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Abstract

A fixed point algorithm is proposed to solve a fluid-structure interaction problem with the supplementary constraint
that the structure displacements are limited by a rigid obstacle. Fictitious domain approach with penalization is used
for the fluid equations. The surface forces from the fluid acting on the structure are computed using the fluid solution
in the structure domain. The continuity of the fluid and structure velocities is imposed through the penalization
parameter. The constraint of non-penetration of the elastic structure into the rigid obstacle is treated weakly. A
convex constrained optimization problem is solved in order to get the structure displacements. Numerical results
are presented.
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1. Introduction

Fluid-structure interaction is encountered in diverse medical and engineering applications: blood
flow in artery [2, 6], motion of pharmaceutical liquid capsule enclosed by elastic membrane in
flow [5], impact of tsunami wave on coastal protection [10].

We study the behavior of an elastic structure immersed in a viscous incompressible fluid with
the supplementary constraint that the structure displacements are limited by a rigid obstacle.
We use Stokes equation to model the flow motion and the displacement of the structure will be
governed by linear elasticity equations. This choice is in order to simplify the computational
complexity. A perspective is the extension towards to the Navier-Stokes equations.

The Arbitrary Lagrangian Eulerian (ALE) formulation consisting in using moving mesh
which follow the structure displacement was successfully used for solving fluid-structure inter-
action problem without contact. But the ALE method is not adapted when the structure is in
contact with a rigid obstacle and the topology of the fluid domain changes. In [13], an algorithm
for protecting the quality of the fluid mesh in the gap between the elastic structure and the rigid
obstacle is employed.

Other methods enter in the category of fixed mesh. In [4], for a 1D elastic structure, surface
Lagrange multiplier was used in order to compute the forces from the fluid acting on the structure
and to impose the kinematic boundary condition at the interface. The contact is handled by
the Uzawa algorithm. An extension to 3D nonlinear shell which manages non-convex contact
constraint is proposed in [1]. An approach combining an extended finite element method (XFEM)
and a dual finite deformation mortar contact formulation is proposed in [12].
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In this paper, we have adapted the fictitious domain method with penalization presented
in [7] and [8] in order to handle the contact. The surface forces from the fluid acting on the
structure are computed using the fluid solution in the structure domain. The continuity of the
fluid and structure velocities is imposed through the penalization parameter. We treat weakly
the constraint of non-penetration of the elastic structure into the rigid obstacle. To manage the
contact in linear elasticity, we solve a convex constrained optimization problem, not a variational
inequality.

2. Setting for fluid-structure interaction with contact

Let QOS C RR? be the undeformed structure domain and we assume that it is an open, bounded
and connected subset. We suppose that its boundary is Lipschitz and admits the decomposition
005 =TpUTyUT¢, where I'p, 'y and T'¢ are relatively open subsets, mutually disjoint.
The structure is fixed along the portion I'p, it is subjected to volume forces applied in 25 and to
surface loads on I' . After deformation, a portion of I'c will be in contact with a rigid obstacle.
This portion is unknown beforehand. For a better understanding, we consider for the undeformed
structure domain the rectangle Q5 = 10, L[ x ]0, H[, where L and H are two positive constants.
Its boundary admits the decompositionI', = {0} x]0, H|[ (left side), ' = |0, L[ x {0} (bottom
side) and I'y = ({L} x |0, H]) U (]0, L] x {H}) (right and top sides). We denote the vertices
of the rectangle |0, L[ x |0, H[ by M (H,0), N(0,0), P(L,0) and Q(L, H), see Fig. 1. Then
I'p=(MN),I'c = (NP)and 'y = (PQ)U[QM), where (M N) is the open segment of ends
M and N, [QM) is the segment of ends ) and M including the point () and excluding M.

M

Fig. 1. The deformed structure in contact with the rigid obstacle

Suppose that the structure is elastic and denote by u = (uy, us) : ﬁ;f — R? its displacement.
A particle of the structure whose initial position was the point X = (X3, X3) will occupy
the position x = ¢ (X) = X + u(X) in the deformed domain Qf = ¢ (€2F). We denote
o = 095 \Tp and Ty, = ¢(Ty) = »(I'y) U p(I'c). With the notations ¢(P) = P’ and
0(Q) = Q', we have ¢ (I'y) = P'Q" U Q'M, where P'QQ)’ is a curve of ends P’ and '. The
disk of boundary Y5 is a rigid obstacle. When the structure is in contact with the obstacle, then
e Te) N5 £ 0. Weset RS = ¢ (I'c) N X5, then ¢ (T'¢) = NRU RS U SP’, see Fig. 1. We
point out that the rigid obstacle is not a part of 2.

Let D C R? be a bounded open domain with Lipschitz boundary such that 9D = U>_, 3
and I'p C X;. In Fig. 2, D is a rectangle with a circular hole of boundary Y5 and >4, >, I,
>4 are the left, bottom, right, top sides, respectively. We admit that Qﬁ C D for all admissible
displacements and the fluid occupies QL = D\ ﬁi To resume, the contact zone between
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Fig. 2. The structure and fluid domains

structure and obstacle is RS , the fluid-structure interface is ¢ (I'v) U ¢ (I'¢) \ RS = Cy\ RS

—~

and the common boundary of the fluid and obstacle is 35 \ RS. We point out that the set Q£
is not a Lipschitz domain when the structure is in contact with the rigid obstacle. Also it can
change the topology, before contact Q2 is double connected and it could be simply connected
after contact, as in Fig. 2.

The fluid equations are described using Eulerian coordinates, while for the structure equati-
ons, the Lagrangian coordinates are employed. The gradients with respect to the Eulerian
coordinates x € 2 of a scalar field ¢ or a vector field w are denoted by Vg, Vw. The diver-
gence operators with respect to the Eulerian coordinates of a vector field w and of a tensor ¢ are
denoted by V - w and V - ¢. Similarly, when the derivatives are with respect to the Lagrangian
coordinates X = ¢~1(x) € 5, we use the notations: Vxu, Vx - u, Vx - 0.

We assume that the structure verifies the linear elasticity equation. The stress tensor of the
structure written in the Lagrangian framework is o (u) = A% (Vx - u) I + 2u%ex (u), where
A5, ¥ > 0 are the Lamé coefficients, ex (u) = £ (Vxu+ (Vxu)”) and I is the unit matrix.
We assume that the fluid is governed by the Stokes equations, then the Cauchy stress tensor
is given by o' (v,p) = —pI + 2u’e (v) where u" > 0 is the viscosity of the fluid, v is the
velocity, p is the pressure and € (v) = 1 (Vv + (Vv)7).

Strong formulation

The problem is to find the structure displacement u: ﬁ(‘f — 2, the fluid velocity v: ﬁf — R?
and the fluid pressure p: Qf — R such that:

—Vx-0%(u) =" inQy, (1)
u=0 onlp, 2)

~V.ot' (v,p) =fF inQf, 3)
V-v=0 inQF, 4)
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V=g onXy, (5)

v=0 on(X\Ip)UZXs, (6)

o (v,p)nf =0 onX,, (7)
I'w = (o) C D, (8)
v=0 on(ly\RS)U(Zs\ RS), ©)

o%(w)n® = — (0" (v,p)n") op onTy, (10)
o (u)n® = — (¢ (v,p)n") o, if X €T¢and p(X) ¢ 3, (11)

(

o (u) (X)n*(X) = —a(X)n(p(X)), «X)>0,if X cT'cand p(X) € X5, (12)

where £9: Q5 — R? are the applied volume forces on the structure and n” is the structure
unit outward vector normal to 9€)5. Similarly, we define f7': QX — R? and n” the fluid unit
outward vector normal to 895 .In (5), g: ¥4 — R? is a prescribed velocity. For (12), we can
consult [3], Theorem 5.3-1, p. 210. In (12), n(x(X)) is the unit vector normal to 5 at the point
©(X) € X5, oriented to the exterior of D.

We have denoted by o°(u): Q2 — R* and o' (v, p): QF — R* the Cauchy stress tensors
of the structure and fluid, respectively. We point out that the stress tensor of the structure is
defined on the undeformed structure domain Qg , while the Cauchy stress tensors of the fluid is
defined in the deformed domain 2%, In view of (9), non-slip boundary condition is imposed to

the flow velocity at the fluid-structure interface I', \ RS as well as at the common boundary of

fluid and obstacle %5 \ RAS . If the structure doesn’t come into contact with X5 the boundary of
rigid obstacle, the equations (9)—(12) are replaced by

v=0 onl,UZX;s,

o (u)n® = — (6" (v,p)n") oy onTy.

3. Contact problem without friction in linear elasticity

First, we recall some definitions and notations. Let ) be a bounded, connected, open set of R?
with Lipschitz boundary 02 and let I" be an open subset of OS2 with positive measure. We denote
by L*(€) the class of all measurable functions v: Q — R such that [, v*(x) dx < oco. As usual,
we denote the first order Sobolev space by

HY(Q) = {v c12@) ez, i- 1,2} .

8@

The space of trace of functions of H'(2) on I is H'/?(T") which is a proper subspace of L?(I').
We denote by HégQ(F) the space of trace on I of functions of {v € H*(Q); v =00n9Q \ T'}
and we have that H)\*(T') ¢ HY2(T").

Now, we pay attention to the elastic structure in contact with a rigid foundation modeled as
the graph of a function, as in Fig. 3. The body €5 is subjected to volume forces f* applied in
QOS and to surface loads h® on I' . We recall that 895 =Tpul'yUTle.

Let ) € C''(R) be the rigid foundation and we denote its graph by

graph(v) = {(X1, X3) € R?, X5 = ¢(X1)}

and its epigraph by
epi(y) = {(X1, Xa) € R, Xz > (X))}
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Fig. 3. An elastic body in contact with the rigid foundation

We assume that the undeformed structure domain is in the interior of epi(1)). Since the structure
is fixed along I'p, then
u=0onTIp. (13)

The foundation is rigid, then the constraint of non-penetration of the elastic structure into the
obstacle gives

p(Le) C epi(). (14)

A point X € I'¢ belongs to the contact zone or coincidence zone if p(X) € graph(v). A point
X € I'¢ belongs to the non-contact zone or separation zone if p(X) ¢ graph(v) or in other
words (X)) is an interior point of epi(1)). If X € I'¢ is in the contact zone, then

(X1 + ui (X1, Xa)) = Xo + ua(X1, Xo),

otherwise
w<X1 —+ ul(Xl, Xg)) < X2 -+ U2<X1,X2).

In the case of small displacements, we can approach
(X1 4w (X1, Xa)) = p(X1) + un (X1, Xo)9'(X7)
and the condition (14) will be replaced by
D(X71) + ' (X1)ur (X1, Xa) < Xo 4+ ug( X1, Xa), V(X1, Xz) € Te. (15)
We assume £% € (L2(Qf ))2 and h® € (L%(T'y))?. Let us introduce the Hilbert space
Wo = {Ws € (H' (Qg))Q; w = OOHFD},
the bi-linear form ag: W® x W9 — R,
as (u,w®) = /QS (A (Vx -u) (Vx - w?) +2u°%ex (u) 1 ex (W) dX
0
and the linear form Lg: W° — R

Lg (WS) :/ fS-deX+/ h* - w” ds. (16)
a3

'y
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Following [11], Chapter 5, it is possible to define the order < for the functions in Sobolev space
H'2(T'¢), consequently we can define the set

Ky = {w® = (w},wy) € W
P (X1)wi (X1, X2) — w5 (X1, X2) < Xo —p(X1)on T}, (17)

which is closed, convex and non empty.
The problem is to find u € Ky, solution of the constrained optimization problem

1
inf —ag(w”,w®) — Lg(w®). (18)
WSEKw

It is known, see for example [11], that the problem has a unique solution and verifies the
variational inequality

as(u,w® —u) > Lg(w® —u), vw® € K,. (19)

Let 7,° be a triangulation of Q3 of size h, with nv.S vertices and ntS triangles. We con-
struct the shape functions ¢;: 7,° — R associated to vertex A;, which are piecewise linear
function, globally continuous. For the two-dimension displacements, we introduce the basis
@' = (¢, 0%) : T,° — R*fori = 1,...,2nvS defined by

@' = (¢;,0), fori =1,...,nvS and ¢""*" = (0, ¢;), fori =1,... nvS.
We define the matrix Ag € R2"v5*27vS and the vector bg € R?"% by
Ag = (afj), afj =ag(¢’,¢"), i,5=1,...,2nvS
and '
(bg)Z = Ls(qbz), 1= 1, ey 2nvS.

The constraint w® € K, will be treated weakly. So that, we introduce the matrix Cs €
R19Cx2S “where ngC' is the number of vertex A; € I'¢ and the vector ¢ € R™¢ by

Cs = (05)7 ij = / (=0 (X1) 1 (X1, Xo) + #5( X1, X2)) i (X1, Xo) ds
o]
forj=1,...,2nvS and A; € T'¢ and
() = [ (0X) = X2)o, (X1, X3) ds
I'e

for A; € T'c.
In order to impose (13), we set £4°, ¢ ¢ R2S

b b b b :
gzt = gzvs-l-i = gz = gnvS-H' = 0’ if Az = FD’

otherwise £ = oo and £* = —oo. The discrete form of (18) is
1
inf —(A — (b 20
561]1%%"”5 2< SEuE) < 57£>7 ( )
Cs€ > ¢, 21
€r>e>¢" (22)
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The optimization problem (20)—(22) will be solved by the library IPOPT implemented in the
software freefem++, see [9]. We set

2nvS

Wy = {wf = Z &¢"; such that ¢ verify (22)} , (23)
i=1
2nvS

Kyn = {w;f = Z &¢"; such that £ verify (21), (22)} . (24)
i=1

4. Stokes equations using fictitious domain approach with penalization

The set occupied by the fluid Q£ is not a Lipschitz domain when the structure is in contact with
the rigid obstacle and it can change the topology from double to simply connected. The ALE
framework can not by applied. We use the fictitious domain approach consisting to write the
fluid equations in the fixed domain D which includes Q. The mesh of D does not depend on
the displacement u, it is fixed.

Let us introduce the Hilbert spaces

W — {WG (Hl(D))2, WZOOHaD\Z2}a

@=1(0)={ac 12 0); [ gix—of
D
and the notations

ap: (H'(D))* x (H'(D))? = R, ap(v,w)= /D 20" e (v) @ € (w) dx,

bp: W xQ — R, bF(W,p):—/(V-w)pdx.
D

2
We assume that f¥ € (L%(D))’, g € (HééQ (24)) and £ > 0 is a penalization parameter. Let

X5 : D — R be the characteristic function

S(X)_ 1,X€Qﬁ,
Xal®) =70, x e D\ Q5.

For given u, the fluid problem is to find: the velocity v, € (H(D))?, v = gon Xy, v = 0
on Y U X3 U X5 and the pressure p. € (), such that

1
o (veow) + e (w,p) + = [

Xﬁv6 -wdx = / ' wdx, Yw e W, (25)
D

D
bF (Vg,Q) = 07 vq € Q (26)

This problem has a unique solution, see [7, 8] for example.

Let T be a triangle of vertices A, B, C of coordinates (71, 23), (2 2F), (2§, 25).
We denote by G its barycenter, i.e. the point of coordinates 2§ = (21 + 28 + 2{)/3 and
2§ = (25 + 28 + 2§) /3. For a point x = (11, 75) € R, we introduce the barycentric coordi-

nates A\ (X), A2(X), A3(X), as the solution of the linear system

ot 2B af A1(x) )
x4 28 af Xo(x) | = [ 22
11 1) \ s 1
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We have \;(x) > 0if x € int(T) and \;(x) = 0 if x € 9T. We define the bubble function
br: T — R by br(x) = A1 (X)A2(x)A3(x) and the spaces of functions

P(T) ={r: T — R; r(z1,29) = ax1 + bxs + ¢; a,b,c € R},
(Py+0)(T) = {r: T — R; r(x1,22) = axy + brg + ¢+ dbp(x1,22); a,b,c,d € R}.

The finite element denoted by Py + bubble or P; + b is the triplet
(T7 {A7 Ba C, G}7 (Pl + b) (T))

and the finite element P, is the triplet (7', {A, B, C},P,(T)).
Let 7,1 be a triangulation of D of size h, with nv F’ vertices and nt F triangles. We introduce

W, = {wh € (C°D))* VT € TF  wilr € (P, + b)(T))? ,wy, = 0on OD \ 22}, 27)

Qn = {Qh € CUD); VT € T,] , qu|r € Pi(T), /

thdx:O}. (28)

5. Computing the surface forces from the fluid acting on the structure

Supposing for instant that structure is not in contact with the obstacle 5. We employ the
notations v for the restriction of v. to QF, v for the restriction of v, to Q22 and similarly for
pT and p- . Using w with compact support in Q% in (25), we get

—V o (v&,pt) = in (L3(QF))”
and using w with compact support in 7, we get

Vo (vi,pl) + év_ =f"in (L2(Qi))2.

€

Even if v and p} are not smooth, we can give a sense of o (v, p7) nf” on T, by the element

2 /
it e ((Hgf (ru)) ) defined by

()= [ 20 (v2) se(w) ax— [

aQf

(V . W+) p;r dx —/ . wt dx (29)

4 aQf

for all w© € (HI(QE))2, such that w* = 0 on 9QFL \ T, where (-,-)p, is the duality
!/ 2 /

(H&f (Fu)> , Hégz(Fu) and 7, is the trace operator on I'y,. Similarly, j € ((H&f (Fu)> )

is defined by

<j;,7pu(w_)>ru = /QS 21t e (vg_) € (W_) dx — /QS (V . W_)pe_ dx +

u

1/ V;-W_dx—/ 7w dx (30)
€ Jag Q3

forallw- € (Hl(Qﬁ))2, such that w~ = 0on I'p = 903 \ Ty,.
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From (25), we get that

N
jr = —if, in ((H&f () ) , GD)
which at least formally means
ol (V;,p;) n® = —gF (V:,p:) n’.
But at the fluid-structure interface, we have the boundary conditions (10), (11) or

on® = —(c"nf) o .

Finally, we can compute the surface forces from the fluid acting on the structure using the
right-hand side of (30). As in [7, 8], by using the change of variable formula, we get

/ﬂﬁzuFE (ve) e (w?) dx‘/ (V-w™)pr dx +

T

1
—/ V;-W_dx—/ £ wdx
€ Jag U

= / J (UF (Ve,pe) © <p) F1.vxw®dX +
o

1
—/ J(veop) - w'dX — [ J(f"op) w®dX,
cJof af

where o(X) = X + u(X), F(X) = I+ Vxu(X), J(X) = det F(X), w* = w0 € W°.
In the case of small displacement, the right-hand side of the above equality could be appro-
ached by

/Q,uFeX(Qa):eX(WS) dX—/ (Vx-ws)ﬁadX+
Q5

S
Q0

1
—/ V. - wodX — (fF o gp) ~w?dX, (32)
o

15 Qg

where V. = v, o p and p. = p. o .

6. Fixed point iterations

The fixed point algorithm was successful used for fluid-structure interaction without contact.
We adapt this method in the case where the structure comes in contact with a rigid obstacle.
Let tol > 0 be a parameter for the stopping test, w € (0, 1) the relaxation parameter and k the
iterations counter.

Algorithm

Step 1. Choose an initial displacement of the structure u) € K, ;, and put & := 0.
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Step 2. Find the velocity V’I“Jrl € g + W, and the pressure p’“rl € @) by solving the discrete
fluid problem

1
ap (vle,wh) +bp (wh,pﬁzl) + = . / Xukvle wp,dx = / 5wy, dx, Ywy, € Wy,
D D

bF( Iﬁley%) = Oa VCIh € Qh-

Step 3. For ©*(X) = X + u®(X), set szl = szl o ¢, ﬂ;fll = pf'};l o ¥ and compute

(bs); = Ls(¢?), i =1,...,2nvS,

where

LS(WS) :/SfS-WSdX+
Q

2t (@50) e (w) X - [ (Vi wS) pE1AX 4
QF QF

0

1
- / virl L wodX — (F" o *) - wodX. (33)
o

15 Qg

The last four terms in the right-hand side of (33) represent the approximate surface forces from
the fluid acting on the structure.
Step 4. Solve the constrained optimization problem

inf <As€ &) — (bs, €)

£€R2nvs 2

subject to (21) and (22) and put
2nvS

ub il = Z &'

Step 5. Stopping test: if Hu’“rl — uf’l“o o5 < tol then STOP;
g
else uf ™ = uf + w(u’ k“ —uf), k := k + 1 and GOTO Step 2.

7. Numerical results

7.1. Linear elasticity with frictionless contact

The rigid foundation is given by ¢: [zg — yr, 29 + 7] — R

U(x) = yo+ V1?2 — (z — 20)%,

where o = 0.055 m, yo = —0.012 m, v = 0.8, » = 0.005 m.

We consider for the undeformed structure domain the rectangle 25 = ]0, L[ x ]0, H|[, where
L =0.06m, H = 0.005 m, see Fig. 4. Its boundary admits the decomposition ', = {0} x]0, H|,
FC = ]$0 — Yr, T —|—’}/’f’[ X {0} andFN = an\(FD Ufo).

The mechanical properties of the structure are: Young modulus E° = 3 x 105 N/m?,
Poisson’s ratio ° = (.3, the applied surface forces h®: 'y — R?, h® = (0,0) N/m?. We will
give different values for the applied volume forces on the structure f°: QF — R2.
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Fig. 4. The undeformed elastic body and the rigid foundation v
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Fig. 7. Computed solutions of linear elasticity with frictionless contact for H = 0.0025 m, ¢y = 0.05 m,
yo = —0.01 m and £¥ = (0, —10°) N/m?

The constrained optimization problem (20)—(22) has been solved by the library IPOPT
implemented in the software freefem++, see [9].

We have used different meshes: for the plots on the left of Figs. 5 and 6 a mesh of 396 triangles
and 251 vertices, for the plots on the right of Figs. 5 and 6 a mesh of 1650 triangles and
930 vertices, for the plot on the left of Fig. 7 a mesh of 204 triangles and 155 vertices and for
the plot on the right of Fig. 7 a mesh of 856 triangles and 533 vertices.

We observe in Figs. 5-7 that the computed solutions of the elasticity problem with contact
under identical applied volume forces, are not sensitive to the mesh size.

7.2. Fluid-structure interaction with rigid obstacle

The undeformed structure domain is 5 = ]0, L[ x ]0, H[. The computational fluid domain is
D =10, Ly x | — Hy, Hy[\ B(xo,y0;7) where B(xo, yo;7) is the open disk of center (z¢, 4o)
and radius r. For the numerical tests, we have used the values: I; = 0.41 m, L = 0.3 m,
H=003m, H =0.5m, H, =0.5m, 2y =0.2m, yp = —0.07 m, r = 0.05 m, see Fig. 8.

The mechanical properties of the elastic structure are: Young modulus £ = 3 x 10° N/m?,
Poisson’s ratio v° = (.45, the applied volume forces on the structure f°: Q5 — R?
£5 = (0, —-9.81 x 1100) N/m?, the Lamé coefficients

VSES 5 ES

A52(1—2y5)(1+u5)’ SEST R
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Fig. 8. The dimensions of the structure and fluid domains

The parameters for the fluid are: dynamic viscosity /' = 0.0035 N - s/m?, the applied
volume forces on the fluid f: D — R?, ff' = (0, -9.81 x 100) N/m?. The inflow velocity
profile is g = (g1, g2) where
xy (71 — L)

L
The considered boundary conditions for the fluid are: v = g on X4, v = 0on X; UY35U X5 and
ol (v,p)n’" = 0 on X, see Fig. 2 for the notations of the boundaries.
For the approximation of the fluid velocity and pressure we have employed the triangular

gl(xla ‘I2) - 07 92(I1, ‘I2) - Vmax x 4 HI/S, Vmax = 8.

Table 1. Numerical parameters for fluid-structure interaction with obstacle

k1l _ ok
Un U

e | w | hyp hsk‘

HVa,h |0,Q§ ”Va?hHo’Ql? /5

Ho,ng
107°]0.1 [0.01 |0.03 |18| 9.64818e—005 |0.01296780| 1296.78
107°]0.1 [0.01 [0.015 |32| 8.32756e—005 |0.01393040| 1393.04
107°(0.1 [0.01 |0.01 |26] 9.53203e—005 [0.00367061| 367.061
107°(0.1 [0.01 |0.0075|26| 9.85370e—005 |0.00333444| 333.444
107°]0.1 [0.01 |0.006 |27| 9.15394e—005 |0.00264256| 264.256
107°]0.1 [0.01 |0.005 |26| 9.88292e—005 |0.00259761| 259.761
107°(0.1 [0.0075/0.015 |26| 9.56653e—005 [0.01505070| 1505.07
107°(0.1 [0.005 [0.015 [30| 9.04125e—005 [0.00990233| 990.233
1072]0.1 [0.0025[0.015 |25| 9.95613e—005 |0.00430307| 430.307
107°/0.15/0.01 |0.015 |20| 8.11115e—005 [0.01392190| 1392.19
107°(0.2 0.01 |0.015 |15| 7.31370e—005 [0.01412480| 1412.48
107°(0.25(0.01  |0.015 |11| 7.80410e—005 [0.01348430| 1348.43
107°]0.3 [0.01 |0.015 |10| 8.30474e—005 |0.01410960| 1410.96
1073]0.1 [0.01 |0.015 |24| 9.87120e—005 [0.02873010| 28.7301
1074/0.1 |0.01 |0.015 |16] 6.14011e—005 |0.00838058| 83.8058
10760.1 |0.01 {0.015 |99| 6.36100e—004 |0.01713870| 17138.7
107°]0.3 [0.005 [0.005 | 8| 9.34395e—005 |0.00227433| 227.433
1072]0.2 [0.005 [0.006 |13| 9.32895e—005 |0.00228842| 228.842
107°(0.3 ]0.005 [0.0075| 8| 9.22099e—005 [0.00306985| 306.985
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finite elements P;+bubble and P;. The finite element IP; was used in order to solve the structure
problem. The characteristic function was approached by PPy, the piecewise constant discontinuous
finite element.

In Table 1, k is the number of iterations in order to achieve the stopping test with tol = 107%.
For ¢ = 1075, the algorithm does not satisfy the stopping test. We remark that in the deformed
structure domain, the fluid velocity is almost zero, see Table 1, column ||V5,h||079 5 For a fluid-
structure interaction without obstacle, it is proved that ||v.||, os /< is bounded independent of ¢,
see [8], inequality (5.10). We report the computed values in the last column of Table 1.

Fig. 9 shows computed solutions for different values of the parameters: ¢ > 0 penalization
parameter, w € (0, 1) relaxation parameter, h size of fluid mesh, hg size of structure mesh.

Vec Value
=

Vec Value

Fig. 9. Computed fluid velocity and structure displacements limited by a circular obstacle using the fixed
point algorithm: (top) ¢ = 1074, w = 0.1, hy = 0.01, hg = 0.015, (middle) ¢ = 107°, w = 0.1,
hr = 0.01, hg = 0.007 5, (bottom) ¢ = 107°, w = 0.3, hy = 0.005, hg = 0.005
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8. Conclusions

A partitioned procedure based on fixed point iterations is proposed to solve a fluid-structure
interaction problem with contact. Employing fictitious domain approach with penalization, it is
possible to compute the surface forces from the fluid acting on the structure by using the fluid
solution in the structure domain. We treat weakly the constraint of non-penetration of the elastic
structure into the rigid obstacle. Solving the contact elasticity problem consists in finding the
solution of a convex constrained optimization problem. In a future work, we extend the actual
results to the dynamic case: interaction between unsteady Navier-Stokes equations and linear
elastodynamics with contact.
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