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Abstract

Modal parameters of a rotating multiple disk-shaft system are estimated in Multiple Input/Multiple Output (MIMO)
scheme. The response at multiple output degrees of freedom (dofs) and excitations at multiple input (reference)
dofs are related through the Frequency Response Function (FRF) matrix. The corresponding Impulse Response
Function (IRF) matrix is obtained by Inverse Fast Fourier Transform (IFFT) of the FRF matrix. The resulting
FRF matrix is not symmetric due to the gyroscopic effects introduced by rotation. The Eigensystem Realization
Algorithm (ERA) and its equivalent low order time domain algorithm, based on the Unified Matrix Polynomial
Approach (UMPA) are employed to estimate the desired modal parameters, i.e., system eigenvalues and the asso-
ciated right hand and left hand eigenvectors. The right hand vectors are estimated from multiple columns of the
FRF matrix with the structure rotating in one direction, and the left hand vectors are estimated from the multiple
rows of the FRF matrix, which are calculated as the transpose of the same multiple columns of the FRF matrix,
estimated with rotation in the opposite direction. The obtained results are found to be in excellent agreement with
results obtained from Theoretical Modal Analysis (TMA).
c© 2014 University of West Bohemia. All rights reserved.
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1. Introduction

The multiple disk-shaft system is found in numerous mechanical and aerospace applications,
such as compressors, turbines, and hard disk drives. Stringent requirements on such systems
which operate at high rotational speeds, resulted in strong coupling between modes of con-
stituent components, i.e., between modes of the shaft and individual disks. It is therefore of
great importance to accurately predict their modal parameters to come up with a reliable de-
sign, free from resonance vibration during operation. This subject was examined by several
researchers, who employed different theoretical, numerical and experimental approaches to ad-
dress the problem [6–8, 14, 15, 20, 21, 23].

Modal parameters of multiple disk shaft system were theoretically and experimentally esti-
mated [11], where peaks in the FRF were used to identify the desired damped natural frequen-
cies. However, it is known that the considered system has closely coupled or repeated frequen-
cies, and it is essential to employ a MIMO estimation scheme to predict the modal parameters
of such systems. This estimation technique was employed to estimate the modal parameters of
the coupled vibration of a stationary flexible disk-flexible shaft system from theoretically gener-
ated FRF matrix [12,13]. To account for rotation, the present work simulates multiple reference
testing of a flexible shaft carrying more than one flexible disk and rotating at a constant angular
speed. Impulse forces are assumed to excite the system at a number of excitation points Ni, and
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the resulting response at a number of output points No is calculated. The assumed excitations
and corresponding responses are used to estimate No ×Ni FRF matrix, which relates multiple
inputs and multiple outputs in the frequency domain.

The considered structure has isotropic rotating components and rotates at constant rotational
speed. This results in Linear Time Invariant system, which depends only on the rotational
speed [4] through the gyroscopic effects. The corresponding eigenvalue problem is non self-
adjoint and the corresponding FRF matrix is non-symmetric. Along with system eigenvalues,
both right hand and left hand eigenvectors are required to completely define the modal model
of the system. According to Nordmann [16], the right hand and left hand eigenvectors can be
estimated from a column and row of the FRF matrix, respectively. Since measuring a row of the
FRF matrix is not practical, Gutiérrez and Ewins [5] suggested an alternative way to estimate
the left hand eigenvector from a row of the FRF matrix. It was suggested to use a column of
the FRF matrix to estimate right hand eigenvectors with rotation in one direction and to use the
transpose of the same column of the FRF matrix, but with rotation in the opposite direction to
estimate the left hand eigenvectors. This is true because all system matrices of the considered
structure are symmetric, except for the gyroscopic matrix, which is skew-symmetric. This
means that the FRF matrix of a structure spinning in one direction is the transpose of the FRF
matrix, obtained with the structure spinning in the opposite direction.

The considered structure is known to have closely coupled and/or repeated modes due to its
isotropy and circular symmetry, it is therefore essential to employ MIMO estimation algorithms,
so as not to miss these modes. Therefore, multiple columns of the FRF matrix with rotation in
one direction are used to estimate the right hand eigenvectors, and the transpose of the same
multiple columns of the FRF matrix with rotation in opposite direction are used to estimate the
left hand eigenvectors.

The IRF matrix is obtained by IFFT of an FRF matrix. ERA [9, 10] and its equivalent
first order UMPA time domain algorithm [2, 3, 19] are employed to estimate the desired modal
parameters of the considered system.

The considered simulation is based on the theoretical model described in [11], where La-
grange’s equation was combined with the assumed modes method to derive equations of motion.
The obtained results are found to be in excellent agreement with results from TMA.

2. Theoretical Analysis

2.1. FRF Matrix of the multiple disk shaft system

The examined rotor consists of two flexible disks, attached to a fixed-free flexible shaft. The
shaft is modelled by a slender beam with circular cross section and uniformly distributed mass
and stiffness. The flexible disk is modelled by an annular thin plate, with uniformly distributed
mass and bending rigidity, and clamped at its inner radius to the outer radius of the shaft, as
shown in Fig. 1.

Vibratory motion of the considered rotating multiple disk-shaft system is discretized by the
application of the assumed modes method, where the flexible deformation of the disk or shaft is
represented by summation of a number of time-dependent generalized coordinates, multiplied
by assumed functions, as given bellow:

Us(z, t) =
∑
m

Um(z)am(t), (1)

Vs(z, t) =
∑
m

Vm(z)bm(t), (2)
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Fig. 1. Two flexible disk flexible shaft system

w(r, θ, t) =
∑
m

[wm(r) sin θqms(t) + wm(r) cos θqmc(t)], (3)

where Us and Vs are flexible shaft deformations along X and Y directions in a fixed coordinate
system, and w is the out-of-plane disk deformation in an attached to the disk coordinate system.
Mode shapes of individual flexible disk or flexible shaft are taken as the assumed functions.
In this study, where the coupled disk-shaft modes are examined, only one nodal diametral disk
modes are accounted for, because they are the only flexible disk modes that couple with flexible
shaft deformations. It is known that transverse flexible disk vibration takes place around the
disk according to sin(nθ) and cos(nθ), where n denotes the number of nodal lines in a given
mode. Modes shapes with n > 1 are known as reactionless modes because they don’t result
in net force or moment. This is not the case in modes with n = 1, where resulting forces and
moments produce coupling between these flexible disk modes and its pitching and translation
on the supporting flexible shaft.

The assumed modes method is combined with Lagrange’s equation:

d

dt

(
∂L

∂q̇j

)
+

(
∂D

∂q̇j

)
−
(
∂L

∂qj

)
= Qj (4)

to derive the governing equations of motion for the complete system, where L = T − U , D
is the dissipation function, and qj , Qj , T and U are the j-th generalized coordinate, the j-th
generalized force, total kinetic energy, and total strain energy, respectively. With assumed pro-
portional damping, equations of motion of the considered system are expressed in the following
matrix form:

[M ]{q̈}+ ([C] + [G]){q̇}+ [K]{q} = {Q}, (5)

where, [M ], [C], [G], and [K] are the mass, damping, gyroscopic, and stiffness matrices, and
{q} and {Q} are vectors of the generalized coordinates and generalized forces, respectively.

When proportional damping is considered, the damping matrix [C] is assumed to be a linear
combination of the mass and stiffness matrices, i.e. [C] = α[M ] + β[K], where α and β are
constants. The FRF matrix, which relates the generalized coordinates to the generalized forces,
can be expressed by:

[H ]qq =
[
[K] + jω ([C] + [G])− ω2[M ]

]−1
. (6)
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Knowing that the generalized forces are related to the physical forces by the transforma-
tion {Q} = [Ψin]{f}, where [Ψin] is the transformation matrix constructed from the assumed
functions of system components and the position of excitation points (references). Similarly,
the displacements at response dofs can be expressed in terms of the generalized coordinates
as: {x} = [Ψout]{q}, where [Ψout] is the transformation matrix constructed from the assumed
functions of system components and the position of response points. Details about these matrix
transformations can be found in [13].

Using the given above relationships between the generalized coordinates and generalized
forces on one side, and the physical displacements and physical excitation forces, on the other,
one can write the FRF matrix that relates the response {X}No×1 at No output dofs with the
excitations {F}Ni×1 at Ni input dofs in the form:

{X(ω)}No×1 = [H(ω)]No×Ni
{F (ω)}Ni×1 . (7)

This FRF matrix (or the corresponding IRF matrix) can be subsequently employed in a
MIMO estimation algorithm to extract the desired modal parameters of the considered system,
as discussed in the following section.

2.2. Modal parameters of the multiple disk shaft system

In the formulated FRF matrix, the output dofs consist of shaft points with two orthogonal de-
formations for each point, and out-of-plane responses points for each disk. Similarly, the input
dofs consist of transfer excitations at a number of shaft points and out-of-plane excitations at a
number of points for each disk. Both input and output dofs will be discussed in details in the
results section.

The Complex Mode Indicator Function (CMIF) of the estimated FRF matrix is examined
first, which is a plot of the singular values obtained from Singular Value Decomposition (SVD)
of the estimated FRF matrix for each spectral line [1, 22] according to:

[H(ωk)](No×Ni)
= [Uk](No×Ni)[Σk](Ni×Ni)[Vk]

H
(Ni×Ni)

, (8)

where [Uk](No×Ni) is the matrix of left singular vectors, [Σk](Ni×Ni) is a diagonal matrix of the
singular values, and [Vk](No×Ni) is the matrix of right singular vectors at the k-th spectral line.
Peaks in the CMIF curves occur at the damped natural frequencies of the considered structure,
and the left and right singular vectors associated with these peaks give approximation to the
corresponding mode shapes and modal participation factors, respectively.

ERA and its equivalent low order time-domain UMPA algorithm are used to extract the
desired modal parameters from the estimated IRF matrix. The ERA algorithm was originally
developed by NASA to construct a state space model from MIMO test data, and UMPA was de-
veloped as a general estimation approach, with the different estimation algorithms being special
cases of this general approach in both time and frequency domains.

Formulation of the UMPA time domain is based on the following general equation:

n∑
k=0

[α̃k]No×No[ht+k]No×Ni
= [0] for t = 0, . . . , N, (9)

where [α̃k] is the k-th polynomial coefficient matrix and [ht+k] is the IRF at the k-th time shift. In
the empolyed first order UMPA model, only [α̃0] and [α̃1] are used in the expansion. Additional
time shifts are added to this basic form to make sure the size of the coefficient matrix is enough
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to determine the desired number of modes, which results in following expanded form of the
equation:

[α0]

⎡
⎢⎢⎢⎢⎣

h0 h1 h2 · · · · · · · · · hN

h1 h2 . .
. · · · · · · hN hN+1

... . .
. ...

hn−1 hN+n−1

⎤
⎥⎥⎥⎥⎦ = −[α1]

⎡
⎢⎢⎢⎢⎣

h1 h2 h3 · · · · · · · · · hN+1

h2 h3 . .
. · · · · · · hN+1 hN+2

... . .
. ...

hn hN+n

⎤
⎥⎥⎥⎥⎦ (10)

or in compact form:
[α0][H0] = −[α1][H1], (11)

[α0] and [α1] are rectangular matrices of order n × No, and [H0] and [H1] are the Hankel ma-
trices, constructed from the IRF matrix [h(t)]No×Ni

. The corresponding matrix coeffiecient
characteristic polynomial is given by:

[α1]z
(1) + [α0]z

(0) = 0, (12)

where z = eλΔt and Δt is the time between consecutive samples.
For high order normalization, i.e., [α1] = [I], the companion matrix is simply [α0] and the

resulting eigenvalue problem is:
[α0]{φ} = λz{φ}, (13)

where {φ} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λn−1
z ψ

λn−2
z ψ
...

λzψ
ψ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

On the other hand, when low order normalization is used, the resulting eigenvalue problem
is:

[I]{φ} = λz[α1]{φ}. (14)

The desired eigenvalues λr = σr+jωr of considered sytem are obtained from eigenvalues (λz)r

of the formulated eigevalue problems above, with σr = Re
(

ln(λz)r
Δt

)
, and ωr = Im

(
ln(λz)r

Δt

)
.

3. Results and Discussion

The geometric and material properties of the shaft-disk system are:
Edisk = Eshaft = 200 GPa, νdisk = νshaft = 0.3, ρdisk = ρshaft = 7 800 kg/m3,(

Rin

Rout

)
disk

= 0.2, (Rout)disk = 0.25 m, hd1 = 0.002 m, hd2 = 0.002 5 m,

Zd1 = 0.5 m, Zd2 = 0.75 m, Lshaft = 0.75 m, (Rout)shaft = 0.05 m, (Rin)shaft = 0.048 m,
where hdk and Zdkare the thickness and spanwise position of the k-th disk. An FRF matrix,
which relates 86 response and 7 input dofs is estimated. The response dofs consist of two
transverse orthogonal deformations at 7 shaft points, and 36 out-of-plane response dofs for
each disk, located at the intersections of 6 radial and 6 circular lines, uniformly distributed over
the disk. The excitation is assumed to take place at input (reference) points, which consist of a
shaft excitation along the transverse X-direction (dof # 7), a shaft excitation along the transverse
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Y -direction (dof # 11), shown in Fig. 2. The first disk is excited by two out of plane excitations
at dofs # 17 and # 34, and the second disk is excited by three out-of-plane excitations at dofs
# 51, # 68 and # 85, shown in Fig. 3. The driving point FRF, associated with dof # 34, located
at the first disk, is presented in Fig. 4 for angular speed Ω = 300 Hz. The cross point FRFs
H(34, 85) and H(85, 34), which relate dof # 34 (located on the first disk) and dof # 85 (located
on the second disk) are shown in Fig. 5. These FRFs are estimated at angular speed Ω = 300 Hz
with the same sense of rotation. The non-symmetry property of the FRF matrix is noticed from
the shown phase plot. As discussed earlier, the skew symmetric nature of the gyroscopic matrix
results in an FRF matrix for a rotating structure in one direction to be the transpose of the FRF
matrix for the same structure when it is rotating in the opposite direction. This is demonstrated
in Fig. 6, which shows the cross point FRF H(34, 85) at Ω = 300 Hz in one direction, and the
cross point FRF H(85, 34) at Ω = 300 Hz in the opposite direction. The agreement between
the presented cross point FRFs demonstrates the fact stated earlier, i. e., the FRF matrix with
rotation in one direction is equivalent to the transpose of the FRF matrix with rotation in the
opposite direction.

Fig. 2. Transverse shaft excitation dofs

Fig. 3. Out of plane disk excitation dofs
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Fig. 4. Driving point FR H(34, 34) with positive and negative Ω

Fig. 5. Cross point FRFs H(85, 34) and H(34, 85) with positive Ω
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Fig. 6. Cross point FRFs H(85, 34) with positive Ω and H(34, 85) with negative Ω

Fig. 7. CMIF of the FRF matrix at Ω = 0, 200 and 300 Hz

Fig. 7 presents the CMIF of the estimated FRF matrix at rotor speeds Ω = 0, 200 and 300Hz,
where split in the resulting natural frequencies due to the gyroscopic effect is demonstrated.

Since the eigenvalue problem associated with rotating structure is non self-adjoint and its
FRF matrix is not symmetric, it is necessary to estimate both right hand and left hand eigen-
vectors, associated with the same set of eigenvalues. Multiple columns of the FRF matrix with
rotation in a given direction are used to estimate eigenvalues and the corresponding right hand
eigenvectors. Based on the discussion above, the multiple rows, required to estimate left hand
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eigenvectors, are obtained as the transpose of the same multiple columns of the FRF matrix,
estimated with rotation in the opposite direction.

Thus, the same reference and same excitation points are used to obtain the required FRF
matrix data, necessary to estimate the system eigenvalues and both right hand and left hand
eigenvectors. The natural frequencies and damping ratios are estimated using both ERA and the
first order UMPA time domain algorithms, and the results are shown in Table 1 along with the
corresponding results from TMA, where an excellent agreement between the results is noticed.
The available FRF data along with the estimated eigenvalues are used to estimate residues,
which can be used to obtain normalized sets of the right hand and left hand eigenvectors.

Table 1. Estimated natural frequencies (Hz) by different estimation methods

Mode # ERA UMPA TMA
1 65.391 65.391 65.391
2 80.726 80.728 80.726
3 134.755 134.756 134.755
4 134.775 134.775 134.775
5 145.140 145.140 145.140
6 147.113 147.113 147.113
7 369.011 369.010 369.011
8 369.057 369.058 369.058
9 385.694 385.696 385.694

10 386.039 386.039 386.039
11 521.193 521.192 521.193
12 706.340 706.336 706.341
13 708.175 708.171 708.175
14 731.825 731.825 731.825
15 777.624 777.624 777.624
16 781.672 781.670 781.672

In modal analysis, the FRF matrix at a given frequency ωk is expressed as a superposition
of the contribution of individual modes as:

[H(ωk)] =
N∑
r=1

(
[Ar]

jωk − λr
+

[A∗
r ]

jωk − λ∗
r

)
, (15)

where [Ar] is the residue matrix and λr is the r-th eigenvalue associated with the r-th mode,
and ( )∗ denotes complex conjugate. The k-th vector of the residue matrix, associated with the
r-th eigenvalue, can be expressed in terms of the normalized r-th right hand eigenvector and the
k-th element of the normalized r-th left hand eigenvector by:

{Ar}k = {φR}r(φL)kr, (16)

where {φR}r and {φL}r are r-th right hand and left hand eigenvectors. If a unit value is assigned
to the k-th element of the r-th left hand eigenvector, i.e., (φL)kr = 1, then the r-th right hand
eigenvector {φR}r is determined from the k-th vector of the residue matrix i.e., {φR}r = {Ar}k
where the residue matrix [Ar] can be estimated from the available FRF matrix data. Other
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elements of the left hand eigenvector can be estimated from the corresponding rows of the
residue matrix.

The estimated modal parameters are used to synthesize the FRF matrix, which is then com-
pared to the original FRF matrix as a way to check the accuracy of the estimated results. One
driving point and two cross point original and synthesized FRFs are shown in Figs. 8–10. The
presented data clearly demonstrate the agreement between these FRFs, which confirms the va-
lidity of the estimated eigenvalues and corresponding right hand and left hand eigenvectors.

Fig. 8. Original and synthesized driving point FRF H(11, 11)

Fig. 9. Original and synthesized cross point FRF H(11, 34)
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Fig. 10. Original and synthesized cross point FRF H(11, 85)

4. Conclusions

MIMO estimation algorithm is employed to determine modal parameters of a rotating multiple-
disk-shaft system from theoretically generated FRF and IRF matrices. A first order time domain
estimation algorithm is used to estimate modal frequencies. Residue matrix, obtained from
an FRF matrix with rotation in one direction is used to estimate right hand eigenvectors, and
residue matrix, obtained from an FRF matrix with rotation in the opposite direction is used to
estimate left hand eigenvectors. With the adopted approach, the same excitation and response
dofs can be used to estimate both right hand and left hand eigenvectors. The obtained eigenval-
ues and eigenvectors are in excellent agreement with the results from TMA, which confirms the
ability of the presented method to handle experimental data.
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