Periodic solutions of a graphene based model in micro-electro-mechanical pull-in device

Authors

  • Dongming Wei Nazarbayev University
  • Shirali Kadyrov Nazarbayev University
  • Zhassulan Kazbek Nazarbayev University

DOI:

https://doi.org/10.24132/acm.2017.322

Keywords:

lumped-mass model, nonlinear spring, graphene, electrostatic pull-in stability, periodic solutions

Abstract

Phase plane analysis of the nonlinear spring-mass equation arising in modeling vibrations of a lumped mass attached to a graphene sheet with a fixed end is presented. The nonlinear lumped-mass model takes into account the nonlinear behavior of the graphene by including the third-order elastic stiffness constant and the nonlinear electrostatic force. Standard pull-in voltages are computed. Graphic phase diagrams are used to demonstrate the conclusions. The nonlinear wave forms and the associated resonance frequencies are computed and presented graphically to demonstrate the effects of the nonlinear stiffness constant comparing with the corresponding linear model. The existence of periodic solutions of the model is proved analytically for physically admissible periodic solutions, and conditions for bifurcation points on a parameter associated with the third-order elastic stiffness constant are determined..

Author Biographies

  • Dongming Wei, Nazarbayev University

    Full Professor

    Deprtment of Mathematics

    School of Science and Technology

    Nazarbeyev University

  • Shirali Kadyrov, Nazarbayev University

    Assistant Professor

    Department of Mathematics

    Nazarbayev University

  • Zhassulan Kazbek, Nazarbayev University

    Student

    Mathematics Dept

    Nazarbayev University

Downloads

Published

30-Jun-2017

Issue

Section

Articles

How to Cite

“Periodic solutions of a graphene based model in micro-electro-mechanical pull-in device” (2017) Applied and Computational Mechanics, 11(1). doi:10.24132/acm.2017.322.