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Prediction of the nuclear fuel rod abrasion
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Abstract

The paper is focused on calculation of the friction forces work in the contact of nuclear fuel rods with fuel assembly
spacer grid cells. This friction work is deciding factor for the prediction of the fuel rod coating abrasion. The fuel
rod abrasion is caused by fuel assembly vibrations excited by pressure pulsations of the cooling liquid generated
by main circulation pumps. A prediction of fuel rod coating abrasion makes use of experimentally investigated
dependence of the abrasion on the friction force work in laboratory conditions. The presented original analytical-
numerical method is applied for nuclear fuel rod inside of the Russian TVSA-T fuel assembly in the WWER
1000/320 type reactor core in NPP Temelı́n.
c© 2013 University of West Bohemia. All rights reserved.
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1. Introduction

An assessment of nuclear fuel assemblies (FA) behaviour at standard operating conditions of
the nuclear reactors belongs to important safety and reliability audits. A significant part of FA
assessment plays abrasion of fuel rods coating [1].

The goal of this paper, in direct consequence of FA modelling in [7] and FA dynamic re-
sponse excited by pressure pulsations presented in [5], is an introduction of the newly developed
method for prediction of fuel rod abrasion caused by their flexural vibration. Elastic properties
of the spacer grids between inner FA components are in the FA computational model expressed
by alternate linear spring kg centrally placed between fuel rods, guide thimbles and centre tube
(see Fig. 1) on several vertical spacings g = 1, . . . , G [5, 7]. A real contact between inner fuel
rods and spacer grids is realized by three cells i = 1, 2, 3 (see Fig. 2). Elastic properties of each
cell can be expressed by three springs with identical stiffnesses k. The contact forces (in the
picture Fu,i) between fuel rods (FR) and cells are deciding factor for the prediction of the FR
abrasion.

The undermentioned method is focused on prediction of the FR abrasion caused by flexural
FR vibrations in-spacer grids. FR vibrations are caused by spatial motion of the FA support
plates in reactor core excited by pressure pulsations generated by main circulation pumps in
the coolant loops of the reactor primary circuit [3]. Solution is based on knowledge of the
spacer grid cell stiffnesses k calculated by FEM in ŠKODA JS [2] and experimentally investi-
gated dependence of the FR abrasion on the friction force work in the contact line between FR
laboratory sample and pressure plate [4].
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Fig. 1. The alternate couplings between fuel rods
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Fig. 2. The real couplings between fuel rods by
means of cells

2. Shortly to computational and mathematical model of the nuclear fuel assembly

The FA basic structure is formed from large number of parallel identical fuel rods, some guide
thimbles and centre tube. These FA components are linked by transverse spacer grids to each
other and with skeleton construction (Fig. 3). The spacer grids are placed on several horizontal
level spacings between support plates in reactor core (RC) as it is shown in the scheme of the
reactor WWER 1000 in the Fig. 4.

Fig. 3. Scheme of the fuel assembly Fig. 4. Scheme of the reactor
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Fig. 5. The FA cross-section

In order to model the fuel assembly, the system is divided into subsystems – identical rod
segments (S), centre tube (CT) and load-bearing skeleton (LS) fixed in bottom part in lower
piece (Fig. 3). Because of the cyclic and central symmetric package of fuel rods and guide
thimbles with respect to centre tube (Fig. 5), the FA decomposition to the identical rod segment
s = 1, . . . , S (on the Fig. 5 for S = 6) shall be applied. Each rod segment is composed of R
fuel rods with fixed bottom ends in lower piece (LP) and guide thimbles (GT) fully restrained
in lower and head pieces (HP). The fuel rods and guide thimbles are linked by transverse spacer
grids of three types (SG1 − SG3) inside the segments. Elastic properties of the spacer grids in
the FA computational model are expressed by linear springs placed on several level spacings
g = 1, . . . , G (see Fig. 1). The fuel rods are embedded into spacer grid cells with small initial
radial tension which should not be negative during core operation.

The mathematical model of the rod segment s isolated from adjacent segments (without
linkages between segments) was derived in the special coordinate system [7]

qs = [qT
1,s, . . . , q

T
r,s, . . . , q

T
R,s]

T , (1)

where qr,s is vector of nodal point displacements of one rod r (fuel rod or guide thimble) on the
level of all spacer grids g in the form

qr,s = [. . . , ξ(s)
r,g , η

(s)
r,g , ϑ

(s)
r,g , ψ

(s)
r,g , . . .]

T , r = 1, . . . , R; g = 1, . . . , G. (2)

Lateral displacements ξ
(s)
r,g , η

(s)
r,g of the rod centres are mutually perpendicular whereas displace-

ments ξ
(s)
r,g are radial with respect to vertical central axis of FA. Displacements ϑ

(s)
r,g , ψ

(s)
r,g are

bending angles of rod cross-section around lateral axes (see Fig. 6).
The fully restrained centre tube (see Fig. 3 and Fig. 5) is discretized into G nodal points on

the level of spacer grids g = 1, . . . , G by means of G + 1 prismatic beam finite elements in the
coordinate system

qCT = [. . . , xg, yg, ϑg, ψg, . . .]
T , g = 1, . . . , G, (3)

where lateral displacements xg, yg are oriented into axes x, y (Fig. 5).
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Fig. 6. The spring between two rods replacing the stiffness of spacer grid g

The load-bearing skeleton (further only skeleton) is created of S (on the Fig. 5 for S = 6)
angle pieces (AP) coupled by divided grid rim (GR) at all levels of spacer grids. Each angle
piece with fixed bottom ends in lower piece is discretized into nodal points in cross-section
centre of gravity on the level of spacer grids g = 1, . . . , G. The mathematical model of the
skeleton without couplings with spacer grids is derived in the coordinate system

qLS = [qT
AP1

, . . . , qT
APs

, . . . , qT
APS

]T , (4)

where qAPs is vector of nodal points displacements for particular angle piece s on the level of
all grid rim g in the form

qAPs = [. . . , ξ
(s)
AP,g, η

(s)
AP,g, ϕ

(s)
AP,g, ϑ

(s)
AP,g, ψ

(s)
AP,g, . . .]

T , g = 1, . . . , G. (5)

Lateral displacements ξ
(s)
AP,g, η

(s)
AP,g of cross-section centre of gravity on the level of spacer grid

g are mutually perpendicular whereas displacement ξ
(s)
AP,g is radial. Displacements ϕ

(s)
AP,g, ϑ

(s)
AP,g,

ψ
(s)
AP,g are torsional and bending angles of angle piece cross-section around vertical and lateral

axes (detailed to [7]).
The subsystems of FA are linked by spacer grids of different types for g = 1, g = 2, . . . ,

G− 1 and g = G. Mathematical models of segments are identical in consequence of radial and
orthogonal fuel rods and guide thimbles displacements. Therefore, the conservative model of
the fuel assembly in configuration space

q = [qT
1 , . . . , qT

s , . . . , qT
S , qT

CT , qT
LS]T (6)

of dimension n = 4GRS + 4G + 5GS can be written as

Mq̈ + (K + KS,S + KS,CT + KS,LS)q = 0. (7)

The symmetrical mass M and stiffness K matrices correspond to a fictive fuel assembly di-
vided into mutually uncoupled subsystems. Therefore, these matrices are block diagonal

M = diag [MS, . . . , MS, MCT , MLS], K = diag [K∗
S, . . . , K∗

S, KCT , KLS], (8)
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Fig. 7. Spatial motion of the FA support plates

where segment stiffness matrix K∗
S includes couplings between all fuel rods and guide thimbles

inside the segment.
The coupling symmetrical stiffness matrices KSS, KS,CT and KS,LS express interaction

between appropriate subsystems marked by subscripts. The stiffness matrix of all couplings
between subsystems

KC = KS,S + KS,CT + KS,LS (9)

has, for the hexagonal type FA (S = 6), block structure

KC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1,1 KS
1,2 0 0 0 KS

1,6 K1,CT K1,LS

KS
2,1 K2,2 KS

2,3 0 0 0 K2,CT K2,LS

0 KS
3,2 K3,3 KS

3,4 0 0 K3,CT K3,LS

0 0 KS
4,3 K4,4 KS

4,5 0 K4,CT K4,LS

0 0 0 KS
5,4 K5,5 KS

5,6 K5,CT K5,LS

KS
6,1 0 0 0 KS

6,5 K6,6 K6,CT K6,LS

KCT,1 KCT,2 KCT,3 KCT,4 KCT,5 KCT,6 KCT,CT 0
KLS,1 KLS,2 KLS,3 KLS,4 KLS,5 KLS,6 0 KLS,LS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where subscripts separated by comma denote linked FA subsystems.
Each fuel assembly (see Fig. 3) is fixed by means of lower tailpiece (LP) into mounting plate

in core barrel bottom and by means of head piece (HP) into lower supporting plate of the block
of protection tubes. These support plates with pieces can be considered in transverse direction
as rigid bodies.

Let use consider the spatial motion of the support plates described in coordinate systems
xX , yX , zX(X = L, U) with origins in plate gravity centres L, U by displacement vectors (see
Fig. 7)

qX = [xX , yX , zX , ϕx,X, ϕy,X , ϕz,X ]T , X = L, U. (11)

The lateral ξ
(s)
r,X , η

(s)
r,X and bending ϑ

(s)
r,X , ψ

(s)
r,X displacements in the end-nodes of the fuel

rod or guide thimbles r in segment s (in Fig. 7 illustrated for s = 1) coupled with plates can
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be expressed by the displacements of the lower (X = L) and upper (X = U) plates (detailed
to [5]). The vectors of generalised coordinates of the fully restrained subsystems (rod segments
and centre tube) loosed in kinematically excited nodes can be partitioned in the form

qs = [(q
(s)
L )T , (q

(s)
F )T , (q

(s)
U )T ]T , s = 1, . . . , 6, CT (12)

and the skeleton s = LS fixed in bottom ends only has the form

qLS = [(q
(LS)
L )T , (q

(LS)
F )T ]T . (13)

The displacements of free system nodes (uncoupled with support plates) are integrated in vec-
tors q

(s)
F ∈ Rns . The vibration of the FR excited by pressure pulsations generated by main

circulation pumps are described by corresponding components ξ
(s)
r,g , η

(s)
r,g , ϑ

(s)
r,g , ψ

(s)
r,g of the gene-

ralised coordinate vectors q
(s)
F . Their calculation was presented in [5].

3. The contact forces between fuel rods and spacer grid cells

Consider the inner fuel rod u that is surrounded with six fuel rods u + 1, v, v − 1, u − 1, w,
w + 1 (see Fig. 2) that are uniformly arranged. Their marking correspond to the one applied in
the global fuel assembly model. A real contact between fuel rod u and the spacer grid on every
one level is realized by three cells i = 1, 2, 3. Elastic properties of one cell can be expressed by
three springs with identical stiffnesses k.

Let the fuel rod u be loaded by external static force �F (Fx, Fy) and the centres surrounded
fuel rods are fixed. The static displacements xi, yi (i = 1, 2, 3) of the cell centres and xu, yu

of the FR u centre in the directions of coordinate axes x, y, due to their flexibility, satisfy the
relations

Fu,1 = k(xu − x1),

Fu,2 = k

(
0.5x2 −

√
3

2
y2 − 0.5xu +

√
3

2
yu

)
, (14)

Fu,3 = k

(
0.5x3 +

√
3

2
y3 − 0.5xu −

√
3

2
yu

)
,

where Fu,i are contact forces between fuel rod u and cells. From the static equilibrium condi-
tions of each cell we obtain static displacements of their centres

x1 =
2

3
xu; y1 = 0,

x2 =
1

3

(
0.5xu −

√
3

2
yu

)
; y2 =

1√
3

(
−0.5xu +

√
3

2
yu

)
, (15)

x3 =
1

3

(
0.5xu +

√
3

2
yu

)
; y2 =

1√
3

(
0.5xu +

√
3

2
yu

)
.
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The deformation energy of all three cells is

Ep =
1

2
k

⎡
⎣(xu − x1)

2 +

(
0.5x1 +

√
3

2
y1

)2

+

(
0.5x1 −

√
3

2
y1

)2

+

(√
3

2
yu − 0.5xu + 0.5x2 −

√
3

2
y2

)2

+

(
0.5x2 +

√
3

2
y2

)2

+ (16)

x2
2 +

(
0.5x3 +

√
3

2
y3 − 0.5xu −

√
3

2
yu

)2

+ x2
3 +

(
0.5x3 −

√
3

2
y3

)2
⎤
⎦ .

By elimination of the displacements xi, yi in term (16) according to (15) we get

Ep =
1

2
0.5k(x2

u + y2
u). (17)

The deformation energy of six alternate springs, which represent the elastic properties of cou-
plings between fuel rod u and six surrounding fuel rods in the global fuel assembly model,
is

Ep =
1

2
kg

⎡
⎣(√

3

2
xu + 0.5yu

)2

+ y2
u +

(
−
√

3

2
xu + 0.5yu

)2

+

+

(
−
√

3

2
xu − 0.5yu

)2

+ y2
u +

(√
3

2
xu − 0.5yu

)2
⎤
⎦ (18)

and after modification
Ep =

1

2
3kg(x

2
u + y2

u). (19)

An equality of the right hand sides of the expressions (17) and (19) leads to kg = 1
6
k or

kg = 0.5 kb, where kb is the cell stiffness defined by

kb =
Fu,1

xu
. (20)

The dynamic contact forces Fu,1, Fu,2 and Fu,3 (see Fig. 8) between fuel rod u of segment
s and cells at the level spacer grid g (indexes g and s is father let-out) in the course of fuel
assembly vibration can be expressed by means of cell centres displacements xi, yi (i = 1, 2, 3)
and lateral displacements ξu, ηu, . . . , ξw+1, ηw+1 of six fuel rods surrounding the chosen FR.
Fuel rod lateral displacements are generalised displacements of the fuel assembly global mathe-
matical model presented in [5, 7]. These dynamic contact forces acting between spacer grid
cell 1 and fuel rods u, u + 1 and w + 1 can be expressed as

Fu,1 = k
[
−x1 + ξuC(αu) + ηuC

(
αu +

π

2

)]
,

Fu+1,1 = k

[
0.5x1 +

√
3

2
y1 + ξu+1C

(
αu+1 +

2

3
π

)
+ ηu+1C

(
αu+1 +

7

6
π

)]
, (21)

Fw+1,1 = k

[
0.5x1 −

√
3

2
y1 − ξw+1C

(
αw+1 +

1

3
π

)
− ηw+1C

(
αw+1 +

5

6
π

)]
.
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Fig. 8. The contact forces between the fuel rods and the spacer grid cells

The function cosine is shortly marked C with argument in bracket which describes fuel rod
angle position in the local coordinate system xs, ys of the segment s. The expressions for centre
cell lateral displacements follow from the static equilibrium of the considered cell

Fu,1 = Fu+1,1 = Fw+1,1.

These displacements can be written as

x1 =
1

3

[
2ξuC(αu) + 2ηuC

(
αu +

1

2
π

)
− ξu+1C

(
αu+1 +

2

3
π

)
−

ηu+1C

(
αu+1 +

7

6
π

)
+ ξw+1C

(
αw+1 +

1

3
π

)
+ ηw+1C

(
αw+1 +

5

6
π

)]
,

y1 =
1√
3

[
−ξu+1C

(
αu+1 +

2

3
π

)
− ηu+1C

(
αu+1 +

7

6
π

)
− (22)

ξw+1C

(
αw+1 +

1

3
π

)
− ηw+1C

(
αw+1 +

5

6
π

)]
.

In a similar way we derive centre cell lateral displacements of other cells 2 and 3

x2 =
1

3

[
2ξv−1C(αv−1) + 2ηv−1C

(
αv−1 +

1

2
π

)
+ ξuC

(
αu +

1

3
π

)
+

ηuC

(
αu +

5

6
π

)
+ ξvC

(
αv −

1

3
π

)
+ ηvC

(
αv +

1

6
π

)]
, (23)

y2 =
1√
3

[
ξvC

(
αv −

1

3
π

)
+ ηvC

(
αv +

1

6
π

)
−

ξuC

(
αu +

1

3
π

)
− ηuC

(
αu +

5

6
π

)]
,
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x3 =
1

3

[
2ξu−1C(αu−1) + 2ηu−1C

(
αu−1 +

1

2
π

)
− ξuC

(
αu +

2

3
π

)
−

ηuC

(
αu +

7

6
π

)
+ ξwC

(
αw +

1

3
π

)
+ ηwC

(
αw +

5

6
π

)]
, (24)

y3 =
1√
3

[
−ξuC

(
αu +

2

3
π

)
− ηuC

(
αu +

7

6
π

)
−

ξwC

(
αw +

1

3
π

)
− ηwC

(
αw +

5

6
π

)]
.

The total contact forces between fuel rod u in the segment s = 1, . . . , 6 and the spacer grid cells
at the level g = 1, . . . , G (indexes s and g are let-out) are determined by the sum of the static
contact force Fst after fuel rods installation into the load-bearing skeleton with spacer grids and
the dynamic contact forces caused by vibration

Nu,i(t) = [Fst + Fu,i(t)]H(Fst + Fu,i(t)), i = 1, 2, 3. (25)

H is Heaviside function (for Fst + Fu,i(t) < 0, when contact is interrupted, H = 0). The
dynamic contact forces of the fuel rod u with cells are expressed in the form (see Fig. 8)

Fu,1 = k

[
−x1 + ξuC(αu) + ηuC

(
αu +

1

2
π

)]
,

Fu,2 = k

[
0.5x2 −

√
3

2
y2 − ξuC

(
αu +

1

3
π

)
− ηuC

(
αu +

5

6
π

)]
, (26)

Fu,3 = k

[
0.5x3 +

√
3

2
y3 + ξuC

(
αu +

2

3
π

)
+ ηuC

(
αu +

7

6
π

)]
,

where k is the stiffness of the one substitute spring of the cell. Substituting the expressions (22),
(23), (24) of the centre cell lateral displacements into force equations (26), we obtain dynamic
contact forces occuring in Eq. (25). The fuel rod u angle position in each segment after its
installation is determined by polar coordinate αu (see Fig. 6).

4. The power and the work of the friction forces in the contact of fuel rods coating with
the spacer grid cell

The slip speeds between the transfer vibrating spacer grid on the level g and the fuel rod u
in segment s due to the fuel rod bending inside of the spacer grid cell in contact points Ci,
i = 1, 2, 3 (see Fig. 9) are

cu,1 = r

[
sin

(
1

2
π − βu,v

)
ϑ̇u − cos

(
1

2
π − βu,v

)
ψ̇u

]
,

cu,2 = r

[
sin

(
7

6
π − βu,v

)
ϑ̇u − cos

(
7

6
π − βu,v

)
ψ̇u

]
, (27)

cu,3 = r

[
sin

(
11

6
π − βu,v

)
ϑ̇u − cos

(
11

6
π − βu,v

)
ψ̇u

]
,
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Fig. 9. The contact point positions of the fuel rod u with the spacer grid cells

where r is outside diameter of the fuel rod coating. Bending angular velocities of the fuel rod
cross-sections are expressed by corresponding components of the vector q̇

(s)
F (t) obtained by the

derivative with respect to time of the generalised coordinate vector q
(s)
F of the fuel assembly

free node displacements defined in (12). The power of the friction forces in the contact points
Cj of the fuel rod u coating in segment s and the spacer grid cells on the level g is

Pu,i(t) = f0Nu,i(t)cu,i(t), i = 1, 2, 3, (28)

where f0 is computational friction coefficient. The criterion of the fuel rod coating abrasion
can be expressed by the work of the friction forces during the period T [s] of the first harmonic
component of pressure pulsations

Wu,i =

∫ T

0

|Pu,i(t)| dt. (29)

On the basis of experimental investigated friction coefficient f(T ) and mass loss μ [gJ−1] in
grams [4] of the fuel rod coating caused by the work of the friction force W = 1 [J] we can
calculate the fuel rod coating abrasion in the contact line segment during the operational period
tp [s]

Δmi = μWu,i ·
f(T )

f0
· tp
T

[g], i = 1, 2, 3. (30)

5. Application

The presented methodology was applied for steady polyharmonic dynamic response of the Rus-
sian TVSA-T fuel assembly in the WWER 1000/320 type reactor core in NPP Temelı́n. Mathe-
matical model of the WWER 1000/320 type reactor excited by pressure pulsations was derived
in [6] by the decomposition method presented in [8]. The linearized model has the standard
form

Mq̈(t) + Bq̇(t) + Kq(t) = f (t), (31)

where the vector of generalised coordinates of dimension 137 is specified in [6].
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The reactor is a large multi-body system which includes no special dampers. The first ap-
proximation of the damping consists in assuming that the system is lightly damped and that
the damping matrix B satisfies the general condition of proportional damping in the form
V T BV = diag [2DνΩν ], where V = [vν ] is modal matrix of the reactor conservative model.
Its eigenfrequencies are noted Ων and eigenvectors vν satisfying the norm

vT
ν Mvν = 1, ν = 1, . . . , 137.

The dimensionless damping factors Dν were considered, on the basis of experience in modelling
of nuclear reactor vibrations, equal 0.05 with the exception of the damping factors correspond-
ing to eigenmodes, where the reactor core dominantly vibrates. In consequence of an influence
of coolant these factors were considered larger, concretely Dν = 0.08. After an estimation of
all damping factors the damping matrix in the mathematical model (31) is calculated as

B = (V −1)T diag [2DνΩν ]V
−1.

The excitation vector f (t) can be written as a real part of the complex excitation vector

f (t) = Re

[∑
j

∑
k

f
(k)
j eikωjt

]
, j = 1, 2, 3, 4, (32)

where f
(k)
j is vector of complex amplitudes of k-th harmonic component of the hydrodynamic

force generated by one j-th main circulation pump. The fluctuation of the main circulation
pump angular speeds ωj = π

nj

30
, nj ∈ 〈997.2, 999.6〉 [rpm] is based on the measurement at the

first and second NPP Temelı́n blocks [6].
The steady-state dynamic response of the reactor is given by the particular solution

q(t) = Re

{∑
j

∑
k

[
−(kωj)

2M + ikωjB + K
]−1

f
(k)
j eikωjt

}
. (33)

The generalised coordinates in dependence on time can be written in the form

qi(t) =
∑

j

∑
k

(
q
(k)
i,j cos kωjt − q

(k)
i,j sin kωjt

)
, (34)

where real (with one strip) and imaginary (with two strips) components of complex vector

q
(k)
j =

[
−(kωj)

2M + ikωjB + K
]−1

f
(k)
j (35)

are introduced. Subscript i = 1, . . . , 137 is assigned to the generalised coordinate, subscript
j = 1, 2, 3, 4 to the operating main circulation pumps and subscript k to the harmonic compo-
nent of pressure pulsations. The components of the vectors q

(k)
j , corresponding to displacements

of the lower fuel assembly supporting plate in the lower part of core barrel (CB3) depicted in
Fig. 4 and the upper fuel assembly supporting plate (SP) in the block of protection tubes (BPT),
are transformed into displacement vector qX defined in (11) and next into lateral and bending
displacements in the end-nodes of the subsystem components [5].

As an illustration, extreme values of the total contact forces Fu,i, vertical slip displacements
yu,i and speeds cu,i of the fuel rod coating in contact points Ci, power P

(s)
u,i and work W

(s)
u,i of
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Fig. 10. The fuel assembly cross-section with chosen rods

Table 1. Extreme values at contact points of the fuel rod u in segment s = 3 with spacer grid cells on the
level g = 1

Quantity units mark Extreme values
u = 9 u = 11 u = 28 u = 31 u = 46

FR contact forces vs. N Fu,1 29.0 20.7 21.8 20.9 22.6
cells Fu,2 20.7 21.3 21.5 20.5 21.1

Fu,3 24.2 21.1 22.1 20.7 21.1
FR slip displacements μm yu,1 5.98 6.53 6.94 6.12 6.56
vs. cells yu,2 7.54 8.34 8.64 7.71 7.92

yu,3 2.98 2.98 3.39 2.91 3.48
FR slip speeds PP vs. mm/s cu,1 1.15 1.02 1.04 1.00 1.00
cells cu,2 1.53 1.46 1.38 1.26 1.18

cu,3 0.47 0.54 0.57 0.48 0.56
Friction power in con- mW Pu,1 5.35 4.07 4.15 4.01 4.00
tact points Pu,2 6.08 5.92 5.66 4.98 4.73

Pu,3 1.91 2.13 2.42 1.92 2.24
Friction work in contact μJ Wu,1 123 96.0 104 98.1 102
points Wu,2 164 131 134 122 121

Wu,3 50.8 49.2 53.5 46.8 54.0

the friction forces for chosen fuel rods u = 9, 11, 28, 31, 46 (see Fig. 10) in segment s = 3 on
the level of spacer grid g = 1 are demonstrated in Table 1.

The time behaviour of these quantities for spacer grid cells surrounding the fuel rod u = 46,
with the exception of work, in time interval t ∈ 〈0; 100〉 [s] are shown in Figs. 11–14. This time
interval of the numerical simulation includes the long period 60

Δ n
[s] of the beating vibrations

caused by slightly different main circulation pumps revolutions Δ n [rpm].
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Fig. 11. The contact forces between fuel rod u = 46 in segment s = 3 and spacer grid cells on the level
g = 1
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Fig. 13. The vertical slip speeds between fuel rod u = 46 in segment s = 3 and spacer grid cells on the
level g = 1
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Fig. 14. The power of the friction forces between fuel rod u = 46 in segment s = 3 and spacer grid cells
on the level g = 1
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6. Conclusion

The described method enables to investigate the flexural kinematically excited vibrations of all
fuel assembly components. The vibrations are caused by spatial motion of the two horizon-
tal supporting plates in the reactor core transformed into displacements of the kinematically
excited nodes of the fuel assembly components — fuel rods, guide thimbles, centre tube and
skeleton angle pieces. The special coordinate system of radial and orthogonal lateral and flexu-
ral angular displacements around these directions of the fuel rods and guide thimbles enables to
separate the hexagonal type FA into six identical revolved rod segments characterized in global
fuel assembly mathematical model by identical mass, damping and stiffness matrices. These
identical subsystems are linked each other and with centre tube and skeleton by spacer grids on
the several level. The elastic properties of the spacer grid on the different horizontal levels g are
expressed in the fuel assembly global model by alternate springs with stiffnesses kg calculated
on the basis of their identical deformation energy with cells. All fuel assembly components are
modelled as one dimensional continuum of beam type with nodal points in the gravity centres
of their cross-sections on the level of the spacer grids.

The developed methodology was used for steady-state vibration analysis of the Russian
type nuclear fuel assembly caused by motion of the support plates, excited by pressure pul-
sations generated by main circulation pumps in the coolant loops of the primary circuit. The
developed software in MATLAB is conceived in such a way that enables to choose an arbitrary
configuration of operating pumps whose rotational frequencies are slightly different in the ex-
perimentally determined frequency interval f ∈ 〈16.635; 16.645〉 Hz. This phenomenon results
in beat vibrations, which amplify dynamic normal and friction forces in the contact of the fuel
rod coating and spacer grid cells. The software enables an identification of the maximal dy-
namic loaded spacer grid cell and calculation of the maximal normal contact forces between
fuel rod coating and surrounding spacer grid cells for the arbitrary fuel rod on the arbitrary
spacer grid levels. Subsequently we can calculate the friction force work in the contact lines of
the chosen fuel rod with cells during defined time period. In this way the abrasion of fuel rod
coating can be estimated.
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