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A. Št’astnýa,∗
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Abstract

This paper deals with metamodel-based optimization of plated steel beams. The first part of the article explains
the principle of the metamodel-based optimization approach and also provides basic information on incorporated
sub-methods such as design of experiments (DOE), mathematical approximation methods and mathematical opti-
mization methods. Since optimized sections tend to be slender and thus susceptible to buckling, special attention is
paid to the buckling evaluation. Both linear and nonlinear buckling analyses are employed. The nonlinear buckling
analysis addresses detrimental influence of imperfections on the limit load by introducing equivalent geometric
imperfections into the finite element (FE) model. The shapes and magnitudes of these imperfections are based
on recommendations for plated beams given in Eurocode 3 (EC3). The practical part of the article illustrates the
approach on step by step basis using an example of spreader beam weight optimization. It is shown that simple
metamodels can efficiently substitute the FE model in optimization, thereby making the process very fast. The
parametric FE models are developed in the Ansys Parametric Design Language (APDL). The governing algorithm,
as well as most of the mathematical sub-methods, is realized in the Matlab software.
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1. Introduction

Analyses of engineering structures have undergone considerable changes in the last twenty years.
The major changes reflect the development in the field of computational methods, hardware and
software. Employment of FEM-based software packages in practical engineering enables sol-
ving more complex problems in comparison with the traditional analytical approach. Most of
design codes still rely on the analytical approach; however, FEM-based procedures and recom-
mendations have started to appear. For example, annex C of [3] gives practical recommendations
on performing FE analyses of plated steel structures.

Both analytical and FEM-based approaches can be adopted in structural optimization, which
is a process of identifying the best product parameters with respect to a predefined design goal (or
goals) and design constraints. The design goal is expressed as an objective function. The product
parameters which can be changed by the designer are called design variables. Assigning each
design variable to an axis of the orthogonal coordinate system, we define a multi-dimensional
space, which is referred to as design space. Since the range of each design variable is limited to
an interval, the design space is limited as well. Design constraints delimit a subset of the design
space which is referred to as feasible region. The task of an optimization algorithm is to search
for an extreme of the objective function inside the feasible region of the design space. Fig. 1
depicts the principle of optimization.
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Fig. 1. Principle of optimization

In an optimization problem, design variables are organized in a design vector

X = (x1, x2, . . . , xn)
T , (1)

where x1 through xn are design variables. The objective function can be expressed as a function
of design variables

f(X) = f(x1, x2, . . . , xn). (2)

Design constraints are expressed as equalities and inequalities dependent on design variables

gi(X) = 0 for i = 1, 2, . . . , m, (3)
hj(X) ≤ 0 for j = 1, 2, . . . , p, (4)

xk ∈ 〈xkmin; xkmax〉 for k = 1, 2, . . . , n. (5)

Here m is the number of equality constraints, p is the number of inequality constraints and n is
the number of design variables. Expression (5) defines the design space.

Optimization is often performed by using the trial and error approach in practical engineering.
Despite considerable advances in computing hardware development, each trial can represent
a long running FE analysis. Furthermore, trial and error approach does not explain functional
relationships between design variables and output quantities. To solve the optimization systema-
tically, mathematical optimization methods have to be adopted. Using the analytical approach
to conduct the structural analysis, the objective function and design constraints can be directly
expressed as closed-form mathematical functions of design variables; however, this is possible
for simple problems only. Complex engineering analyses rely on FEM, which unfortunately does
not directly provide closed-form expressions for the objective function and design constraints.
To address this drawback of FEM, metamodeling can be used as a possible solution. The flow
of the metamodel-based optimization approach is outlined in Fig. 2.
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Fig. 2. Principle of metamodel-based optimization

2. Brief overview of key sub-methods of metamodel-based optimization

2.1. Design of experiments (DOE)

As outlined in the Introduction, DOE is a sampling strategy in a design space which is aimed
to identify an efficient set of experiments (FE simulations) for acquiring data for identification
of metamodels’ parameters. Application of this strategy maximizes metamodel quality, even
though the number of needed experiments is reduced. DOE sampling plans can be divided into
two basic groups:

• Statistical plans

These plans are designed especially for physical experiments, i.e. experiments which
possess a random error. To eliminate influence of this error on metamodel quality, statistical
plans prescribe more replications at one point and some of them also locate sample
points on or near boundaries of the design space. These plans are often applied without
replications in the field of computer experiments. The most popular statistical plans are:
full factorial design (Fig. 3a), partial factorial design, central composite design (Fig. 3b)
and Box Behnken design. A detailed description of the statistical plans can be found in [7].

• Space filling plans

These plans are intended to be used for computer experiments, i.e. experiments without
the random error. In order to explore the response variability, samples are evenly and
economically distributed in whole volume of the design space. These plans generate
higher number of samples, because the computer experiments are cheaper and faster than
the physical ones. These plans are often called modern plans. The most popular modern
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Fig. 3. Examples of 2D experimental designs in unit design space

plans are: Latin hypercube sampling (Fig. 3c), pseudo Monte Carlo sampling, quasi Monte
Carlo sampling, maximin and minimax designs. A detailed survey of the modern plans is
presented in [6].

2.2. Mathematical approximation methods

Mathematical approximation methods construct approximate descriptions of relationships be-
tween design variables and responses of primary models (e.g. FE models). These approximations
are often referred to as metamodels. Metamodels are built from a moderate number of experi-
mental data (results of FE analyses in case of computer experiments) in order to provide fast
approximate results over the design space or its sub-region. There are many alternative meta-
model types. The choice of a particular form primarily depends on the degree of variability of
the approximated response. Responses showing linear or slightly nonlinear global trends can
be approximated by low order polynomial metamodels. Responses showing higher degree of
nonlinearity have to be approximated by more sophisticated methods such as artificial neural
networks, radial basis functions or kriging. Since the response quantities used in optimization
of steel beams show smooth global trends in their variability, second order polynomials seem
to be sufficient. The least square method is used to identify their parameters from a set of
experimental data. This method is straightforward and the polynomial objective function and
design constraints are easy to use and in design exploration and optimization. The general form
of the second order polynomial metamodel can be expressed as

Ŷ (X) = β0 +
n∑

i=1

βixi +
n∑

i=1

βiix
2
i +

∑
i<j

n∑
i=1

βijxixj , (6)

where Ŷ (X) is the approximated response (metamodel), X is the design vector, β0, βi, βii, βij

are regression coefficients, xi is the ith design variable and n is the number of design variables.
Before using a metamodel in optimization, a goodness of fit assessment shall be done. The

coefficient of determination is often used as a global measure of approximation quality. This
coefficient quantifies how much variability in a response is explained by the metamodel. Its
value lies in the interval 〈0; 1〉. The bigger value indicates the better quality of approximation.
The coefficient of determination is defined by equations (7) through (11).
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R2 =
SSM

SST
= 1− SSE

SST
, (7)

SSM =
n∑

i=1

(
Ŷ (Xi)− Ȳ

)2
, (8)

SST =
n∑

i=1

(
Y (Xi)− Ȳ

)2
, (9)

SSE =
n∑

i=1

(
Y (Xi)− Ŷ (Xi)

)2
, (10)

Ȳ =
1
n

n∑
i=1

Y (Xi). (11)

Here, SSM is the metamodel sum of squares, SST is the total sum of squares, SSE is the residual
sum of squares,Xi is the ith design point, Y (Xi) is the exact value of the response Y in the ith

design point, Ȳ is the average value of Y, Ŷ (Xi) is the approximated value of Y (Xi) in the ith

design point, n is the number of design points given by the DOE plan. In addition to R2, the
following measures can be used to estimate local deviations:

MAE =
1
n

n∑
i=1

(
Ŷ (Xi)− Y (Xi)

)
, (12)

REL = max

∣∣∣∣∣
Ŷ (Xi)− Y (Xi)

Y (Xi)

∣∣∣∣∣ , (13)

MAX = max
∣∣∣Ŷ (Xi)− Y (Xi)

∣∣∣ . (14)

Here, MAE is the mean absolute error, REL is the maximum relative error and MAX is the
maximum absolute error.

2.3. Mathematical optimization methods

The optimization methods for continuous functions can be divided into three main groups:

• Differential calculus analytical methods
These methods are analytical and make use of the differential calculus to find the opti-
mum. The functions have to be twice differentiable with respect to all design variables.
According to the form of constraint functions, optimization problems can be solved by
direct substitution, Lagrange multiplier method or by application of Kuhn-Tucker opti-
mality conditions. The main advantage of these methods is their analytical nature, i.e.
finding an optimum without a troublesome iterative process. The main drawbacks are the
differentiability requirement and applicability to simple problems only.

• Differential calculus numerical methods
The main idea of this group of methods is based on the fact that the gradient points in
the direction of the steepest ascend of a function. Starting the iterative procedure from
an initial estimate of an optimal point, the algorithm iteratively approaches the optimum.
The following fundamental questions have to be answered at the end of each iteration:
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– Is the current point the optimal point?

– In which direction to continue?

– How far to continue?

According to the form of the objective function and design constraints, linear programing,
quadratic programing or nonlinear programing algorithms are adopted. Since most op-
timization problems in engineering result in nonlinear objective functions and/or design
constraints, the nonlinear programing algorithms have to be often used. In most cases,
these methods converge faster to the optimum point in comparison to heuristic methods.
The main drawback is their tendency to find a local optimum.

• Heuristic optimization methods

The fundamental principles of these methods are inspired by natural processes such
as natural evolution, behaviour of swarms or ant colonies. Apart from gradient-based
methods, the heuristic methods make use of random numbers instead of derivatives to
find new optimum candidates. Since these algorithms tend to explore whole volume of the
design space, there is high probability to find the global optimum. A drawback of these
methods is very high number of functional evaluations in comparison to gradient-based
algorithms. On the other hand, this drawback can be substantially reduced by using simple
metamodels which are evaluated very quickly.

In majority of engineering problems, selection of a suitable optimization method is restricted
by the following facts:

• Inequality design constraints such as stress and deflection limits are always present.

• Objective functions and/or design constraints tend to be nonlinear.

Based on the above mentioned restrictions and capabilities of the Matlab optimization
toolbox, the sequential quadratic programing (SQP) is chosen as a representative of gradient-
based methods and the genetic algorithm (GA) as a representative of heuristic methods. Both
SQP and GA represent the state of the art optimization schemes. Detailed description of both
algorithms is beyond the scope of this article and can be found in [8] and [9]. As the objective
function and design constraints are second order polynomials, the optimization is expected to
be quickly running using both algorithms. It is an advantage to use both gradient-based and
heuristic methods, because of mutual verification of results.

3. Consideration of buckling in optimization

Weight optimization of plated beams results in slender sections, which may become unstable
(buckle) before strength and deflection criteria are violated during loading. Since buckling can
govern the design, it has to be addressed in the optimization problem formulation. There are
two basic forms of buckling: bifurcation buckling and limit load buckling [5].

The bifurcation buckling is a sudden transition from a stiff membrane (axial) dominated
equilibrium path to a flexible bending dominated equilibrium path. Although this behaviour is
inherent to ideal axially or in-plane loaded structural members, it can be practically regarded as a
limiting behaviour of certain types of structural members with vanishingly small imperfections.
The load at which the bifurcation takes place is called critical or bifurcation load (see Mcr in

54
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Fig. 4. Critical and limit loads on schematic load-deflection diagrams

Fig. 4). It is well known that the critical load can be a non-conservative estimate of a load
at which the structure starts to behave unstably. This can be explained by the unavoidable
presence of imperfections, which prevent the structure from reaching the bifurcation point. The
deformation field follows the geometrical imperfection pattern from the beginning of loading
and beyond a certain level of load the deformations start to grow considerably faster than before.
This behaviour represents a loss of overall stiffness and the structure starts to behave unstably.
The rapid grow of deformation can be recognized on load-deflection diagrams according to
changes in their slope/curvature.

Since the transition between the membrane dominated equilibrium path and the bending
dominated path is not sudden, it is not so straightforward to define a load representing the
beginning of unstable behaviour. This load is referred to as limit load. The limit load can
be defined in several different ways. For example, civil engineers often define the limit load
as a load corresponding to the maximum of a load-deformation diagram (see ML in Fig. 4).
Considering elastic-plastic properties of material, the limit load according to this definition
indicates development of a plastic hinge. Apart from buildings, loadings on steel structures of
mechanical devices such as manipulators or lifting devices are limited by yielding (see MY in
Fig. 4). It is important to bear in mind that slender beams may become unstable before the yield
criterion is violated. This is given by higher sensitivity to geometrical nonlinearity, which can
cause large displacements while the material behavior is still elastic. In this case, the design is
governed by a deflection constraint. In general engineering practice, this is quite rare, because
most of the structures are of intermediate slenderness where yielding takes place before the
structure starts to lose stability. The loss of load carrying capacity of such structures is caused
by interaction of yielding and buckling.

In case of beams, two basic buckling modes can occur when the critical load is reached. The
first mode is local, because only localized compressed areas of webs and/or flanges buckle (see
Fig. 5). This mode is referred to as local or plate buckling. The second mode is global, because
whole compressed flange deflects laterally. Because of structural compatibility, beam cross
sections are also rotated (see Fig. 6). This global mode is referred to as flexural-torsional buc-
kling. The global mode is more dangerous, because locally buckled plates possess considerable
post-buckling strength.
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Fig. 5. Local buckling mode

Fig. 6. Lateral-torsional buckling mode

As far as the FEM-based buckling analysis is concerned, there are two general approaches.
The linear buckling analysis (LBA) calculates critical load parameters by solving the eigenvalue
problem

(K+ λ ·KG) · Ū = 0, (15)

whereK is the global stiffness matrix,KG is the geometric stiffness matrix,Ū is the mode shape
vector and λ is the critical load parameter. The solution of this problem provides information
on both critical loads and corresponding mode shapes. The solution consists of as many critical
load parameters and mode shapes as there are degrees of freedom in the FE model. Practically,
the lowest critical buckling mode is of interest. Both local and global mode shapes are provided.

The nonlinear buckling analysis with imperfections (GNIA) applies loads incrementally.
Depending on application, elastic or elastic-plastic material model can be used. Annex C of [3]
gives recommendations on performing the nonlinear buckling analysis of plated structures. It is
recommended that the imperfection pattern should be created by an appropriate combination of
adequately scaled mode shapes from LBA. It is indicated that a leading imperfection should be
chosen and then accompanying imperfections may have their values reduced to 70 % of the full
values. Table C.2 of [3] provides amplitudes of equivalent geometrical imperfections, which are
based on correlation with practical tests and thus account for the influence of residual stresses
as well. The main problem for an engineer is to choose which combination of imperfections is
critical. Since the global load carrying behaviour is of interest, the global lateral-torsional mode
is chosen as the leading and the first local buckling mode as the accompanying imperfection.
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Fig. 7. Combined imperfection

Introducing a combination of both global and local modes allows for an interaction effect of
these two modes. This is important, because global failures can be initiated by local ones. The
combined imperfection is depicted in Fig. 7.

4. Case study

In this section, the metamodel-based optimization methodology is applied to the weight optimi-
zation of a spreader beam depicted in Fig. 8. In general, more than eight design variables can
be defined. In order to graphically illustrate the process, the problem is reduced to two design
variables only. This reduction enables better visualization of the objective function and design
constraints by means of 3D plots. For comparison, three conceptually different DOE plans are
generated. Subsequently, a series of FE analyses is performed and parameters of second or-
der polynomial metamodels are identified. These metamodels are directly used as the objective
function and design constraints in the optimization process. A parametric FE model is developed
in APDL. Matlab software is used for DOE, metamodel identification and optimization. Whole
process is automatized and driven from Matlab.

Fig. 8. Spreader beam

4.1. Optimization problem description

The goal of this optimization problem is to find a lightweight configuration of a pre-designed
spreader beam (see Fig. 8) by finding optimal thicknesses of flanges and webs. The working
load limit (WLL) is 20 tons and the span of lifting hinges is 4 m. The beam will not experience
more than 10 000 loading cycles during its design life. The strength requirements given in
harmonized standard [1] shall be fulfilled. The beam is produced from structural steel S355
J2G3. The mechanical and physical properties are taken from [2] as follows: the yield stress
fy = 355MPa, the Young’s modulus E = 210 000MPa and the Poisson’s ratio μ = 0.3.
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Fig. 9 shows design parameters of the spreader beam. In our case, parameters tf and tw
are design variables and the remaining design parameters are kept at their pre-designed values,
which are listed in Table 1.

Fig. 9. Parameters of spreader beam

Table 1. Design parameters

parameter value [mm] parameter value [mm] parameter value [mm]
a 250 tf 6–10 L1 800
c 210 tw 4–6 h 200
b 500 L 4 000

4.2. Design criteria

Standard [1] defines a load case

X = SDL + 2 · SWLL, (16)

where SDL represents a self-weight of attachments and SWLL is the work load limit. The
coefficient “2” plays a role of a safety factor, which also accounts for the dynamic effect of
lifting and static test. The self-weight of attachments is considered negligible in comparison to
SWLL = 20 t.

The structure shall fulfil the following design criteria for the load case (16):
a) The Von Mises stress in plates shall not exceed the yield stress.

b) The beam shall not buckle. Both lateral-torsional and plate buckling shall be taken into
account.

The standard also ensures that beams fulfilling its criteria can experience up to 20 000
loading cycles without a special fatigue check. Deflection limits are not specified in the standard;
however, it is convenient to specify a limit on vertical deflection to ensure reasonable stiffness.
Please note, that vertical deflection is evaluated for the work load limit of 20 tons.

c) The vertical deflection shall not exceed L/500.

4.3. Mathematical formulation of the optimization problem

The optimization problem is defined by an objective function and five inequality design constra-
ints. The design constraints are formulated according to the limits a–c described in section 4.2.
The design variables creates a design vector

X = (tf, tw)T , (17)

where tf is the flange thickness and tw is the web thickness.
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• Objective function: beam volume [mm3]

The beam volume is taken directly from the FE model in each design point.

Volume = Volume (X) [mm3], (18)

• Design constraint 1: Von Mises stress shall not exceed the yield stress.

σEQV ≤ fy [MPa], (19)

where σEQV is the Von Mises equivalent stress, fy is the yield stress.

• Design constraint 2: Buckling safety factor shall be grater or equal to 1.

kB ≥ 1 [–], (20)

where kB is the buckling safety factor. As explained in [4], the lowest critical load
parameter from LBA shall be considered along with the limit load.

• Design constraint 3: Vertical deflection shall not exceed L/500 mm.

δ ≤ L/500 [mm], (21)

where δ is the vertical deflection and L is the beam length.

• Design constraint 4: Flange thickness shall be within the interval 〈6 mm; 10 mm〉.

6 ≤ tf ≤ 10 [mm], (22)

where tf is the flange thickness.

• Design constraint 5: Web thickness shall be within the interval 〈4 mm; 6 mm〉.

4 ≤ tw ≤ 6 [mm], (23)

where tw is the web thickness.

Design constraints 4 and 5 define the two-dimensional design space.

4.4. Finite element model

The parametric FE model is developed in APDL. Ansys Shell 181 elements are used for this
application, because they are suitable for modelling thin to moderately thick plate and shell
structures transmitting membrane and bending actions. Since the thickness is a parameter of
shell 181 elements, the FE mesh does not change among all evaluated configurations. The
element size has been established by performing a mesh sensitivity study. Loads are transmitted
to the structure by surface-based constraints realized by the multi-point constraint (MPC) contact
algorithm. The boundary conditions are applied so that they simulate the real situation, i.e. freely
hanging beam. Special attention is paid to enable development of the lateral-torsional mode of
buckling. In order to enable lateral displacement of the hook location (application point of the
force F ) and also to prevent beam rotation about the longitudinal axis, a week spring element is
used. Since the stress cannot exceed the yield stress and structural steels behave linearly below
the yield stress, linear-elastic material model is sufficient. The FE model is depicted in Fig. 10.
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Fig. 10. FE model description

4.5. FE analyses

Three kinds of FE analyses are carried out at each design point:

• Linear buckling analysis (LBA)
This analysis is used to calculate the lowest critical buckling load. In addition, the lowest
local buckling shape is identified to be used as the accompanying imperfection in GNIA.

• Linear elastic analysis (LEA)
This analysis is used to generate the geometric stiffness matrix KG for LBA and to
develop the global (flexural-torsional) imperfection shape to be used in GNIA. This is
accomplished by applying a continuously distributed lateral load to the bottom flange in
order to generate lateral deflection of the bottom flange and cross section rotation.

• Geometrically nonlinear elastic analysis with imperfections (GNIA)
The resulting pattern of equivalent geometric imperfections is introduced to the FE model
by scaling and superimposing mode shapes of the leading and accompanying imper-
fections. The amplitudes are given in Table C.2 of [3]. The global (lateral-torsional)
imperfection amplitude is given as

eLT = 0.5 · L/150 [mm], (24)

where L is the beam length. For the amplitude of the global imperfection, Table C.2 of [3]
makes reference to Table 5.1 of [2]. Based on the buckling curve d (given by Table 6.4
of [2]), an amplitude L/150 is considered. For lateral-torsional buckling, section 5.3.4(3)
of [2] is applicable as well. The recommended value of factor k = 0.5 is used. The local
imperfection amplitude is given as

eLB = 0.7 · b/200 [mm], (25)

where b is the web height. The coefficient 0.7 is recommended in annex C of [3] for
accompanying imperfections. The scaling and superimposing operations are practically
performed by calling the UPGEOM command in Ansys. The imperfect beam is then
incrementally loaded at least until the first yield is reached. In order to achieve better
convergence, displacement-based loading is used. Since our design space does not allow
extremely slender sections to be generated, the first yield criterion governs the design.
Fig. 11 shows load-deflection diagrams of the optimal section. The load causing the first
yield is indicated.
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Fig. 11. Load-deflection diagrams of configuration: tf = 8 mm, tw = 4 mm

Fig. 12. Sampling plans in design space (tw and tf are in mm)

4.6. Design of experiments
Three sampling plans with different characteristics are used for comparison of resulting meta-
models and optima. The sampling plans are listed below and depicted in Fig. 12.

• CCD is the most popular plan used to build quadratic polynomial metamodels. The number
of samples generated by the CCD is given by the number of design variables.

• Full factorial design generates a regular grid of samples. Sixteen samples are generated
in order to adequately and economically cover whole surface of the design space.

• LHS represents the space filling plans. The basic variant with sixteen samples is used.

The parametric FE model was executed for all DOE sample points and all required responses
were calculated. Because of the amount of data, Table 2 lists the calculated values for the full
factorial design only.
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Table 2. Calculated data – full factorial design

design
point

flange
thickness

(tf )

web
thickness

(tw)

vertical
deflection

(δ)

equivalent
stress

(σEQV )

buckling
safety factor

(kB)

beam
volume

[mm] [mm] [mm] [MPa] [–] [mm3]
1 6.0 4.7 6.9 475 1.3 24 843 646
2 7.3 4.0 6.2 390 1.6 27 662 164
3 8.7 4.0 5.4 338 1.9 30 480 893
4 10.0 4.0 4.9 294 2.1 33 299 410
5 6.0 4.7 6.5 437 1.7 26 870 414
6 7.3 4.7 5.9 360 2.2 29 688 932
7 8.7 4.7 5.2 307 2.6 32 507 661
8 10.0 4.7 4.7 282 2.9 35 326 178
9 6.0 5.3 6.1 405 2.1 28 896 878

10 7.3 5.3 5.7 313 2.8 31 715 396
11 8.7 5.3 5.0 288 3.3 34 534 125
12 10.0 5.3 4.5 260 3.9 37 352 642
13 6.0 6.0 6.5 369 2.6 30 923 646
14 7.3 6.0 5.5 294 3.4 33 742 164
15 8.7 6.0 4.9 264 4.1 36 560 893
16 10.0 6.0 4.3 246 4.9 39 379 410

Note: Vertical deflection is evaluated for the working load limit of 20 tons (196 200 N).

4.7. Identification of metamodel parameters

The objective function (18) and design constraints (1) through (3) are represented by quadratic
polynomial metamodels in two dimensions. Equation (6) represents a general formula for this
metamodel. Two-dimensional realization of equation (6) is given as

Ŷ (X) = β0 + β1 · tf + β2 · tw + β3 · tf 2 + β4 · tw2 + β5 · tf · tw, (26)

where Ŷ (X) is the metamodel,X is the two-dimensional design vector given by (17), βi is the
ith regression coefficient, tf and tw are design variables. The parameters are identified using
REGRESS function in Matlab. The metamodel parameters for all three sampling plans are listed
in Table 3 and the goodness of fit measures are listed in Table 4. The resulting metamodels for
the full factorial design are depicted in Fig. 13. The goodness of fit assessment as well as the
graphical representation of metamodels in Fig. 13 confirms good approximation of the FE data
by the second order polynomials metamodel.

4.8. Mathematical optimization

Both SQP and GA are realized in the optimization toolbox of Matlab (release 2011a). The SQP
is implemented in the fmincon solver and the GA in the ga solver. The fmincon and ga solvers
are configured by changing properties of optimset and gaoptimset structures, respectively. The
fmincon solver was configured to start from the middle of design space. Finding adequate
tolerances on constraints (Tolcon) and on cumulative change in the objective function value
(Tolfun) is quite cumbersome, because these tolerances are relative. Since the runtimes of both
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Table 3. Metamodel parameters

DOE
plan metamodel β0 β1 β2 β3 β4 β5

CCD

σEQV [MPa] 1 431.0 −188.9 −46.7 13.7 5.4 −10.2
δ [mm] 16.4 −1.3 −1.5 0.0 0.0 0.1
kB [–] 4.0 −0.4 −1.5 0.2 0.0 0.1
Volume [mm3] 164 2 113 930 3 039 983 0 0 0

Full
4× 4

σEQV [MPa] 1 651.0 −193.3 −125.1 7.3 7.5 2.6
δ [mm] 15.5 −0.8 −1.7 0.0 0.0 0.1
kB [–] 2.6 −0.3 −1.0 0.2 0.0 0.1
Volume [mm3] 59 2 113 954 3 039 970 0 0 0

LHS 16

σEQV [MPa] 1 738.3 −216.4 −133.9 11.8 7.7 0.5
δ [mm] 19.2 −0.6 −3.6 0.0 0.0 0.3
kB [–] 2.3 −0.2 −1.1 0.2 0.0 0.0
Volume [mm3] −1 631 2 113 771 3 040 903 84 −14 −157

Table 4. Goodness of fit assessment

DOE
plan metamodel R2 Radj2 REL MAX

CCD

σEQV [MPa] 1.00 0.99 1.7 % 6.07
δ [mm] 0.98 0.95 2.4 % 0.14
kB [–] 1.00 1.00 1.0 % 0.03
Volume [mm3] 1.00 1.00 0.0 % 24.82

Full
4× 4

σEQV [MPa] 0.99 0.99 4.8 % 14.95
δ [mm] 0.99 0.98 3.6 % 0.22
kB [–] 1.00 1.00 2.0 % 0.06
Volume [mm3] 1.00 1.00 0.0 % 154.65

LHS 16

σEQV [MPa] 0.99 0.98 4.2 % 13.08
δ [mm] 0.99 0.99 2.7 % 0.16
kB [–] 1.00 1.00 1.5 % 0.04
Volume [mm3] 1.00 1.00 0.0 % 172.87

solvers were quite short, tight tolerances were used. The size of population of the ga solver was
increased to 600 and the crossover fraction was set to 0.7 in order to ensure that the individuals in
each new generation are densely spread through the whole area of design space, thereby making
the convergence faster. The maximum number of generations was limited to 100. The solver
was also set to stop, if there was no improvement in the objective function for 10 subsequent
generations. Configurations of both solvers are summarized in Table 5. The properties which
are not listed used their defaults.

The calculated optima are listed in Table 6 and graphically depicted in Fig. 14 for metamodels
based on all considered DOE plans. Since the objective function and design constraints are
represented by smooth second order polynomials with low degree of curvature (see Fig. 13) it
was possible to configure both solvers so that identical optima were achieved in reasonable time.
Getting identical optima from both solvers proves their correct adjustment. Regarding results,
we have to realize that the plate thicknesses are modelled as continuous variables although they
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Fig. 13. Metamodels based on the full factorial design

Table 5. Configuration of optimization algorithms in Matlab

SQP GA
Property Value Property Value
solver fmincon solver ga

algorithm sqp Tolcon 1e-9
Tolcon 1e-9 Tolfun 1e-9
Tolfun 1e-9 MutationFcn @mutationadaptfeasible

x0 middle of design space PopulationSize 600
PopInitRange whole design space

CrossoverFraction 0.7
Generations 100

StallGenLimit 10

Table 6. Calculated optima

Sampling
plan

Optimization
algorithm

tf
[mm]

tw
[mm]

CCD
SQP 8.0 4.0
GA 8.0 4.0

Full 4× 4 SQP 8.1 4.0
GA 8.1 4.0

LHS 16
SQP 7.9 4.0
GA 7.9 4.0
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Fig. 14. Constraints and optima in design space

are discrete in reality; therefore, the optimum has to be rounded to commercially available plate
thicknesses. Considering available plate thicknesses as 4, 5, 6, 8 and 10 mm, the practically
realizable optimal configuration is: tf = 8 mm and tw = 4 mm. Moreover, we have to keep in
mind that the optimum configuration was calculated by using metamodels (i.e., approximations
of FE simulations, which possess bias errors); therefore they cannot be necessarily feasible
in reality and have to be verified by FE calculation. Table 7 lists responses of metamodels in
optimum points from Table 6 and Table 8 lists the calculated responses in the proposed optimum
configuration.

Table 7. Metamodel responses in optima

response
CCD

approx.
Full 4× 4

approx.
LHS 16
approx.

σEQV [MPa] 355 355 355
δ [mm] 5.8 5.8 6.1
kB [–] 1.8 1.8 1.7
volume [mm3] 28 991 296 29 222 152 28 813 206
weight [kg] 228 229 226

Note: weight is calculated from volume considering steel density � = 7.85× 10−6 kg/mm3

Table 8. Verification of optimum responses

response
tf = 8
tw = 4

σEQV [MPa] 353
δ [mm] 5.8
kB [–] 1.8
volume [mm3] 29 071 528
weight [kg] 228

Note: weight is calculated from volume considering steel density � = 7.85× 10−6 kg/mm3

5. Conclusion

This paper provided an overview of the metamodel-based optimization approach along with
specific recommendations for plated beams. Special attention was paid to the stability analysis.
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To account for the detrimental influence of imperfections on the limit load, the concept of
equivalent geometrical imperfections from EC3 was adopted. Because of the lack of data in the
design stage, using this concept is the best what an analyst can do.

The practical part illustrated the metamodel-based optimization process on the step by step
basis. Metamodels from different DOE plans were constructed and subsequently used by two
principally different optimization algorithms. Identical optima from both algorithms confirmed
correct adjustments. The ga solver had to work with large populations, thereby its runtime was
approximately twenty times longer than the runtime of fmincon solver, but it was negligible in
comparison to runtimes of nonlinear analyses in Ansys.

Regarding the optimization results, we can say that the metamodels from different DOE
plans and the corresponding optima are nearly identical. This can be attributed to small design
space and low variance of responses in this design space. Since this is not general case, analysts
should be aware of approximate character of metamodeling and properly review and verify
results. In our case, the practically realizable optimum was easy to find because of rounding to
commercially available plate thicknesses.

Modelling of discrete variables as continuous is quite common,because continuous functions
provide better understanding of relationships between design variables and responses. Further-
more, optimization of plated structures often includes both continuous (dimensions) and discrete
(thicknesses) variables.

It is common practice to use stiffeners to prevent local buckling and thereby achieving better
weight/strength ratios. Due to high cost of manpower required for welding, stiffeners are often
eliminated and thicker plates are used. The decision on using stiffeners depends on preferences
of the particular application. The lowest weights/strength ratio is generally achieved by adequate
stiffening, even though the cost is higher. The described methodology can be applied to stiffened
beams as well.

The future research is focused on application of metamodel-based optimization to fatigue
criteria. Here, the second order polynomial metamodels do not seem to work well due to high
nonlinearity and variability in the fatigue usage. The problem is also complicated by the fact
that structural standards use different fatigue curves for different design details.
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[3] ČSN EN 1993-1-5, Eurocode 3: Design of steel structures – Part 1-5: Plated structural elements,
2nd edition, Czech Office for Standards Metrology and Testing, 2013, (in Czech).

[4] ECCS, Buckling of steel shells-European design recommendations, 5 th edition, 2008.
[5] Galambos, T., Guide to stability design criteria for metal structures, 5 th edition, New York, John

Wiley, 1998.
[6] Giunta, A. A., Wojtkiewicz, S. F. Jr., Eldred, M. S., Overview of modern design of experiments

methods for computational simulations, 41 st AIAA Aerospace Sciences Meeting and Exhibit,
2003.

[7] Montgomery, D. C., Design and analysis of experiments, 8 th edition, John Wiley & Sons, 201.
[8] Nocedal, J., Wright, S. J., Numerical optimization, 2nd edition, Springer Series in Operations

Research, Springer Verlag, 2006.
[9] Rao, S. S., Engineering optimization: Theory and practice, 4 rd edition, John Wiley & Sons, 2009.

66


