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Negative stiffness in gear contact
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Received 5 October 2015; received in revised form 21 December 2015

Abstract

The tooth contact stiffness is very often included in dynamic mathematical models of gear drives. It is an important
value for calculation of torsion eigenfrequencies as well as the dynamic properties of the whole transmission
systems. Planetary gear drives have several advantages over simple parallel axis gears, especially due to theirs
compact design and great torque-to-weight ratio caused by multiple parallel paths. However, the dimensional or
mounting errors can cause that some planets have the tendency to take more load than the others. One of the ways
how to improve load sharing is the application of flexible planetary pins or by using a free central wheel. However
in such cases, the wheels motion is defined in one rotation coordinate and two translation coordinates — tangential
and radial. The reaction force at radial change of axis distance is usually neglected. The focus of this contribution
is to derive the stiffness of this radial connection and to analyse the influence of radial stiffness on planetary gear
dynamics.
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1. Introduction

The dynamic analyses of both single-mesh gears systems and multi-mesh planetary gear
transmission systems is of fundamental importance for the reduction of noise and vibrati-
ons of these very often used mechanical devises [2–4, 10]. A large amount of research work is
performed on the lumped-parameter mathematical models [1, 5], where the wheels are suppo-
sed to be non-deformable. The elasticity of gear structure is concentrated in springs modelled
by discrete translation and rotational stiffness of the shafts, bearings and gears contacts. The
properties of discrete mesh stiffness are the most investigated phenomena in gearing modelling.
It fluctuates over a mesh cycle, particulary in spur gearing. In helical gearings and in planetary
trains, these fluctuations are not so intensive. For the reduction of these fluctuations, some de-
sign strategies are applied such as tooth shape modifications or gear geometry adjustments [6].
The improvement of load sharing among the planets is achieved by the use of floating wheels,
flexible planetary pins etc. [7–9, 11].

Unfortunately, the application of floating or idle gears causes that the deformations in
mesh contact are not only in the direction of tangent to the base circle, but there is also a
motion component perpendicular to this tangential motion. Restoring forces at displacement in
this radial direction are usually not taken into account and are not respected in mathematical
modelling.

The present paper attempts to fill this white place and derive a radial stiffness of gears
contact for both external and internal tooth systems. The external gearing has negative stiffness
and introduces instability into the gearing system. Added examples show influence of this radial
stiffness on the dynamic behaviour of planet trains and of simple parallel gearings.
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2. The floating sun gear — one planet stage

Planetary gearboxes have several advantages over the single parallel-axes mechanical gearings,
the main one of these is the minimizing of weight of produce at a given power. It is due to splitting
of force flow into several planet stages, but the non-ideal mounting, errors in production etc.
can cause that the load sharing on all planet stages is very unequal and influences the reliability
and service live of the whole product. The correct designs of floating sun gear or flexible pins of
planet gears are possible ways how to achieve better performance and reliability. In this paper,
the type of gearings to be solved includes the gearbox with fixed planetary carrier and with four
planetary subsystems.

However, the structure of such gearing train is more complicated, and as such needs a deeper
dynamic analysis. It is not sufficient to solve only a tangential and torsion motion model, but the
radial motion has to be given as well. For the sake of simplicity, let us assume that the central
sun wheel, planet wheel as well as outer annulus ring wheel have helical gearings. Because this
kind of gearings has an essential smaller variation of contact stiffness compared to the direct
spur gearings, this stiffness variability is in this study not taken into account.

The tangential forces in tooth contacts are needed for ascertaining of radial stiffness. These
contact forces are given by input moment transmitted from the central sun gear to the ring wheel
through one planet subsystem. The planetary wheel works as idle gear wheel and the motion
of the whole planetary subsystem can be expressed by transversal-torsion dynamic model,
described by means of three angles of rotation of ring, planet and sun wheels ϕ1, ϕ2, ϕ3 and of
tangential translation of planet wheel x2.

The dynamic mathematical model of the planetary gearing set is based on several assumpti-
ons:

a) Plane motion of all gearing wheels.
b) Rigid wheels, with inertia parameters Θ1, Θ2, Θ3, m2, m3.
c) Exact gearings.
d) Compliant planet wheels pivot, stiffness kc.
e) Entire system is un-damped, linear.
f) Axis of the annulus ring wheel is fixed, wheel can only rotate.

Graphical representation of the kinematic situation is plotted in Fig. 1 and described by the
following equations expressing elastic contact deformations in mesh between ring 1© and planet
2© wheels

Δ1 =
F1
k1
= −r1ϕ1 + r2ϕ2 − r4ϕ4 (1)

and in mesh between planet 2© and sun 3© wheels

Δ2 =
F2
k2
= −x3 − r4ϕ4 − r2ϕ2 + r3ϕ3. (2)

The deformation of planet pin is

−x2 = −F4
kc
= r4ϕ4 (3)

and the deformation of sun wheel axis is

x3 =
F3
k3

. (4)

142
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Fig. 1. Kinematic horizontal-rotational situation

These forces or forces of corresponding moments can be used for describing the dynamic
properties of the entire gearings train in horizontal-rotational directions. The equations of motion
based on the equilibrium of moments are

Θ1ϕ̈1 = F1r1 − Mb,

m2ẍ2 = −F1 − F2 + F4,

Θ2ϕ̈2 = −F1r2 + F2r2, (5)
m3ẍ3 = −F3 + F2,

Θ3ϕ̈3 = −F2r3 +M1,

where we applied (3) and (4) for the horizontal motions x2 and x3.
The external moments M1, Mb containing constant component — preload — ascertain forces

in gearing contacts, which influence the radial stiffness at mutual radial motions of wheels.
Analysis of changes of mesh contact forces at wheel-axis-distance variation is important for the
ascertaining of radial forces. This distance variation is connected with the change of pressure
angle α as shown in Fig. 2, where the large angle changeΔα = 5◦ is used for better clarity. The
real angle variation is lower.

Fig. 2. Friction forces
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The tangential component of the mesh contact force increases only insignificantly at the
decrease of pressure angle Δα = 1◦, i.e. for the decrease from α = 25◦ to α = 24◦, we
get (cos(25)− cos(24))/ cos(25) = 0.007 99, while the radial component increases (sin(25)−
sin(24))/ sin(25) = 0.037 58, i.e. nearly 4 %.

The friction forces act also in tooth contacts. These forces are in well-lubricated gearings
very low, especially at helical gearings, where the teeth are in contact along the entire line of
action. The friction force acts in the dedendum of driver (on line of action in front of pitch point)
downwards, in addentum (behind pitch point) the friction forces have opposite directions —
Fig. 2, but their moments act always against the revolution of the driver and contribute to
the transmission energy losses. In helical gearings with multiple contacts, these moments add
together and degrease gearing train efficiency, but the resultant of all friction forces in radial
direction is negligible and need not be considered in the equation of vertical motion.

a) b)

Fig. 3. a) External mesh, b) Internal mesh

The mutual forces in wheels contact at theirs centres approachingΔy are given by the change
of pressure angle Δα, as shown in Fig. 3a by the dashed lines. The radial component of mesh
contact force decreases

ΔF = F (sin(α − |Δα|)− sin(α)) ∼= −F cos(α) sin(|Δα|). (6)

The change Δα = 1◦ gives ΔF/F = 0.015 82. The change of pressure angle Δα is connected
with the radial shift Δy. The radiuses r∗3, r∗2 of base circles together with the pressure angle α
and its change Δα determine this radial shift Δy:

Δy =
r∗3 + r∗2
cos(α)

− r∗3 + r∗2
cos(α − |Δα|)

∼= (r
∗
3 + r∗2) sin(α) sin(|Δα|)

cos2(α)
. (7)

After substitution of sin(|Δα|) from (6), we get the relation between the increase of radial
force ΔF and the radial shift Δy, i.e. the radial contact stiffness kr:

kr32 =
ΔF

Δy
=

−F cos3(α)
(r∗3 + r∗2) sin(α)

=
−F cos2(α)
(r3 + r2) sin(α)

. (8)

An interesting property of this radial external mesh stiffness is its negative value.
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Similar relations are valid also for the radial contact force between ring and planetary wheel.
A situation when the wheel centres approaches Δy is shown in Fig. 3b with dashed lines. The
basic difference compared to the previous case is in the internal gearing of the ring wheel. In
this tooth system, the pressure angle α increasesΔα > 0 at positive wheels centres approaching
Δy. The radial component of mesh contact force increases with increasing Δy

ΔF = F (sin(α +Δα)− sin(α)) ∼= F cos(α) sin(Δα). (9)

The radial contact stiffness kr of this internal gearing set is positive as opposed to the external
gearing set:

kr21 =
ΔF

Δy
=

F cos3(α)
(r∗1 − r∗2) sin(α)

=
F cos2(α)

(r1 − r2) sin(α)
. (10)

The combination of external and internal gearings is a typical property of planetary gearings.
The gearing connection between the central sun wheel 3© and the planet 2© is external, whereas
between the planet 2© and the ring wheel 1©, there is an internal gearing, see Figs. 1 and 4.

Because in planetary gearing is valid r3 + r2 = r1 − r2 and contact forces F1, F2 acting on
the satellite are approximately the same, then the radial stiffness in external and internal gear
contacts at the same pressure angle α have the same absolute value, but opposite signs:

kr21 = −kr32 = kr. (11)

Fig. 4. Vertical motion

The contact stiffness kr is proportional to the preload, i.e. to the transferring torsion moment.
Let be F = 1 000 N and pressure angle α = 25◦(cosα = 0.906 3). Then the radial contact
stiffness kr32 in the gear mesh of sun gear 3© (r3 = 0.05 m) with planet gear 2© (r2 = 0.1 m) is

kr32 =
−1 000 · 0.906 32
(0.1 + 0.05) · 0.422 6

∼= −13 000 N/m. (12)

In comparison to the tangential stiffness of gearing, this stiffness is very low, but in same cases
it can cause an instability. An example of such case is a radial motion of one planetary branch,
scheme of which is shown in Fig. 4.
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Planetary gears have several advantages over simple parallel axis gears, for example, the
distribution of power flow into several planetary wings enables to increase power density
transmission. For uniform distribution of power flow on all planetary wings, in spite of production
and assembling errors, the flexible planetary pins and free or very weakly supported sun wheel
are used in modern gearing design.

Motion equations of free vertical vibration of this two degree-of-freedom (DOF) system
with immobile axes of the ring wheel (y1 = 0), flexible planetary pin (kc) and very weakly
supported sun axes (k3) are following

m3ÿ3 − kr32(y3 − y2) + k3y3=0,

m2ÿ2 + kr32(y3 − y2) + kr21y2 + kcy2=0.
(13)

After using (11), equations (13) can be simplified to

m3ÿ3 − kr(y3 − y2) + k3y3=0,

m2ÿ2 + kry3 + kcy2=0
(14)

with the determinant

det = Ω4m2m3 − Ω2(m3kc +m2(k3 − kr)) + kck3 − kr(kc + kr) = 0. (15)

After replacing the mass and stiffness parameters in (15) with their numerical values (m2 =
50 kg, m3 = 100 kg, kc = 1.0 · 108 N/m, kr = 13 000 N/m) and taking several values of the sun
wheel stiffness (k3 = 0, 5, 10, 15, 20 kN/m), we get the square of eigenfrequencies Ω2 [(rad/s)2]
written in Table 1 or simple eigenfrequencies Ω [rad/s] listed in Table 2.

Table 1. Square of eigenfrequencies
����������Eigenfr.2

k3
0 kN/m 5 kN/m 10 kN/m 15 kN/m 20 kN/m

Ω21 [(rad/s)2] −520.06 −320.07 −120.07 79.93 279.93

Ω22 [(rad/s)2] 2.000 · 106 2.000 · 106 2.000 · 106 2.000 · 106 2.000 · 106

Table 2. Eigenfrequencies
���������Eigenfr.

k3 0 kN/m 5 kN/m 10 kN/m 15 kN/m 20 kN/m

Ω1 [rad/s] 22.80i 17.89i 10.96i 8.94 16.73

Ω2 [rad/s] 1 414.21 1 414.21 1 414.21 1 414.21 1 414.21

The negative radial mesh stiffness kr in the contact between satellite and free unsupported
sun wheel (k3 = 0) leads to unstable gear wings (Ω21 = −520.06 (rad/s)2). An addition of
supporting spring with stiffness k3 = 5 or 10 kN/m to the sun wheel axis decreases the level of
instability (Ω21 = −320.07 (rad/s)2 orΩ21 = −120.07 (rad/s)2). The stronger spring with stiffness
k3 = 15 kN/m reverses instability and the system becomes stable (Ω21 = 79.93 (rad/s)2) with the
eigenfrequency Ω1 = 8.94 rad/s. The stiffness k3 strongly influences the lowest eigenfrequency
Ω1 unlike the eigenfrequency Ω2, which remains constant, roughly independent on k3, as seen
from the last row of Tables 1 and 2.
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The graphical representation of these frequency spectrum properties is shown in Fig. 5. The
upper graph shows the linear increase of the square of the lower eigenfrequency Ω21 with the
increase in stiffness k3. The value of Ω21 changes its sign at k3 = kr. The lower graph shows
the dependence of eigenfrequency Ω1 on stiffness k3. For k3 < kr, this eigenfrequency has an
imaginary value (plotted in dashed lines) and the system is unstable. For k3 > kr, the imaginary
component of eigenfrequencyΩ1 is zero, whereas the real component has an increasing positive
value and results in stable oscillation of the central sun wheel.

Fig. 5. Eigenfrequencies at variable stiffness k3

Another situation is in the planetary wheel, which has two contacts. The lower radial contact
with sun wheel has stiffness −kr, the upper radial contact with ring wheel is internal and has
positive stiffness +kr. These stiffness parameters are in equilibrium and the stable position of
planetary wheel is ensured by the positive stiffness kc of the planetary pin.

The worst stability conditions occur in the two-planet system shown in Fig. 6a, where on the
free sun central wheel act two radial forces with negative stiffness. In real planetary gearings
with more than two planetary wings, as shown in Fig. 6b, the much higher tangential tooth
stiffness from the wings perpendicular to the central wheel’s displacement stabilised the entire
system and the motion of sun wheel, even if it is free, is also stable.

a) b) c)

Fig. 6. Free sun central wheels
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The instability issue also applies to the idler gear wheel (Fig. 6c) inserted between two other
gear wheels to change the direction of rotation of the output shaft. Usually, the stiff pin of this
idler wheel ensures sufficient level of stability and no problems occur. However, if there is some
clearance in the idler gear bearing, undesirable vibrations can arise.

3. Conclusion

This paper dealt with a phenomenon, which is nearly always neglected in the literature concer-
ning gearing. This phenomenon is the radial stiffness of contacts between gears at change of
axes distance. It has been shown that this stiffness depends on gear load, pressure angle and
base diameters of contacting gears. The stiffness value is negative for external gearings, and
positive for internal gearings. On examples, it has been shown that this radial stiffness is small
in comparison with the tangential stiffness, but in some special cases it can cause instability of
motion.
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