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Abstract

In this paper, single variable beam theories taking into account effect of transverse shear deformation are developed
and applied for the bending, buckling and free vibration analysis of thick isotropic beams. The most important
feature of the present beam theories is that unlike any other higher order theory, the proposed class of theories
contains only one unknown variable and does not require shear correction factor. The displacement field of the
present theories is built upon the classical beam theory. The theories account for parabolic distribution of transverse
shear stress using constitutive relations, satisfying the traction free conditions at top and bottom surfaces of the
beam. Governing differential equation and boundary conditions of these theories are obtained using the principle
of virtual work. Results obtained for the displacements, stresses, fundamental frequencies and critical buckling
loads of simply supported isotropic solid beams are compared with those obtained by other theories to validate the
accuracy of the present theories.
c© 2016 University of West Bohemia. All rights reserved.
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1. Introduction

Thick beams are basically two dimensional problems of elasticity theory. Reduction of this
problem to the one dimensional approximate problem for its analysis has always been the main
objective of researchers.

It is wellknown that classical beam theory (CBT) is based on Euler-Bernoulli hypothesis
that the plane sections perpendicular to the neutral axis before deformation remain plane and
perpendicular to the neutral axis after deformation. The CBT neglects the effects of transverse
shear deformation due to which, it is applied to thin beam only. It underestimates the values
of displacements and overestimates the frequencies and buckling loads in case of thick or
moderately thick beams.

To overcome the limitations of CBT, first order shear deformation theory (FSDT) is develo-
ped. The theory is also known as the Timoshenko beam theory [22]. The theory is based on the
hypothesis that the plane sections perpendicular to the neutral axis before deformation remain
plane, but not necessarily perpendicular to the neutral axis after deformation. FSDT considers
the linear variation of midplane displacement. In this theory transverse shear strain distribution
is assumed to be constant through the beam thickness and thus requires problem dependent
shear correction factor to appropriately represent the strain energy of shear deformation.
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The limitations of CBT and FSDT led to the development of higher order shear deformation
theories for the analysis of thick beams considering the effect of transverse shear deformation.
Levinson [10], Krishna Murty [9] and Heyliger and Reddy [7] presented a parabolic shear
deformation theory for the static and dynamic analysis of thick beams. Ghugal [3] has extended
this theory, including the transverse normal strain and transverse shear effects for the bending and
vibration of isotropic beams. A trigonometric shear deformation theory taking into account effect
of transverse shear deformation for shear flexible beams is presented by Ghugal and Shimpi [6].
Ghugal and Sharma [5] extended the hyperbolic shear deformation theory of Soldatos [20] for the
bending analysis of isotropic beams with various boundary conditions. Sayyad and Ghugal [15]
have developed trigonometric shear and normal deformation theory considering the effects of
transverse shear and normal deformations for the bending of isotropic and laminated beams.
Sayyad and Ghugal [16] also developed a new hyperbolic theory representing the combined
effect of shear and bending rotations on flexural analysis of thick beams. Karama et al. [8] have
developed exponential shear deformation theory for the bending, buckling and vibration of thick
beam. Sayyad [14] developed unified beam theory for the bending and free vibration analysis
of isotropic beams in which parabolic, trigonometric, hyperbolic and exponential functions are
used in terms of thickness coordinates to represent the effect of transverse shear deformation.
Ghugal [4] was the first to develop the parabolic shear deformation theory including one
unknown for the bending and vibration of isotropic beams. Recently, Sayyad et al. [17–19]
presented refined shear deformation theories for the bending analysis of isotropic, laminated
composite and sandwich beams. The displacement fields and number of unknowns involved in
various shear deformation theories are summerized in this paper (see Table 1).

From the above literature, it is pointed out that the minimum number of unknowns in the
higher order theories reported in the literature in last few decades is two. Therefore, in the
present study a new class of refined shear deformation theories is presented which involves
only one unknown satisfying the traction free boundary conditions at top and bottom surfaces
of the beams. To prove the efficiency of the proposed theories, they are applied for the bending,
buckling and free vibration analysis of simply supported uniform isotropic solid beams of
rectangular cross-section.

2. Theoretical formulations

2.1. Beam under consideration

Consider a prismatic beam of length L and rectangular cross-section (b× h) as shown in Fig. 1.
The loading q(x) is assumed in the vertical plane of symmetry of the cross-section and directed
transversely to the beam. The beam occupies the region 0 ≤ x ≤ L, −b/2 ≤ y ≤ b/2,
−h/2 ≤ z ≤ h/2 in a Cartesian coordinate system. The downward z-direction is taken as
positive.

Fig. 1. A simply supported beam of rectangular cross-section
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Table 1. The displacement field and the number of unknowns involved in various beam theories

Theory Displacement field Unknowns

CBT u(x, z, t) = −z dw0(x,t)
dx , w(x, t) = w0(x, t). One

Ghugal [4] u(x, z, t) = −z dw0(x,t)
dx − (1+μ)h2

4 z
[
1− 4

3

(
z
h

)2] d3w0(x,t)
dx3 , One

w(x, t) = w0(x, t).

Timoshenko [22] u(x, z, t) = −zφ(x, t), w(x, t) = w0(x, t). Two

Heyliger and Reddy [7] u(x, z, t) = z
[
φ(x, t)− 4

3

(
z
h

)2 (
φ(x, t) + dw0(x,t)

dx

)]
, Two

w(x, t) = w0(x, t).

Ghugal and Shimpi [6] u(x, z, t) = −z dw0(x,t)
dx + h

π sin
(

πz
h

)
φ(x, t), Two

w(x, t) = w0(x, t).

Soldatos [20] u(x, z, t) = −z dw0(x,t)
dx +

[
z cosh

(
1
2

)
− h sinh

(
z
h

)]
φ(x, t), Two

w(x, t) = w0(x, t).

Karama et al. [8] u(x, z, t) = −z dw0(x,t)
dx + z exp

[
−2

(
z
h

)2]
φ(x, t), Two

w(x, t) = w0(x, t).

Sayyad and Ghugal [16] u(x, z, t) =

−z dw0(x,t)
dx +

[
z cosh

(
1
2

)
− h sinh

(
z
h

)] (
φ+ dw0(x,t)

dx

)
,

Two

w(x, t) = w0(x, t).

Ghugal [3] u(x, z, t) = z
[
φ(x, t)− 4

3

(
z
h

)2 (
φ(x, t) + dw0(x,t)

dx

)]
, Three

w(x, z, t) = w0(x, t) +
[
1− 4

(
z
h

)2]
ψ(x, t).

Sayyad and Ghugal [15] u(x, z, t) = −z dw0(x,t)
dx + h

π sin
πx
h φ(x, t), Three

w(x, z, t) = w0(x, t) + h
π cos

πz
h ψ(x, t).

Zenkour [23] u(x, z, t) =

−z dw0(x,t)
dx +

[
h sinh

(
z
h

)
− 4
3

z3

h2
cosh

(
1
2

)] dφ(x,t)
dx ,

Two

w(x, z, t) = w0(x, t)+ 112

[
cosh

(
z
h

)
− 4z2

h2 cosh
(
1
2

)]
φ(x, t).

Thai et al. [21] u(x, z, t) = −
(
z − 4z3

3h2

)
β(x, t)− 4z3

3h2φ(x, t), Three

w(x, t) = w0(x, t).

Mantari et al. [11] u(x, z, t) =

−z dw0(x,t)
dx +

[
sin

(
πz
h

)
em cos(

πz
h ) + mπz

h

]
φ(x, t),

Two

w(x, t) = w0(x, t).
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Table 1. Continued

Theory Displacement field Unknowns

Mantari et al. [12] u(x, z, t) =
−z dw0(x,t)

dx +
[
tan(mz)− mz sec2

(
mh
2

)]
φ(x, t),

Two

w(x, t) = w0(x, t).

Carrera et al. [1] Carrera’s Unified Formulation (CUF) Depending

u = Ftut + Fbub + Frur, r = 2, . . . , N on value

σn = Ftσnt + Fbσnb + Frσnr, r = 2, . . . , N of r

w0 = Displacement of neutral axis in z-direction
φ = Shear slope at neutral axis corresponding to shear deformation
ψ = Shear slope at neutral axis corresponding to normal deformation (thickness stretching)

2.2. Assumptions made in theoretical formulation

Assumptions made in the theoretical formulation of proposed theory are as follows:

1. The axial displacement u in x-direction consists of two parts:

(a) A displacement component analogous to displacement of classical beam theory.
(b) Displacement component due to transverse shear deformation, which is assumed to

be parabolic, sinusoidal and exponential in nature with respect to thickness coordi-
nate.

2. There is no relative motion in the y-direction at any points in the cross-section of the
beam.

3. The transverse displacement w in the z-direction is assumed to be a function of x and t
only.

4. One-dimensional constitutive law is used.

2.3. Kinematics

Based on the above assumptions, the displacement field of the proposed beam theories is given
as:

u(x, z, t) = −z
dw0(x, t)
dx

− (1 + μ)h2

4
f(z)
d3w0(x, t)
dx3

,

w(x, t) = w0(x, t),

(1)

where u and w are the axial and transverse displacements of the beam center line in x- and z-
directions, respectively. The functions f (z) assigned according to the shearing stress distribution
through the thickness of the beam as given below:

Parabolic shear deformation theory (PSDT): f(z) =
[
z − 4

3
z3

h2

]
.

Trigonometric shear deformation theory (TSDT): f(z) = h
π
sin πz

h
.

Exponential shear deformation theory (ESDT): f(z) = z exp
[
−2

(
z
h

)2].
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The theory presented by Ghugal [4] is the special case of present displacement field. The
normal strain εx corresponding to the displacement in x-direction and the shear strain γzx

associated with the proposed beam theories are as follows:

εx =
du
dx
= −z

d2w0
dx2

− (1 + μ)h2

4
f(z)
d4w0
dx4

, (2)

γzx =
du
dz
+
dw
dx
= −(1 + μ)h2

4

[
df(z)
dz

]
d3w0
dx3

. (3)

One dimensional constitutive law is used to obtain bending and transverse shear stresses. These
stresses are as follows:

σx = Eεx = E

[
−z
d2w0
dx2

− (1 + μ)h2

4
f(z)
d4w0
dx4

]
, (4)

τzx = Gγzx = −G
(1 + μ)h2

4

[
df(z)
dz

]
d3w0
dx3

, (5)

where E is Young’s modulus, μ is Poisson’s ratio and G is shear modulus.

2.4. Governing differential equation of proposed beam theories

By using the relations (2)–(5) of strains and stresses and the principle of virtual work, va-
riationally consistent governing differential equation and associated boundary conditions are
obtained. The dynamic version of the principle of virtual work when applied to the beam leads
to:

∫ L

0

∫
A

(σxδεx + τxzδγxz) dA dx+ ρ

∫ L

0

∫
A

(
d2u
dt2

δu+
d2w
dt2

δw

)
dA dx−

∫ L

0
q(x)δw dx −

∫ L

0
N0xx

dw
dx
dδw
dx
dx = 0,

(6)

where the symbol δ denotes the variational operator, A is the cross-sectional area, ρ denotes the
density of material and N0xx is the axial compressive force. Substitution of strains from (2) and
(3) into (6) leads to the following equation in terms of moments M b, Ms and shear force V
resultants

−
∫ L

0
M bd

2δw0
dx2

dx − (1 + μ)h2

4

∫ L

0
Msd

4δw0
dx4

dx − (1 + μ)h2

4

∫ L

0
V
d3δw0
dx3

dx+

I0

∫ L

0

d3w0
dx dt2

dδw0
dx
dx+ I1

∫ L

0

d3w0
dx dt2

d3δw0
dx3

dx+ I1

∫ L

0

d5w0
dx3 dt2

dδw0
dx
dx+ (7)

I2

∫ L

0

d5w0
dx3 dt2

d3δw0
dx3

dx+ I3

∫ L

0

d2w0
dt2

δw0dx −
∫ L

0
q(x) δw0 dx −

∫ L

0
N0xx

dw0
dx
dδw0
dx
dx = 0,

where moment resultants M b, Ms and shear force resultant V are as follows

M b =
∫

A

σxz dA, Ms =
∫

A

σxf(z) dA and V =
∫

A

τxz
df(z)
dz
dA. (8)
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Integrating the equation (7) by parts, and collecting the coefficients of δw0, the following
governing differential equation is obtained:

d2M b

dx2
+
(1 + μ)h2

4
d4Ms

dx4
− (1 + μ)h2

4
d3V
dx3
+ I2

d8w0
dx6 dt2

+ 2I1
d6w0
dx4 dt2

+

I0
d4w0
dx2 dt2

− I3
d2w0
dt2
+ q(x) +N0xx

d2w0
dx2

= 0.

(9)

Substituting M b, Ms and V from (8) into (9) leads to the following governing differential
equation

C0
d8w0
dx8

+ (2B0 − D0)
d6w0
dx6

+ A0
d4w0
dx4

−

I2
d8w0
dx6 dt2

− 2I1
d6w0
dx4 dt2

− I0
d4w0
dx2 dt2

+ I3
d2w0
dt2

= q(x) +N0xx

d2w0
dx2

,

(10)

where A0, B0, C0 and D0 are stiffness coefficients and I0, I1, I2 and I3 are inertia terms as
defined below:

A0 = E

∫
A

z2 dA, B0 =
E(1 + μ)h2

4

∫
A

zf(z) dA,

C0 =
E(1 + μ)2h4

16

∫
A

[f(z)]2 dA, D0 =
G(1 + μ)2h4

16

∫
A

[
df(z)
dz

]2
dA, (11)

I0 = ρ

∫
A

z2 dA, I1 =
ρ(1 + μ)h2

4

∫
A

zf(z) dA,

I2 =
ρ(1 + μ)2h4

16

∫
A

[f(z)]2 dA, I3 = ρ

∫
A

dA.

The associated boundary conditions at x = 0 and x = L are as follows:

Either
dM b

dx
+
(1 + μ)h2

4
d3Ms

dx3
− (1 + μ)h2

4
d2V
dx2

−

N0xx

dw0
dx
+ I2

d7w0
dx5 dt2

+ 2I1
d5w0
dx3 dt2

+ I0
d3w0
dx dt2

= 0 or w0 is prescribed. (12)

Either M b +
(1 + μ)h2

4
dMs

dx2
− (1 + μ)h2

4
dV
dx

−

I2
d6w0
dx4 dt2

− I1
d4w0
dx2 dt2

= 0 or
dw0
dx

is prescribed. (13)

Either
(1 + μ)h2

4
V − (1 + μ)h2

4
dMs

dx
+

I2
d5w0
dx3 dt2

+ I1
d3w0
dx dt2

= 0 or
d2w0
dx2

is prescribed. (14)

Either
(1 + μ)h2

4
Ms = 0 or

d3w0
dx3

is prescribed. (15)
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3. Validation of proposed beam theories

For the purpose of demonstrating the validity of the proposed beam theories, the following
examples are considered.

3.1. Bending analysis of simply supported isotropic beams

In this example, bending analysis of a simply supported isotropic beam subjected to various
static loadings as shown in Fig. 2 (a)–(c) is considered. The transverse load q(x) given by (16)
is acting on the top surface of the beam, i.e. z = −h/2,

q(x) =
∞∑

m=1,3,5,...

qm sin
mπx

L
, (16)

where m is the positive integer and qm are the coefficients of Fourier expansion as given in
Table 2. The quantity q0(x) in this table denotes the maximum intensity of load (see Fig. 2).

Fig. 2. A simply supported isotropic beam subjected to (a) a sinusoidal load (b) a uniformly distributed
load (c) a linearly varying load

Table 2. Coefficient of Fourier expansion qm for various static loadings

Load Coefficient of Fourier expansion
Sinusoidal load qm = q0 for m = 1

Uniformly distributed load qm =

⎧⎨
⎩
4q0
mπ

for m = 1, 3, 5, . . .

0 for m = 2, 4, 6, . . .

Linearly varying load qm =

⎧⎨
⎩
2q0
mπ
cosmπ for m = 1, 3, 5, . . .

0 for m = 2, 4, 6, . . .
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According to Navier the following is the solution form for w0(x) that satisfies the simply
supported boundary conditions exactly:

w0(x) =
∞∑

m=1,3,5,...

wm sin
mπx

L
, (17)

where wm are the unknown coefficients. The governing equation for bending analysis of beams
can be obtained by discarding time dependent terms and axial compressive force N0xx from (10)
as follows:

C0
d8w0
dx8

+ (2B0 − D0)
d6w0
dx6

+ A0
d4w0
dx4

= q(x). (18)

Substituting solution form from (17) and the load q(x) from (16) into the governing equation
(18) one can obtain

wm =
qm[

C0
m8π8

L8
− (2B0 − D0)

m6π6

L6
+ A0

m4π4

L4

] . (19)

Having obtained the value of wm one can determine displacements and stresses using the
relations (1)–(5).

3.2. Buckling analysis of simply supported isotropic beams

In this example, the efficiency of the proposed beam theories is checked for the buckling analysis
of isotropic beams. A simply supported beam subjected to an axial compressive forces F0 as
shown in Fig. 3 is considered.

Fig. 3. A simply supported isotropic beam subjected to an axial compressive force

The governing equation of the proposed beam theories in the case of static buckling is
obtained by discarding time dependent terms and setting q(x) = 0 and N0xx = −F0 in (10). The
equation becomes

C0
d8w0
dx8

+ (2B0 − D0)
d6w0
dx6

+ A0
d4w0
dx4

+ F0
d2w0
dx2

= 0. (20)

Substituting solution scheme of w0(x) from (17) into (20) one can obtain F0:

F0 =

[
C0

m8π8

L8
− (2B0 − D0)

m6π6

L6
+ A0

m4π4

L4

]

m2π2

L2

. (21)
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3.3. Free vibration analysis of simply supported isotropic beams

In this section, the proposed beam theories are applied for the free vibration analysis of isotropic
beams. The governing equation for free vibration analysis is obtained by setting transverse load
q(x) and axial compressive forces F0 to zero in (10). The equation becomes

C0
d8w0
dx8

+ (2B0 − D0)
d6w0
dx6

+ A0
d4w0
dx4

− I2
d8w0
dx6 dt2

−

2I1
d6w0
dx4 dt2

− I0
d4w0
dx2 dt2

+ I3
d2w0
dt2

= 0.

(22)

Following the Navier’s solution procedure, closed form solution to the displacement variable
w0 satisfing boundary conditions of flexural vibration can be expressed in the following form

w0(x, t) =
∞∑

m=1

wm sin
mπx

L
sinωmt, (23)

where wm is the amplitude of translation and ωm is the fundamental frequency of m-th mode of
vibration. Substitution of this solution form into (22) results in the following standard eigenvalue
problem

[K − ω2M ]wm = 0, (24)

where

K = C0
m8π8

L8
− (2B0 − D0)

m6π6

L6
+ A0

m4π4

L4
, (25)

M = I2
m6π6

L6
− 2I1

m4π4

L4
+ I0

m2π2

L2
+ I3

m2π2

L2
. (26)

From the solution of (24), the fundamental frequencies for all modes of vibration can be obtained.

4. Numerical results and discussions

The numerical results are obtained for the beam made up of isotropic material with Young’s
modulus E = 210 GPa and Poisson’s ratio μ = 0.3. The displacements, stresses, fundamental
frequencies and critical buckling loads are presented in the following non-dimensional form:

ū

(
L,±h

2

)
=

uEbh2

q0L3
, w̄

(
L

2
, 0

)
=
10wEbh3

q0L4
, σ̄x

(
L

2
,±h

2

)
=

bσx

q0
, (27)

τ̄zx(0, 0) =
bτzx

q0
, ω̄ = ωm

(
L2

h

) √
ρ

E
, Ncr =

F0L
2

Eh3
.

The percentage errors in results of a particular theory are shown in Tables 3–6. These errors are
determined with respect to the results of exact elasticity solution as

% error =
value by a particular theory − value by exact elasticity solution

value by exact elasticity solution
× 100. (28)
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4.1. Bending analysis of simply supported isotropic beams

In this section, the results obtained by using present parabolic (PSDT), trigonometric (TSDT)
and exponential (ESDT) shear deformation theories are compared and discussed with the corre-
sponding results of CBT of Bernoulli-Euler, FSDT of Timoshenko [22], higher order shear
deformation theory (HSDT) of Heyliger and Reddy [7] and the exact elasticity solution given
by Pagano [13].

The non-dimensional displacements and stresses of isotropic beam subjected to a sinusoidal
load are presented in Table 3. The obtained results are compared with the results generated
by using other theories and exact solution available in the literature. The displacements and
stresses are obtained for L/h = 4 and 10. Table 3 also includes the % error in numerical results
predicted by various theories with respect to the exact solution. From Table 3 it is observed that
the axial displacement predicted by present theories is in excellent agreement with the exact
solution whereas HSDT overestimates the same. The present theories predict accurate value
of transverse displacement as compared to other theories whereas CBT shows lower values of
transverse displacement and independent of aspect ratio. The bending stresses obtained by using
present theories are in good agreement with that of exact solutions. The transverse shear stress
can be obtained using the constitutive relation τCR

zx and by integrating the equilibrium equation
of the theory of elasticity. The transverse shear stress predicted by constitutive relation is higher
than the exact solution, whereas it is in excellent agreement with the exact solution when
obtained using equilibrium equation. The through thickness distributions of axial displacement,
bending stress and transverse shear stress via constitutive relation for L/h = 4 are shown in
Fig. 4 (a)–(c), respectively.

Tables 4 and 5 show the comparison of displacements and stresses of isotropic beams
subjected to uniformly distributed and linearly varying loads, respectively. From the examination
of these tables it is pointed out that the present results are found to agree well with those of
exact solutions. In both the cases transverse shear stress is obtained accurately via constitutive

Table 3. The comparison of displacements and stresses of a simply supported isotropic beam subjected
to a sinusoidal load

L/h Source ū % w̄ % σ̄x % τ̄CR
zx % τ̄EE

zx %
Error Error Error Error Error

4 PSDT 0.775 0.780 1.424 0.921 9.745 −2.139 2.208 16.211 1.839 −3.211
TSDT 0.781 1.560 1.425 0.992 9.816 −1.426 2.209 16.263 1.850 −2.632
ESDT 0.784 1.951 1.421 0.709 9.856 −1.024 2.203 15.947 1.844 −2.947
HSDT 0.794 3.251 1.429 1.276 9.986 0.281 1.906 0.316 1.897 −0.158
FSDT 0.774 0.650 1.430 1.347 9.727 −2.320 1.273 −33.000 1.910 0.526
CBT 0.774 0.650 1.232 −12.680 9.727 −2.320 − − 1.910 0.526
Exact 0.769 0.000 1.411 0.000 9.958 0.000 1.900 0.000 1.900 0.000

10 PSDT 1.942 0.622 1.263 0.318 61.027 0.181 4.897 2.770 4.766 0.021
TSDT 1.944 0.725 1.263 0.318 61.076 0.261 4.896 2.749 4.769 0.084
ESDT 1.945 0.777 1.263 0.318 61.125 0.341 4.895 2.728 4.768 0.063
HSDT 1.943 0.674 1.263 0.318 61.052 0.222 4.773 0.168 4.769 0.084
FSDT 1.935 0.259 1.264 0.397 60.793 −0.204 3.183 −33.200 4.775 0.210
CBT 1.935 0.259 1.232 −2.145 60.793 −0.204 − − 4.775 0.210
Exact 1.930 0.000 1.259 0.000 60.917 0.000 4.765 0.000 4.765 0.000

HSDT: Heyliger and Reddy [7], FSDT: Timoshenko [22], Exact: Pagano [13]
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Fig. 4. Through thickness distributions of (a) axial displacement ū, (b) bending stress σ̄x and (c) transverse
shear stress τCR

zx of a simply supported isotropic beam subjected to a sinusoidal load

relation. Through thickness distributions of axial displacement, bending stress and shear stress
for isotropic beams subjected to uniformly distributed and linearly varying loads are shown in
Fig. 5 (a)–(c) and Fig. 6 (a)–(c), respectively.

4.2. Buckling analysis of simply supported isotropic beams

In this section, the efficiency of present theories (PSDT, TSDT, ESDT) is examined for buckling
response of isotropic beams due to axial compressive force. Since the exact elasticity solution is
not available for the buckling analysis of isotropic beams, the present results are compared and
discussed with the corresponding results generated by using CBT of Bernoulli-Euler, FSDT of
Timoshenko [22] and HSDT of Heyliger and Reddy [7]. The critical buckling load is obtained
when the beam is subjected to an axial compressive force F0. The numerical results are presented
in Table 6 for L/h = 4, 10 and 100. From Table 6 it is pointed out that critical buckling load
predicted by present theories and HSDT of Heyliger and Reddy [7] is more or less same whereas
CBT predict the higher value of the critical buckling load. Fig. 7 shows the variation of critical
buckling load Ncr with respect to the ratio L/h.
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Table 4. The comparison of displacements and stresses of a simply supported isotropic beam subjected
to a uniformly distributed load

L/h Source ū % w̄ % σ̄x % τ̄CR
zx %

Error Error Error Error

4 PSDT 0.985 −0.203 1.810 1.401 12.458 2.115 2.984 −0.533
TSDT 0.993 0.608 1.810 1.401 12.545 2.828 2.998 −0.067
ESDT 0.997 1.013 1.805 1.120 12.569 3.025 2.975 −0.833
HSDT 1.031 4.457 1.806 1.176 12.263 0.516 2.908 −3.066
FSDT 1.000 1.317 1.806 1.176 12.000 −1.639 1.969 −34.36
CBT 1.000 1.317 1.563 −12.430 12.000 −1.639 − −
Exact 0.987 0.000 1.785 0.000 12.200 0.000 3.000 0.000

10 PSDT 2.505 0.602 1.601 0.188 75.244 0.059 7.491 −0.120
TSDT 2.508 0.723 1.601 0.188 75.295 0.126 7.509 0.120
ESDT 2.510 0.803 1.601 0.188 75.342 0.189 7.481 −0.253
HSDT 2.512 0.883 1.602 0.250 75.268 0.090 7.361 −1.853
FSDT 2.500 0.402 1.602 0.250 75.000 −0.266 4.922 −34.370
CBT 2.500 0.402 1.563 −2.190 75.000 −0.266 − −
Exact 2.490 0.000 1.598 0.000 75.200 0.000 7.500 0.000

HSDT: Heyliger and Reddy [7], FSDT: Timoshenko [22], Exact: Pagano [13]

Fig. 5. Through thickness distributions of (a) axial displacement ū, (b) bending stress σ̄x and (c) transverse
shear stress τCR

zx a of simply supported isotropic beam subjected to a uniformly distributed load
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Table 5. The comparison of displacements and stresses of a simply supported isotropic beam subjected
to a linearly varying load

L/h Source ū % w̄ % σ̄x % τ̄CR
zx %

Error Error Error Error

4 PSDT 0.493 −0.203 0.905 1.401 6.229 2.115 1.492 −0.533
TSDT 0.497 0.608 0.905 1.401 6.273 2.828 1.499 −0.067
ESDT 0.499 1.013 0.903 1.120 6.285 3.025 1.488 −0.833
HSDT 0.516 4.457 0.903 1.176 6.132 0.516 1.454 −3.066
FSDT 0.500 1.317 0.903 1.176 6.000 −1.639 0.985 −34.360
CBT 0.500 1.317 0.782 −12.430 6.000 −1.639 − −
Exact 0.494 0.000 0.893 0.000 6.100 0.000 1.500 0.000

10 PSDT 1.253 0.602 0.801 0.188 37.622 0.059 3.746 −0.120
TSDT 1.254 0.723 0.801 0.188 37.648 0.126 3.755 0.120
ESDT 1.255 0.803 0.801 0.188 37.671 0.189 3.741 −0.253
HSDT 1.256 0.883 0.801 0.250 37.634 0.090 3.681 −1.853
FSDT 1.250 0.402 0.801 0.250 37.500 −0.266 2.461 −34.370
CBT 1.250 0.402 0.782 −2.190 37.500 −0.266 − −
Exact 1.245 0.000 0.799 0.000 37.600 0.000 3.750 0.000

HSDT: Heyliger and Reddy [7], FSDT: Timoshenko [22], Exact: Pagano [13]

Fig. 6. Through thickness distributions of (a) axial displacement ū, (b) bending stress σ̄x and (c) transverse
shear stress τCR

zx of a simply supported isotropic beam subjected to a linearly varying load
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Table 6. The comparison of non-dimensional critical buckling load and fundamental frequencies of a
simply supported isotropic beam

Critical buckling load (Ncr) Fundamental frequencies (ω̄)
Source L/h = 4 L/h = 10 L/h = 100 L/h = 4 % Error L/h = 10 % Error
PSDT 0.711 2 0.801 8 0.822 3 2.603 0 0.034 5 2.802 2 −0.078 4
TSDT 0.711 0 0.801 9 0.822 3 2.602 1 0.000 0 2.802 4 −0.071 3
ESDT 0.711 6 0.802 0 0.822 3 2.612 1 0.384 3 2.803 8 −0.021 4
HSDT 0.709 0 0.801 9 0.822 0 2.596 0 −0.234 4 2.802 0 −0.085 6
FSDT 0.708 8 0.801 9 0.822 2 2.598 7 −0.130 7 2.802 7 −0.060 6
CBT 0.822 5 0.822 5 0.822 5 2.849 1 9.492 3 2.824 0 0.698 9
Exact − − − 2.602 1 0.000 0 2.804 4 0.000 0

HSDT: Heyliger and Reddy [7], FSDT: Timoshenko [22], Exact: Cowper [2]

(a) (b)

Fig. 7. The variation of (a) non-dimensional critical buckling load Ncr and (b) fundamental frequency ω̄
with respect to the ratio L/h

4.3. Free vibration analysis of simply supported isotropic beams

In this section, the efficiency of present theories (PSDT, TSDT, ESDT) is checked for free
vibration response of isotropic beam. Fundamental frequencies obtained using present theories
are compared and discussed with the corresponding results obtained by using CBT of Bernoulli-
Euler, FSDT of Timoshenko [22], Heyliger and Reddy [7] and exact elasticity solution provided
by Cowper [2]. Fundamental frequencies obtained for L/h = 4 and 10 are presented in Table 6.
From the Table 6 it is observed that the present theories are more accurate while predicting
fundamental frequencies of an isotropic beam. The present TSDT predicts the exact value of the
fundamental frequency for L/h = 4. As compared to the present theories, HSDT of Heyliger and
Reddy [7] shows higher values of fundamental frequency. Variation of fundamental frequencies
with respect to the ratio L/h is shown in Fig. 7.
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5. Conclusions

In the present study, a new class of refined beam theories is presented which involves only one
unknown variable similar to the classical beam theory. With this novelty of present theories,
they are applied to the bending, buckling and the free vibration analysis of simply supported
isotropic beams of rectangular cross-section. The theories are variationally consistent and do
not require shear correction factor. From the numerical results and discussion, it is concluded
that the present theories are more accurate while predicting bending, buckling and vibration
responses of isotropic beams. The transverse shear stress predicted by using present theories is
in excellent agreement with exact solution when obtained by using the constitutive relation.
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