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Abstract

The paper deals with upper and lower limits estimation of the nuclear fuel assembly eigenfrequencies, whose
design and operation parameters are random variables. Each parameter is defined by its mean value and standard
deviation or by a range of values. The gradient and three sigma criterion approach is applied to the calculation
of the upper and lower limits of fuel assembly eigenfrequencies in the probability sense. Presented analytical
approach used for the calculation of eigenfrequencies sensitivity is based on the modal synthesis method and the
fuel assembly decomposition into six identical revolved fuel rod segments, centre tube and load-bearing skeleton
linked by spacer grids. The method is applied for the Russian TVSA-T fuel assembly in the WWER1000/320 type
reactor core in the Czech nuclear power plant Temelı́n.
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1. Introduction

Deterministic vibration of the nuclear fuel assembly exists only if there is perfect control over
all design and operational parameters. The vibrational response of the fuel assembly depends on
many parameters that cannot be precisely predicted. Every parameter pj , magnitude of which
cannot be precisely predicted, is taken as a random variable characterised by a mean value p̄j
and a range of values Δpj = pjmax − pjmin. If the random variables have Gaussian distribution,
then the probability of pj lying inside the interval p̄j±3σj is 0.997 3 [4], where σj is the standard
deviation of pj calculated according to the condition

σj =
1

6
Δpj , j = 1, . . . , s . (1)

The goal of the paper, in direct sequence at deterministic interpretation of fuel assembly modal
analysis [5], is a presentation of the probabilistic method for the estimation of the upper and
lower limits of fuel assembly eigenfrequencies.

2. Conservative mathematical model of the fuel assembly

For the modelling purposes, the fuel assembly of hexagonal type, Fig. 1, is divided into subsys-
tems — six identical rod segments (s = 1, . . . , 6), centre tube (CT) and load-bearing skeleton
(LS), see the cross-section shown in Fig. 2. Each rod segment of the Russian TVSA-T fuel
assembly (in Fig. 2, it is drawn in the lateral cross section and circumscribed by triangles) is
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Fig. 1. Fuel assembly Fig. 2. Cross-section of fuel assembly

composed of 52 fuel rods with fixed bottom ends in lower piece (LP) and 3 guide thimbles (GT)
fully restrained in lower and head pieces (HP). The fuel rods and guide thimbles are linked by
transverse spacer grids (g = 1, . . . , 8) of three types (SG1-SG3) inside the segments. All fuel
assembly components are modelled as one-dimensional continuum of beam type with nodal
points located in corresponding gravity centres of their cross-section on the level of the spacer
grids. The mathematical models of the six segments (s = 1, . . . , 6) are identical in consequence
of radial ξ(s)r,g and orthogonal η(s)r,g fuel rods and guide thimbles lateral displacements and bending
angles ϑ(s)

r,g , ψ(s)
r,g around these lateral displacements on the level of the spacer grid g. Then, the

fuel assembly conservative model in the configuration space

q = [qT
1 , . . . , q

T
6 , q

T
CT , q

T
LS]

T (2)

of dimension n = 6nS + nCT + nLS can be written [5] as

Mq̈ + (K +KC)q = 0 . (3)

The block diagonal mass and stiffness matrices appearing in Eq. (3) and given as

M = diag[MS, . . . ,MS,MCT ,MLS] , K = diag[KS, . . . ,KS,KCT ,KLS]
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correspond to a fictitious fuel assembly that is divided into mutually uncoupled subsystems —
the six rod segments (subscript S), the centre tube (subscript CT) and the load-bearing skeleton
(subscript LS). The couplings between the subsystems are expressed by means of a coupling
stiffness matrix

KC = KS,S +KS,CT +KS,LS , (4)

where the matrices KS,S, KS,CT and KS,LS express the interaction between all rod segments
(KS,S) and other appropriate subsystems as denoted by the subscripts. Note that all matrices
appearing in Eqs. (3) and (4) are derived in the monograph [3].

Because the fuel assembly model given by Eq. (3) has too many degrees of freedom (DOF),
that is the DOF number n is too large, it is appropriate to compile the condensed conservative
model of the fuel assembly by using the modal synthesis method. The global vector of gener-
alised coordinates defined in Eq. (2) is transformed by means of modal matrices (submatrices)
of the subsystems into the following form:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

...
q6

qCT

qLS

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

mVS 0 . . . 0 0 0
0 mVS . . . 0 0 0
...
0 0 . . . mVS 0 0
0 0 . . . 0 VCT 0
0 0 . . . 0 0 VLS

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...
x6

xCT

xLS

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⇒ q =mV x . (5)

The matrix mVS ∈ RnS ,mS is the modal submatrix of the isolated rod segment S corresponding
to its mS low-frequency eigenvectors and VCT ∈ RnCT ,nCT , VLS ∈ RnLS ,nLS are the modal
matrices of the mutually isolated subsystems CT and LS, respectively. All modal matrices
(submatrices) fulfil the orthogonality condition

mV T
S MS

mVS = EmS
, V T

CTMCTVCT = EnCT
, V T

LSMLSVLS = EnLS
, (6)

where E denotes a unit matrix of dimension given by its subscripts. The application of the trans-
formation (5) to the fuel assembly model given by Eq. (3) yields the condensed conservative
model of the fuel assembly in the form

ẍ+ [mΛ+mV T (K +KC)
mV ]x = 0 . (7)

The diagonal matrix
mΛ = diag[mΛS, . . . ,

mΛS,ΛCT ,ΛLS]

is compiled from spectral matrices of mutually isolated subsystems. The condensed model has
the DOF number of m = 6mS + nCT + nLS , where mS � nS . The eigenfrequencies Ωi and
eigenvectors xi, i = 1, . . . , m of the condensed model (7) are used below for the sensitivity
analysis of the fuel assembly eigenfrequencies.

3. Upper and lower limits of the fuel assembly eigenfrequencies

Let us assume that the matrices in the fuel assembly model (3) are dependent on stochastic
independent random parameters p = [pj] ∈ Rs. These parameters are defined by their mean
values p̄ and the diagonal covariance matrix Σp = diag[σ2

j ] ∈ Rs,s. With respect to Eq. (1),
each diagonal element of the covariance matrix

σ2
j =

1

36
diag[Δp2j ], j = 1, . . . , s (8)
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corresponds to the range Δpj of the j-th random parameter. By using the gradient method
and on the condition that the standard deviations σj are relatively small, we can write the ap-
proximate relation for the covariance matrix of the fuel assembly eigenfrequencies [2] in the
form

ΣΩ
.
=

(
∂Ω(p)

∂pT

)
p=p̄

Σp

(
∂Ω(p)

∂pT

)T

p=p̄

, (9)

where Ω(p) = [Ωi(p)], i = 1, . . . , m is the fuel assembly low-eigenfrequency vector of dimen-
sion m. The mean values of fuel assembly eigenfrequencies are approximated as

Ω̄i(p)
.
= Ωi(p̄), i = 1, . . . , m . (10)

The diagonal elements σ2
Ωi

of the covariance matrix ΣΩ can be used for the calculation of upper
and lower limits of the fuel assembly eigenfrequencies

Ωimin = Ω̄i − 3
√

σ2
Ωi
, Ωimax = Ω̄i + 3

√
σ2
Ωi

(11)

according to the ‘three sigma criterion’ in the probability sense.

4. Sensitivity analysis of the fuel assembly eigenfrequencies

Elements ∂Ωi

∂pj
of the sensitivity matrix ∂Ω(p)

∂pT in Eq. (9) express the absolute sensitivity of the
eigenfrequency Ωi with respect to the parameter pj . The differentiation of the fuel assembly
eigenvalue problem

(K +KC − Ω2
iM)vi = 0 , i = 1, . . . , m

with respect to design or operation parameter pj and its multiplication by the transposed eigen-
vector vT

i yields

∂Ωi

∂pj
=

1

2Ωi

vT
i

(
∂K

∂pj
+

∂KC

∂pj
− Ω2

i

∂M

∂pj

)
vi , i = 1, . . . , m, j = 1, . . . , s , (12)

where according to Eq. (5), vi =m V xi. The eigenfrequencies Ωi and eigenvectors xi are
calculated from the eigenvalue problem of the condensed model (7)

[mΛ+mV T (K +KC)
mV − Ω2

iE]xi = 0 , i = 1, . . . , m . (13)

Here, the eigenvectors xi fulfil the condition xT
i xi = 1.

The sensitivity matrix appearing in Eq. (9) can be written in the form

[
∂Ω(p)

∂pT

]
p=p̄

=

⎡
⎢⎣

∂Ω1

∂p1
. . . ∂Ω1

∂ps
...

∂Ωm

∂p1
. . . ∂Ωm

∂ps

⎤
⎥⎦
p=p̄

∈ Rm,s . (14)

According to Eq. (12), the elements of the eigenfrequency sensitivity matrix are given as[
∂Ωi

∂pj

]
p=p̄

.
=

1

2Ωi(p̄)
xT
i (p̄)

mV̄ T

(
∂K̄

∂pj
+

∂K̄C

∂pj
− Ω2

i (p̄)
∂M̄

∂pj

)
mV̄ xi(p̄) , (15)

where

mV̄ =mV (p̄) ,
∂K̄

∂pj
=

∂K(p̄)

∂pj
,

∂K̄C

∂pj
=

∂KC(p̄)

∂pj
,

∂M̄

∂pj
=

∂M(p̄)

∂pj
.
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5. Application

The methodology presented above was applied to the Russian TVSA-T fuel assembly used in
the Czech nuclear power plant Temelı́n [5]. For the purpose of this paper, we will introduce
the mean values and the limits of the fuel assembly eigenfrequencies, both calculated according
to Eqs. (10) and (11), respectively. The chosen random parameters tAP (thickness of the angle
pieces sheet), kg (lateral stiffness of the couplings between fuel rods by means of spacer grig
cells on all levels), �x (mass density), Ex (Young’s modulus) of the fuel rods cladding from
zirconium (x = C), fuel pellets (x = P ) and guide thimbles (x = GT ) and F (pressure axial
load acting on the fuel assembly head piece) are characterised by a mean value p̄j and a relative
range of values Δpj

p̄j
, j = 1, . . . , 9 listed in Table 1.

Table 1. Mean values and relative value range of chosen random parameters

pj tAP kg �C �P �GT EC EP EGT F
SI-units mm Nm−1 kg m−3 GPa N

p̄j 0.65 89 500 6 550 10 500 6 350 75 216 75 9 760
Δpj
p̄j

0.02 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.2

With respect to each of the chosen random parameter, the elements of the eigenfrequency
sensitivity matrix (14) are expressed according to Eq. (15) as

∂Ωi

∂tAP
=

1

2Ωi(p̄)
xT
i (p̄)

mV̄ T

(
∂K̄

∂tAP
− Ω2

i (p̄)
∂M̄

∂tAP

)
mV̄ xi(p̄) ,

∂Ωi

∂kg
=

1

2Ωi(p̄)
xT
i (p̄)

mV̄ T ∂K̄C

∂kg
mV̄ xi(p̄) ,

∂Ωi

∂�x
= −Ωi(p̄)

2
xT
i (p̄)

mV̄ T ∂M̄

∂�x
mV̄ xi(p̄) , x = C, P,GT , (16)

∂Ωi

∂Ex
=

1

2Ωi(p̄)
xT
i (p̄)

mV̄ T

(
∂K̄

∂Ex
+

∂K̄C

∂Ex

)
mV̄ xi(p̄) , x = C, P,GT ,

∂Ωi

∂F
=

1

2Ωi(p̄)
xT
i (p̄)

mV̄ T ∂K̄

∂F
mV̄ xi(p̄)

for i = 1, . . . , m. The mean values and limits of the 20 lowest fuel assembly eigenfrequencies
at the temperature 350 ◦C are summarised in Table 2. Note that in this table, the pairs of
eigenfrequencies corresponding to flexural (F) and breathing (B) mode shapes are presented
only once and that the unpaired single eigenfrequencies correspond to torsion (T) mode shapes.

Selected typical mode shapes of the fuel assembly sampled from particular mode shape fam-
ilies and calculated for mean values of parameters are shown in Figs. 3–5. From these figures,
it can be noted that while the flexural mode shapes are characterised by inphase deformations
of all fuel assembly components, the spacer grid cells remain practically non-deformed. Also
the torsion mode shapes are characterised by maximal deformations of the outside fuel rods,
whereas the breathing modes are characterised by large deformations of the spacer grid cells.
All mode shapes are visualised on the cross section of the fuel assembly at the level of the
chosen (in Figs. 3–5 on the fourth-central) spacer grid. The visualised abscissae represent the
lateral deformations of all fuel assembly components (fuel rods, guide thimbles, centre tube and
skeleton angle pieces) on equal scale.
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Table 2. Mean values and limits of the fuel assembly eigenfrequencies

mode fi limits
i f̄i[Hz] shape lower upper

1,2 2.46 F1 2.37 2.56
3 3.37 T1 3.25 3.49

4,5 5.69 F2 5.46 5.91
6 7.74 T2 7.45 8.02

7,8 9.87 F3 9.47 10.28
9 11.68 T3 11.23 12.13

10,11 13.03 B1 12.47 13.60
12,13 14.01 B2 13.42 14.59
14,15 15.16 F4 14.52 15.79

16 16.40 T4 15.73 17.07
17,18 16.43 B3 15.77 17.10
19,20 18.16 B4 17.37 18.95

Fig. 3. The first flexural mode shape corresponding to f̄1
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Fig. 4. The first torsional mode shape corresponding to f̄3

Fig. 5. The fourth breathing mode shape corresponding to f̄19
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6. Conclusion

The described analytical-numerical method enables to investigate the eigenfrequencies limits
of linear vibrating systems with a large number of DOF. The presented approach based on the
system decomposition into smaller subsystems, the modal synthesis and the gradient methods
enable an efficient calculation of the upper and lower limits of eigenfrequencies in the probabil-
ity sense. In cases, where an analytical calculation of the partial derivation of eigenfrequencies
with respect to design or operation parameters is impossible, a numerical procedure for the
calculation of the sensitivity and covariance matrices of the eigenfrequencies can be applied
instead. The developed methodology was used for the calculation of eigenfrequencies limits
in the nuclear fuel assembly of hexagonal type. The assembly design and operation param-
eters taken as random variables were chosen on the basis of their possible change during the
reactor operation. The principles of the developed method are generally applicable to various
mechanical systems.
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