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Differential transform method to study free transverse vibration
of monoclinic rectangular plates resting on Winkler foundation
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Abstract

This paper analyses free transverse vibration of a monoclinic rectangular plate of uniform thickness resting on Win-
kler foundation using differential transform method (DTM). Two parallel edges of the plate are taken according
to Levy approach i.e., simply supported and other two edges may be either clamped-clamped or clamped-simply
supported. This semi-numerical-analytical technique converts the governing differential equation and boundary
conditions into a set of algebraic equations. Characteristic equations have been obtained for above two combina-
tions of boundary conditions in the form of infinite series and solved numerically by truncating these equations to
finite number of terms. Robustness and convergence of the method is confirmed through numerical results. Two
dimensional and three dimensional mode shapes have been plotted for both the cases.
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1. Introduction

Recently, solutions of engineering problems have appeared in the literature using differential
transform method (DTM). In 1986, Zhou [14] developed it to solve initial value problems oc-
curring in electrical circuits. It works as an alternative approach for getting Taylor series solu-
tion. Using this method, the solution of the problem is obtained in the form of a polynomial.
So far, the eigenvalue problems have been solved using Frobenius method [3], finite difference
method [9], finite element method [11], differential quadrature method [12], Chebyshev collo-
cation technique [7], discrete singular convolution method [10] and Rayleigh-Ritz method [6],
etc. DTM seems quite easily applicable for getting the solution of eigenvalue problems. Very
few vibration problems have been solved using DTM [1, 2,5, 8, 13]. In this paper, DTM has
been applied to fourth order boundary value problem that represents free transverse vibration
of monoclinic thin rectangular plate of uniform thickness resting on Winkler foundation. The
first three natural frequencies have been presented for two boundary configurations. This paper
has been organized as follows: In section 2, mathematical model of the problem under study is
presented. Section 3 presents the respective boundary conditions. Section 4 is concerned with
the solution and results of the problem. Conclusions are presented in section 5.

2. Mathematical model of the problem

A monoclinic rectangular plate of uniform thickness i with the domain 0 < z < a, 0 <y <0,
where a and b are the length and the breadth of the plate, respectively, is considered. The z-axis
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is taken in the perpendicular direction of zy-plane. Middle surface of the plate is denoted by
z = 0. One of the corners of the plate is designated as the origin of the plate. The plate is
resting on Winkler foundation having the foundation modulus Ky. Two opposite edges y = 0
and y = b are taken to be simply supported (see Fig. 1).

b2
A
2
Simply supported %
=
°
g | P 2%
: 2
= g a
@) S B
Simply supported O a
S ¢
O a
)

Winkler foundation
(ii)
Fig. 1. (i) Geometry of the plate with boundary conditions and (ii) plate resting on Winkler foundation
Following Kumar and Tomar [7], the differential equation describing the motion of a mono-
clinic rectangular plate of uniform thickness resting on Winkler foundation is given as follows:
01471;+ 01371;+ dzw+ dw+ S0 0
G —5 + 01— + a2 —— + a3 —= + aq,w = 0,
Cdxt T Maxs T Paxz T tax

where

ag = 1, a; =0, az = —2X*(cia + ca1 + 2¢66) /C11,

as =0,  ag =N (con/c11) + (12K /%) — Q2, X = g
P aKf’ \2 o m27r2a2’ 02 12pa’w?
C11 b? C11h2

Here ci1, c12, 21, o2, g are elastic coefficients, p is density of the plate material, w is the
circular frequency, K is the foundation parameter and €2 is the frequency parameter.
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3. Boundary conditions

Two boundary conditions, namely, C-C and C-S have been considered where first letter repre-
sents the boundary condition at the edge X = 0 and second one at the edge X = 1. Here, C is
used for clamped edge and S for simply supported edge. The edge X = 0 is clamped and the
edge X = 1 is either clamped or simply supported. The conditions that should be satisfied by
clamped and simply supported edges are

A
w = d—;U( = 0 for clamped edge 2)

and L
W= (c12 + c) M = 0 for simply supported edge. (3)

dX2 C11

4. Solution and results of the problem

The Taylor’s series expansion of a function w(X ) may be written as

o0

D(X) =) (X — Xo)'W;, )

1=0

1 1| diw
where W, = = [ }
Cr X xox,

X = Xj,. The series is truncated to finite number of terms i.e., N while solving practical
problems.
Taking the differential transform of equation (1) at Xy = 0, we get

is called i-th order differential transform of w(X) about a point

T+ 4)! - i+ 2)! - -
ag ( il ) Wisa+ az( 0 ) Wigo +asW; =0, )
as differential transform of % is given by (Zt,k ) Witk

After taking the differential transform, the boundary conditions (2) and (3) may be written
as follows:

N
D (X = Xo)'W; =0,
=0
N
D iX = X)W =0 (6)
=0
and
N
D (X = Xo)'W; =0,
=0
N N
S - 1)(X = Xo) W — 2L S oy - X = o, )

c
i=0 1 i=0

The equation (5) can be re-written in the following manner

- R - S

Wisps= —————Wita+ — _ _ _ W, i=0,1,2,3,...,N, 8
N VT R Ee VT e [ R R R ®
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where

2 2¢66) A2
R— (012 + C21 + 066) : S _ Q2 _ (022/011))\4 _ (12K/h3)
€11
Now, characteristic equations for both the cases can be obtained by adopting the following
mathematical procedure:
Case 1: Clamped at X = 0 and clamped at X =1
Let Xo = 0. At X = 0, equations (6) become

Wo + OW; + 0Ws + 0Ws + 0Wy +0Ws5 + ... =0,
OWo + Wi + 0Ws + 0Ws + 0Wy +0Ws5 + ... = 0, 9)
i.e.,
Wy =W, =0.
Using equation (8), first few terms can be written as follows:
- R - - R - S - - R - S -
T 5= 30 V1t 350" 5= 56"Vt 1580
- R - - R - S - - R - S -
_ -t - = = 1
Wo=ggWer W= WotggWer Wo= g Wat o5y Was (10)

) It is evident from equations (10) that W,; and W5, 1 can be represented in terms of W, and
W3, respectively.
At X =1, equations (6) become

Wo+ Wi+ Wy + W +Wy+Ws+...=0,
OWo + Wiy + 2Ws + 3Ws 4+ AW, + 5Ws + ... = 0. (11)

Using (10), equations (11) can be written as follows:

P11 (Q) Wy + p12(Q)W3 = 0,
P21 () Wo + paa (D) W3 = 0. (12)

The characteristic equation is obtained from the non-trivial condition of (12) i.e.,

p11(Q2) p12(©2) _
P21(2) p22(92) ' =0, (13)

where p;;, 7,7 = 1,2 are polynomials in 2.
In particular,

(Q)_1+£+R2+S+R3+2RS+

Ptss) = 2715 T 7360 20160

(Q)_1+§+R?+S+R3+2RS+

P12 = 2750 T TRa0 60480 @
4R 6(R*+S) 8(R*+2RS)

Q) =24 -

pu() =24 o+ 20—+ 50160 )
5R 7(R*+S) 9(R*+2RS)

Q) =34 2%

Po() =3+ o5+~ + om0
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Case 2: Clamped at X = 0 and simply supported at X =1
Differential transform of equations (7) at X = 1 leads to
Wo4+Ws+Wy+Ws+...=0,
2W5 + 6Ws5 + 12W, + 2005 + ... = 0. (14)

Hence, the non-trivial condition of (14) after incorporating (10) provides the following char-
acteristic equation

pll(Q) plz(Q)
—0 15
pzl(Q) p22(9) ’ {as)
where
Q) = 1+§+R2+S+R3+2RS+
Ptss) = 2795 T 7360 20160
Q) = 1+§+R2+S+R3+2RS+
P = 2750 T T840 60480
. 12R  30(R*+S) . 56(R®+ 2RS)
Pu(@) =2+ ot =t ey T
20R 42(R?+S)  T2(R*+ 2RS)
Q p—
Pa(Q) =6+ -+ — 0 — T — R0

Displacements of the plates are obtained using the following function:
N
W(X) = (X = Xo)'W, (16)
i=0
W(X) = X2W2 + X4W4 + X6W6 + X8W8 + XlOV_VlQ + ...+
X3Ws + XOWs + X We + XOWy + XU, + ...
R (R*+5) (R®+2RS)

= :X2+EX4+WX6+ 50160 X8+..._ Wy +
:X3+%X5+%X7+%X9+...: Wy

= :X2+%X4+7(R;;;S)X6+7(Rz;1%§S>X8+...: Wy —
zigg; X3+%X5+(R;;)S)XM(RZLQSISS)XM... Wy, (17)

For numerical simulation, rock gypsum has been taken as an example of monoclinic material
and the values of elastic constants for the same have been taken from Haussuhl [4] as
c11 = 7.859 x 10° erg/cm?, c12 = ¢ = 4.1 x 10° erg/cm?®,
Cog = 6.287 x 10° erg/cm?, ces = 1.044 x 10° erg/cm®.
Apart from it, the values of other parameters considered are

K =0.01,0.02,0.03,0.04,0.05,  a/b=0.5, 1.0.

To obtain the values of frequency parameter (2, the characteristic equations (13) and (15)
have been solved using bisection method with the help of a computer program developed in
C++ for different values of aspect ratio A(= a/b) and foundation parameter K for both the
boundary configurations. This program was run for different values of /N until we get first
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three values of frequency parameter 2 correct to four decimal places and the value of N has
been taken as 36. The value of m has been fixed as 1. The convergence of first three values
of frequency parameter €2 for monoclinic square C-C and C-S plates with increasing number
of terms /N is shown in Table 1. The desired accuracy of first mode can be achieved by using
26 terms in both the cases and higher modes can be obtained by increasing the number of
terms. First three values of frequency parameter €2 for different combinations of aspect ratio
and foundation parameter are presented in Tables 2 and 3 for monoclinic and isotropic plates,
respectively. It is concluded that the value of frequency parameter {2 for C-C plate is greater
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than that for C-S plate.

Table 1. Convergence of first three values of frequency parameter €2 for monoclinic square plates for

K =0.05
Cc-C C-S
mode

N I II 111 II 111

5 21.7242 - - 19.1580 - -
10 29.2641 - - 26.6908 - -
15 37.7442 290.2750 - 33.9770 293.4680 -
20 38.6039 360.0430 - 34.7363 360.5910 -
25 38.6257 753754 112.7500 34.7544 654812 102.8810
30 38.6257 75.2865 130.1810 34.7544 65.4272 116.4180
35 38.6257 752672 133.5870 34.7544  65.4267 118.2090
36 38.6257 752672 133.5870 34.7544  65.4267 118.2090

Table 2. First three values of frequency parameter €2 for monoclinic plates

C-C C-S
a/b
K  mode 0.5 1.0 0.5 1.0

I 241786 29.8655 17.7925 24.6549

0.00 I 64.0740 71.1699 527101  60.668 4
I 1235360 131.3220 107.1440 115.6430

I 265444 318111 20.8943 26.9790

0.01 II  65.0037 72.0080 53.8364 61.6494
I 124.0210 131.7780 107.7030 116.1610

I 287159 33.6444 235918 29.1182

0.02 II 659203 72.8365 549395 62.6151
T 1245040 132.2330 108.2580 116.6760

I 30.7344 353829 26.0110 31.1106

0.03 II 668243 73.6556 56.0210 63.5661
T 1249850 132.6860 108.8110 117.1890

I 32,6283 37.0398 28.2236  32.9828

0.04 I 677162 744658 57.0820 64.5031
I 125.4640 133.1370 109.3610 117.7000

I 344181 38.6257 30.2750 34.7544

0.05 II  68.5965 752672 58.1236  65.4267
I 1259410 133.5870 109.9080 118.2090
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Table 3. First three values of frequency parameter {2 for isotropic (W =, ?T? =1,

c11 = %g) plates

C-C C-S
a/b
K  mode 0.5 1.0 0.5 1.0

I 238156 289509 17.3318 23.6463

0.00 II  63.5345 69.3270 52.0979 58.6464
I 1229290 129.0900 106.4790 113.2260

I 262142 309540 20.5034  26.0605

0.01 I 644720 70.1872 53.2372  59.6607
I 123.4170 129.5540 107.0410 113.7550

I 284110 328352 232463 28.2692

0.02 II 65390 71.0369 543525 60.6581
1 123.9020 130.0170 107.6000 114.2810

I 304497 346143 256981 30.3175

0.03 I 663071 71.8765 55.4454 61.6393
I 124.3850 130.4770 108.1560 114.8050

I 323602 363064 279355 32.2358

0.04 I 672059 727065 565172 62.6051
I 124.8660 130.9360 108.7090 115.3270

I 341641 379230 30.0065 34.0463

0.05 I 68.0928 735271 57.5691 63.5562
I 125.3460 131.3940 109.2600 115.8460

Also, frequencies of monoclinic plates are greater than those for isotropic plates for same
values of parameters. Further, it increases with the increasing values of foundation parameter
K and aspect ratio a/b. More importantly, the difference in the values of frequency param-
eter € for first mode of vibration for monoclinic C-C (a/b = 0.5, K = 0, 0.01, 0.02, 0.03,
0.04, 0.05) and C-S (a/b = 1.0, K = 0, 0.01, 0.02, 0.03, 0.04, 0.05) plates is not consid-
erable. Same conclusion is true for isotropic plate. The percentage variations in the value of
frequency parameter are more for C-S plates than those for C-C plates and these percentage
variations decrease with the increasing value of K when material changes from isotropic to
monoclinic.

The percentage variations in the value of frequency parameter are 1.5, 1.3, 1.1, 0.9, 0.8,
0.7 when K changes from 0.0 to 0.05 for first mode of vibration (a/b = 0.5 and C-C plate).
These percentage variations are 0.8 and 0.5 for second and third modes, respectively, for all
K. These variations increase with increasing value of a/b. Displacements have been calculated
using equation (17).

Two dimensional and three dimensional mode shapes of C-C and C-S plates for i = 0.01,
a/b = 1 have been depicted in Figs. 2-4. Three dimensional mode shapes have been plotted
using MATLAB software.
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Fig. 2. Normalized displacements of C-C monoclinic plate for K = 0.01, a/b = 1. First mode (O),
second mode (A) and third mode (x)
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Fig. 3. Normalized displacements of C-S monoclinic plate for K = 0.01, a/b = 1. First mode (O),
second mode (A) and third mode (x)
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Fig. 4. First three mode shapes of (i) C-C and (ii) C-S monoclinic plates for K = 0.01, a/b = 1 using
w(z,y) = w(x/a)sin(mmy/b)

5. Conclusions

Differential transform method is successfully applied to analyze free transverse vibration of
monoclinic rectangular plates of uniform thickness resting on Winkler foundation. The two
opposite edges of the plate are assumed to be simply supported. Two boundary conditions
namely, clamped and simply supported have been taken on one of the other two parallel edges,
keeping the other edge clamped. Characteristic equations have been obtained in the form of
infinite series. The series have been truncated to finite number of terms and solved numerically
to obtain first three natural frequencies using a computer program developed by the author in
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C++ language. Displacements have been calculated and demonstrated in two dimensions as well
as three dimensions. Analysis shows that present method performed really well for monoclinic
plates in terms of simplicity and efficiency.
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