617 83 12.645 409 52

100 1.306 542 374 3.673 194 406 6.584 620 043 9.631 684 64 12.723 240 78
5 × 100 2.284 453 710 4.761 288 969 7.463 676 172 10.326 611 0 13.286 241 50

101 2.627 675 433 5.307 324 799 8.067 135 581 10.908 707 5 13.819 191 59
5 × 101 3.020 903 234 6.042 646 001 9.066 034 201 12.091 809 7 15.120 625 98

102 3.080 011 884 6.160 138 033 9.240 491 463 12.321 182 7 15.402 318 74
5 × 102 3.129 076 511 6.258 153 998 9.387 233 438 12.516 315 8 15.645 402 07

103 3.135 322 030 6.270 644 183 9.405 966 582 12.541 289 4 15.676 612 61
5 × 103 3.140 336 519 6.280 673 039 9.421 009 561 12.561 346 1 15.701 682 62

104 3.140 964 461 6.281 928 922 9.422 893 383 12.563 857 8 15.704 822 31
5 × 104 3.141 466 995 6.282 933 990 9.424 400 985 12.565 868 0 15.707 334 97

105 3.141 529 823 6.283 059 646 9.424 589 469 12.566 119 3 15.707 649 11
Fixed-Fixed 3.141 592 654 6.283 185 307 9.424 777 961 12.566 370 6 15.707 963 27

Table 7. Effects of rotary springs on natural frequencies of the shaft with asymmetric spring supports

R0 R1 Ω1 Ω2 Ω3 Ω4 Ω5

100 100 1.306 542 374 3.673 194 406 6.584 620 043 9.631 684 636 12.723 240 78
5 × 100 0.5 × 100 1.573 559 191 4.140 869 227 6.976 567 722 9.941 048 936 12.972 770 72

101 10−1 1.489 910 837 4.327 111 118 7.241 068 370 10.209 599 60 13.221 483 34
5 × 101 0.5 × 10−1 1.571 194 942 4.630 832 566 7.707 522 144 10.787 712 19 13.870 172 48

102 10−2 1.561 585 403 4.667 886 271 7.777 647 159 10.888 039 55 13.998 797 14
5 × 102 0.5 × 10−2 1.570 837 666 4.704 044 085 7.838 942 874 10.974 085 26 14.109 310 18

103 10−3 1.569 863 463 4.707 893 531 7.846 262 981 10.984 681 08 14.123 115 57
5 × 103 0.5 × 10−3 1.570 800 476 4.711 552 792 7.852 474 814 10.993 421 09 14.134 375 45

104 10−4 1.570 702 922 4.711 939 009 7.853 209 047 10.994 483 94 14.135 760 44
5 × 104 0.5 × 10−4 1.570 796 742 4.712 305 345 7.853 830 924 10.995 358 93 14.136 887 74

105 10−5 1.570 786 985 4.712 343 979 7.853 904 368 10.995 465 24 14.137 026 28
5 × 105 0.5 × 10−5 1.570 796 368 4.712 380 617 7.853 966 563 10.995 552 75 14.137 139 02

106 10−6 1.570 795 393 4.712 384 480 7.853 973 907 10.995 563 38 14.137 152 87
Fixed-Free [5] 1.570 796 327 4.712 388 980 7.853 981 634 10.995 574 29 14.137 166 94
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Case IV: Generally Constrained

The shaft shown in Fig. 12 is considered as the last study. In this case, shaft is constrained by
concentrated rotary masses and rotary springs at both ends. Rotary inertia and spring constants
are considered as S0 = S1 = 1 and R0 = R1 = 1. Boundary conditions of this shaft are
assumed as the combination of the third and the fourth type of boundary conditions explained
previously.

At x = 0

IpG
∂θ(x, t)

∂x

∣∣∣∣
x=0

= KT0θ(0, t) + J0
∂θ(x, t)

∂t

∣∣∣∣
x=0

→
(
−KT0 + J0ω

2
)
Φ(0) +

IpG

l
Φ′(0) = 0. (41)

At x = l

IpG
∂θ(x, t)

∂x

∣∣∣∣
x=l

= −
(

KT1θ(l, t) + J1
∂θ(x, t)

∂t

∣∣∣∣
x=l

)

→
(
KT1 − J1ω

2
)
Φ(0) +

IpG

l
Φ′(0) = 0. (42)

Fig. 12. Generally constrained shaft

Introducing Eq. (18) into Eq. (43) one can obtain{
(J0ω

2 − KT0) Φ(0) + IpG
l

Φ′(0) = 0,

(KT1 − J1ω
2)

∑n−1
k=0 λk

(
Φ(0)
(2k)!

+ Φ′(0)
(2k+1)!

)
+ IpG

l

(∑n−1
k=1 λk Φ(0)

(2k−1)!
+

∑n−1
k=0 λk Φ′(0)

(2k)!

)
= 0.

(43)

Setting the determinant of coefficient matrix to zero gives us natural frequencies as presented
in Table 8. Similarly to the previous cases, the mode shapes for this generally constrained shaft
are also obtained and shown in Fig. 13

Fig. 13. The first five mode shapes of generally constrained shaft
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Table 8. Five non-dimensional natural frequencies of generally constrained shaft

n Ω1 Ω2 Ω3 Ω4 Ω5

2 0.793 619 736 1.634 378 870 3.270 928 527
3 0.809 185 553 1.589 227 829 –
4 0.808 667 320 1.599 093 153 3.698 242 421
5 0.808 675 143 1.598 370 798 3.706 180 184 5.437 343 359
6 0.808 675 073 1.598 399 011 3.707 946 648 –
7 0.808 675 073 1.598 398 314 3.707 693 808 6.338 181 866
8 0.808 675 073 1.598 398 326 3.707 706 498 6.681 862 007 7.470 417 128
9 0.808 675 073 1.598 398 326 3.707 706 568 6.583 946 495 –

10 0.808 675 073 1.598 398 326 3.707 706 516 6.591 960 166 8.864 845 819
11 0.808 675 073 1.598 398 326 3.707 706 520 6.591 257 104 –
12 0.808 675 073 1.598 398 326 3.707 706 520 6.591 305 822 9.544 059 542
13 0.808 675 073 1.598 398 326 3.707 706 520 6.591 303 047 9.649 040 503
14 0.808 675 073 1.598 398 326 3.707 706 520 6.591 303 177 9.632 307 301
15 0.808 675 073 1.598 398 326 3.707 706 520 6.591 303 172 9.634 023 590
16 0.808 675 073 1.598 398 326 3.707 706 520 6.591 303 172 9.633 862 407
17 0.808 675 073 1.598 398 326 3.707 706 520 6.591 303 172 9.633 875 635
18 0.808 675 073 1.598 398 326 3.707 706 520 6.591 303 172 9.633 874 673
19 0.808 675 073 1.598 398 326 3.707 706 520 6.591 303 172 9.633 874 736
20 0.808 675 073 1.598 398 326 3.707 706 520 6.591 303 172 9.633 874 732
21 0.808 675 073 1.598 398 326 3.707 706 520 6.591 303 172 9.633 874 732

Rao [17] 0.808 675 000 1.598 398 000 3.707 706 000 6.591 303 000 9.633 881 000

Table 9. Effects of constraining elements on natural frequencies of symmetric shaft (S0 = S1 = S and
R0 = R1 = R)

S R Ω1 Ω2 Ω3 Ω4 Ω5

0.01 0.129 024 761 2.633 663 390 5.309 868 383 8.068 475 539 10.909 474 86
0.1 0.405 894 299 2.686 702 614 5.332 783 174 8.080 573 095 10.916 402 66

0.1 1 1.219 177 805 3.147 512 538 5.562 954 151 8.205 151 964 10.987 831 09
10 2.598 133 469 5.081 849 252 7.386 277 179 9.591 338 725 11.895 108 02
100 3.079 43 4 356 6.155 403 267 9.223 825 855 12.279 174 58 15.313 098 83
0.01 0.099 979 161 1.724 903 497 4.058 322 025 6.851 449 522 9.826 438 758
0.1 0.315 567 184 1.762 544 655 4.065 614 364 6.853 368 829 9.827 140 902

0.5 1 0.978 635 977 2.099 863 563 4.142 011 418 6.873 157 684 9.834 286 651
10 2.462 292 525 4.024 484 452 5.151 849 044 7.145 651 403 9.920 423 910
100 3.077 016 670 6.132 420 568 9.115 391 499 11.819 229 67 13.590 946 30
0.01 0.081 642 095 1.309 790 315 3.673 524 697 6.584 685 577 9.631 706 320
0.1 0.257 958 997 1.338 660 707 3.676 510 505 6.585 276 544 9.631 901 674

1 1 0.808 675 073 1.598 398 326 3.707 706 52 6.591 303 172 9.633 874 732
10 2.267 870 949 3.158 142 749 4.169 543 095 6.665 644 662 9.655 761 080
100 3.073 730 117 6.090 170 862 8.724 369 604 9.883 854 288 10.698 666 63
0.01 0.042 639 850 0.623 658 691 3.264 011 152 6.346 197 450 9.467 024 543
0.1 0.134 830 671 0.637 465 266 3.264 210 361 6.346 225 330 9.467 032 989

5 1 0.426 103 068 0.761 880 222 3.266 235 894 6.346 505 473 9.467 117 638
10 1.337 404 751 1.522 996 552 3.290 426 251 6.349 447 028 9.467 982 974
100 3.029 713 914 4.399 942 998 4.586 972 882 6.404 900 879 9.479 045 146
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∣∣∣∣∣∣
J0ω
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IpG

l

(KT1 − J1ω
2)

n−1∑
k=0

λk

(2k)!
+ IpG

l

n−1∑
k=1

λk

(2k−1)!

n−1∑
k=0

λk

(
(KT1−J1ω2)

(2k+1)!
+ IpG

l
1

(2k)!

) ∣∣∣∣∣∣ = 0. (44)

In this case the effects of constraining elements (rotary springs and rotary mass) on natural
frequencies of the shaft are also studied. Table 9 contains the results obtained for symmet-
ric shaft. It is observed that by increasing spring constants at the ends, natural frequencies
increase. But increasing the rotary inertia at the ends of the shaft leads to decreasing natural
frequencies.

Table 10 shows the results obtained for asymmetric shaft. In this case, the values of rotary
inertia at the ends are considered reverse of each other. It is also true about the spring constant.
As displayed in Table 10 for certain values of rotary inertia, the natural frequencies of the shaft
decrease with increasing constant R. On the other hand, for certain values of spring constants,
the natural frequencies of the shaft increase with increasing constant S.

Table 10. Effects of constraining elements on natural frequencies of asymmetric shaft (S = S0 = 1/S1

and R = R0 = 1/R1)

S R Ω1 Ω2 Ω3 Ω4 Ω5

1 0.029 652 592 1.896 667 610 4.489 986 380 7.317 278 810 10.247 980 79
2 0.026 152 016 2.181 044 171 4.673 189 102 7.413 421 858 10.299 461 77

0.1 5 0.024 612 950 2.600 365 446 5.142 114 709 7.728 773 053 10.477 190 55
10 0.024 322 762 2.841 954 501 5.599 107 760 8.228 107 822 10.836 204 75
100 0.024 214 367 3.110 383 811 6.218 681 166 9.323 087 575 12.420 597 58
1 0.066 248 190 1.494 648 846 3.705 783 061 6.591 570 862 9.634 148 690
2 0.058 440 110 1.790 577 029 3.776 796 030 6.605 388 629 9.638 611 339

0.5 5 0.055 009 470 2.340 314 399 4.046 146 476 6.653 975 606 9.653 137 785
10 0.054 363 676 2.731 717 161 4.593 670 479 6.766 873 847 9.681 881 975
100 0.054 123 601 3.109 868 160 6.206 930 223 9.264 214 999 12.135 278 62
1 0.093 557 196 1.209 762 638 3.449 785 796 6.441 842 420 9.531 085 592
2 0.082 568 277 1.468 544 527 3.475 353 387 6.445 663 561 9.532 252 611

1 5 0.077 745 028 2.013 272 451 3.574 145 780 6.458 242 426 9.535 909 139
10 0.076 839 203 2.530 651 855 3.830 079 762 6.483 762 899 9.542 574 442
100 0.076 504 580 3.109 074 636 6.184 322 062 8.987 945 241 10.368 963 74
1 0.203 757 518 0.626 812 532 3.214 109 687 6.319 624 160 9.449 092 270
2 0.182 081 844 0.757 316 830 3.215 339 284 6.319 782 254 9.449 139 349

5 5 0.172 689 534 1.061 338 263 3.219 355 251 6.320 270 289 9.449 283 090
10 0.170 982 734 1.430 525 860 3.227 231 812 6.321 118 809 9.449 527 433
100 0.170 396 524 3.091 912 856 4.494 970 135 6.350 207 540 9.455 120 609
1 0.263 075 602 0.491 144 462 3.191 700 677 6.308 384 728 9.441 595 640
2 0.247 879 358 0.562 969 164 3.191 959 672 6.308 417 857 9.441 605 498

10 5 0.241 147 240 0.769 956 058 3.192 900 164 6.308 534 865 9.441 640 130
10 0.240 056 243 1.034 296 495 3.194 645 408 6.308 739 469 9.441 700 025
100 0.239 795 916 2.944 060 849 3.386 024 762 6.313 612 630 9.442 914 827
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4. Conclusion

In this study a new approach called Adomian Decomposition Method was employed to solve
torsional vibration problems of shafts. Obtained results indicate that present analysis is com-
pletely accurate, and provides a unified and systematic procedure which is simple and more
straightforward than other methods. Other approximate approaches such as Rayleigh-Ritz
method or Galerkin method may also be applicable to such cases. However, it may be difficult
to determine higher natural frequencies and mode shapes on account of not choosing complete
and correct admissible functions. In particular, the Adomian method provides immediate and
visible symbolic terms of analytic solutions, as well as numerical solutions of the differential
equations without linearisation or discretisation. Using ADM, the governing differential equa-
tion becomes a recursive algebraic equation and boundary conditions become simple algebraic
frequency equations which are suitable for symbolic computation. Moreover, after some sim-
ple algebraic operations on these frequency equations, any ith natural frequency and the closed
form series solution of any ith mode shape can be obtained. The most brilliant aspect of this
method is that arbitrary order of accuracy is achievable by choosing proper truncation value for
series. Parametric study of various cases showed that increasing the spring constants at the ends
of the constrained shafts, the natural frequencies increase and that increasing the rotary inertia
at the ends of the shaft leads to decreasing natural frequencies.
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