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Abstract

A fixed point algorithm is proposed to solve a fluid-structure interaction problem with the supplementary constraint
that the structure displacements are limited by a rigid obstacle. Fictitious domain approach with penalization is used
for the fluid equations. The surface forces from the fluid acting on the structure are computed using the fluid solution
in the structure domain. The continuity of the fluid and structure velocities is imposed through the penalization
parameter. The constraint of non-penetration of the elastic structure into the rigid obstacle is treated weakly. A
convex constrained optimization problem is solved in order to get the structure displacements. Numerical results
are presented.
c© 2017 University of West Bohemia. All rights reserved.
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1. Introduction

Fluid-structure interaction is encountered in diverse medical and engineering applications: blood
flow in artery [2, 6], motion of pharmaceutical liquid capsule enclosed by elastic membrane in
flow [5], impact of tsunami wave on coastal protection [10].

We study the behavior of an elastic structure immersed in a viscous incompressible fluid with
the supplementary constraint that the structure displacements are limited by a rigid obstacle.
We use Stokes equation to model the flow motion and the displacement of the structure will be
governed by linear elasticity equations. This choice is in order to simplify the computational
complexity. A perspective is the extension towards to the Navier-Stokes equations.

The Arbitrary Lagrangian Eulerian (ALE) formulation consisting in using moving mesh
which follow the structure displacement was successfully used for solving fluid-structure inter-
action problem without contact. But the ALE method is not adapted when the structure is in
contact with a rigid obstacle and the topology of the fluid domain changes. In [13], an algorithm
for protecting the quality of the fluid mesh in the gap between the elastic structure and the rigid
obstacle is employed.

Other methods enter in the category of fixed mesh. In [4], for a 1D elastic structure, surface
Lagrange multiplier was used in order to compute the forces from the fluid acting on the structure
and to impose the kinematic boundary condition at the interface. The contact is handled by
the Uzawa algorithm. An extension to 3D nonlinear shell which manages non-convex contact
constraint is proposed in [1]. An approach combining an extended finite element method (XFEM)
and a dual finite deformation mortar contact formulation is proposed in [12].
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In this paper, we have adapted the fictitious domain method with penalization presented
in [7] and [8] in order to handle the contact. The surface forces from the fluid acting on the
structure are computed using the fluid solution in the structure domain. The continuity of the
fluid and structure velocities is imposed through the penalization parameter. We treat weakly
the constraint of non-penetration of the elastic structure into the rigid obstacle. To manage the
contact in linear elasticity, we solve a convex constrained optimization problem, not a variational
inequality.

2. Setting for fluid-structure interaction with contact

Let ΩS
0 ⊂ R

2 be the undeformed structure domain and we assume that it is an open, bounded
and connected subset. We suppose that its boundary is Lipschitz and admits the decomposition
∂ΩS
0 = ΓD ∪ ΓN ∪ ΓC , where ΓD, ΓN and ΓC are relatively open subsets, mutually disjoint.

The structure is fixed along the portion ΓD, it is subjected to volume forces applied in ΩS
0 and to

surface loads on ΓN . After deformation, a portion of ΓC will be in contact with a rigid obstacle.
This portion is unknown beforehand. For a better understanding, we consider for the undeformed
structure domain the rectangle ΩS

0 = ]0, L[× ]0, H [, where L and H are two positive constants.
Its boundary admits the decompositionΓD = {0}× ]0, H [ (left side), ΓC = ]0, L[×{0} (bottom
side) and ΓN = ({L} × ]0, H [) ∪ (]0, L]× {H}) (right and top sides). We denote the vertices
of the rectangle ]0, L[ × ]0, H [ by M(H, 0), N(0, 0), P (L, 0) and Q(L, H), see Fig. 1. Then
ΓD = (MN), ΓC = (NP ) and ΓN = (PQ)∪ [QM), where (MN) is the open segment of ends
M and N , [QM) is the segment of ends Q and M including the point Q and excluding M .

Fig. 1. The deformed structure in contact with the rigid obstacle

Suppose that the structure is elastic and denote by u = (u1, u2) : Ω
S

0 → R
2 its displacement.

A particle of the structure whose initial position was the point X = (X1, X2) will occupy
the position x = ϕ (X) = X + u (X) in the deformed domain ΩS

u = ϕ
(
ΩS
0

)
. We denote

Γ0 = ∂ΩS
0 \ ΓD and Γu = ϕ(Γ0) = ϕ(ΓN) ∪ ϕ(ΓC). With the notations ϕ(P ) = P ′ and

ϕ(Q) = Q′, we have ϕ (ΓN) =
�

P ′Q′ ∪
�

Q′M , where
�

P ′Q′ is a curve of ends P ′ and Q′. The
disk of boundary Σ5 is a rigid obstacle. When the structure is in contact with the obstacle, then

ϕ (ΓC) ∩ Σ5 �= ∅. We set
�

RS = ϕ (ΓC) ∩ Σ5, then ϕ (ΓC) =
�

NR ∪
�

RS ∪
�

SP ′, see Fig. 1. We
point out that the rigid obstacle is not a part of ΩS

u.
Let D ⊂ R

2 be a bounded open domain with Lipschitz boundary such that ∂D = ∪5i=1Σi

and ΓD ⊂ Σ1. In Fig. 2, D is a rectangle with a circular hole of boundary Σ5 and Σ1, Σ2, Σ3,
Σ4 are the left, bottom, right, top sides, respectively. We admit that ΩS

u ⊂ D for all admissible
displacements and the fluid occupies ΩF

u = D \ ΩS

u. To resume, the contact zone between
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Fig. 2. The structure and fluid domains

structure and obstacle is
�

RS, the fluid-structure interface is ϕ (ΓN ) ∪ ϕ (ΓC) \
�

RS = Γu \
�

RS

and the common boundary of the fluid and obstacle is Σ5 \
�

RS. We point out that the set ΩF
u

is not a Lipschitz domain when the structure is in contact with the rigid obstacle. Also it can
change the topology, before contact ΩF

u is double connected and it could be simply connected
after contact, as in Fig. 2.

The fluid equations are described using Eulerian coordinates, while for the structure equati-
ons, the Lagrangian coordinates are employed. The gradients with respect to the Eulerian
coordinates x ∈ ΩS

u of a scalar field q or a vector field w are denoted by ∇q, ∇w. The diver-
gence operators with respect to the Eulerian coordinates of a vector fieldw and of a tensor σ are
denoted by ∇ ·w and ∇ · σ. Similarly, when the derivatives are with respect to the Lagrangian
coordinatesX = ϕ−1(x) ∈ ΩS

0 , we use the notations: ∇Xu, ∇X · u, ∇X · σ.
We assume that the structure verifies the linear elasticity equation. The stress tensor of the

structure written in the Lagrangian framework is σS (u) = λS (∇X · u) I + 2μSεX (u), where
λS, μS > 0 are the Lamé coefficients, εX (u) = 1

2

(
∇Xu+ (∇Xu)T

)
and I is the unit matrix.

We assume that the fluid is governed by the Stokes equations, then the Cauchy stress tensor
is given by σF (v, p) = −pI + 2μF ε (v) where μF > 0 is the viscosity of the fluid, v is the
velocity, p is the pressure and ε (v) = 1

2

(
∇v + (∇v)T

)
.

Strong formulation

The problem is to find the structure displacement u : Ω
S

0 → R
2, the fluid velocity v : Ω

F

u → R
2

and the fluid pressure p : Ω
F

u → R such that:

−∇X · σS (u) = fS in ΩS
0 , (1)

u = 0 on ΓD, (2)
−∇ · σF (v, p) = fF in ΩF

u , (3)
∇ · v = 0 in ΩF

u , (4)
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v = g on Σ4, (5)
v = 0 on (Σ1 \ ΓD) ∪ Σ3, (6)

σF (v, p)nF = 0 on Σ2, (7)
Γu = ϕ(Γ0) ⊂ D, (8)

v = 0 on (Γu \
�

RS) ∪ (Σ5 \
�

RS), (9)
σS (u)nS = −

(
σF (v, p)nF

)
◦ ϕ on ΓN , (10)

σS (u)nS = −
(
σF (v, p)nF

)
◦ ϕ, ifX ∈ ΓC and ϕ(X) /∈ Σ5, (11)

σS (u) (X)nS(X) = −α(X)n(ϕ(X)), α(X) ≥ 0, ifX ∈ ΓC and ϕ(X) ∈ Σ5, (12)

where fS : ΩS
0 → R

2 are the applied volume forces on the structure and nS is the structure
unit outward vector normal to ∂ΩS

0 . Similarly, we define fF : ΩF
u → R

2 and nF the fluid unit
outward vector normal to ∂ΩF

u . In (5), g : Σ4 → R
2 is a prescribed velocity. For (12), we can

consult [3], Theorem 5.3-1, p. 210. In (12), n(ϕ(X)) is the unit vector normal to Σ5 at the point
ϕ(X) ∈ Σ5, oriented to the exterior of D.

We have denoted by σS(u) : ΩS
0 → R

4 and σF (v, p) : ΩF
u → R

4 the Cauchy stress tensors
of the structure and fluid, respectively. We point out that the stress tensor of the structure is
defined on the undeformed structure domain ΩS

0 , while the Cauchy stress tensors of the fluid is
defined in the deformed domain ΩF

u . In view of (9), non-slip boundary condition is imposed to

the flow velocity at the fluid-structure interface Γu \
�

RS as well as at the common boundary of

fluid and obstacle Σ5 \
�

RS. If the structure doesn’t come into contact with Σ5 the boundary of
rigid obstacle, the equations (9)–(12) are replaced by

v = 0 on Γu ∪ Σ5,
σS (u)nS = −

(
σF (v, p)nF

)
◦ ϕ on Γ0.

3. Contact problem without friction in linear elasticity

First, we recall some definitions and notations. Let Ω be a bounded, connected, open set of R
2

with Lipschitz boundary ∂Ω and let Γ be an open subset of ∂Ωwith positive measure. We denote
by L2(Ω) the class of all measurable functions v : Ω→ R such that

∫
Ω v2(x) dx < ∞. As usual,

we denote the first order Sobolev space by

H1(Ω) =

{
v ∈ L2(Ω);

∂v

∂xi
∈ L2(Ω), i = 1, 2

}
.

The space of trace of functions of H1(Ω) on Γ is H1/2(Γ) which is a proper subspace of L2(Γ).
We denote by H

1/2
00 (Γ) the space of trace on Γ of functions of {v ∈ H1(Ω); v = 0 on ∂Ω \ Γ}

and we have that H
1/2
00 (Γ) ⊂ H1/2(Γ).

Now, we pay attention to the elastic structure in contact with a rigid foundation modeled as
the graph of a function, as in Fig. 3. The body ΩS

0 is subjected to volume forces fS applied in
ΩS
0 and to surface loads hS on ΓN . We recall that ∂ΩS

0 = ΓD ∪ ΓN ∪ ΓC .
Let ψ ∈ C1(R) be the rigid foundation and we denote its graph by

graph(ψ) =
{
(X1, X2) ∈ R

2, X2 = ψ(X1)
}

and its epigraph by
epi(ψ) =

{
(X1, X2) ∈ R

2, X2 ≥ ψ(X1)
}

.
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Fig. 3. An elastic body in contact with the rigid foundation ψ

We assume that the undeformed structure domain is in the interior of epi(ψ). Since the structure
is fixed along ΓD, then

u = 0 on ΓD. (13)

The foundation is rigid, then the constraint of non-penetration of the elastic structure into the
obstacle gives

ϕ(ΓC) ⊂ epi(ψ). (14)

A pointX ∈ ΓC belongs to the contact zone or coincidence zone if ϕ(X) ∈ graph(ψ). A point
X ∈ ΓC belongs to the non-contact zone or separation zone if ϕ(X) /∈ graph(ψ) or in other
words ϕ(X) is an interior point of epi(ψ). IfX ∈ ΓC is in the contact zone, then

ψ(X1 + u1(X1, X2)) = X2 + u2(X1, X2),

otherwise
ψ(X1 + u1(X1, X2)) < X2 + u2(X1, X2).

In the case of small displacements, we can approach

ψ(X1 + u1(X1, X2)) � ψ(X1) + u1(X1, X2)ψ
′(X1)

and the condition (14) will be replaced by

ψ(X1) + ψ′(X1)u1(X1, X2) ≤ X2 + u2(X1, X2), ∀(X1, X2) ∈ ΓC . (15)

We assume fS ∈
(
L2(ΩS

0 )
)2 and hS ∈ (L2(ΓN))

2. Let us introduce the Hilbert space

W
S =

{
wS ∈

(
H1

(
ΩS
0

))2
; wS = 0 on ΓD

}
,

the bi-linear form aS : WS × W
S → R,

aS

(
u,wS

)
=

∫
ΩS
0

(
λS (∇X · u)

(
∇X ·wS

)
+ 2μSεX (u) : εX

(
wS

))
dX

and the linear form LS : WS → R

LS

(
wS

)
=

∫
ΩS
0

fS ·wS dX+
∫
ΓN

hS ·wS ds. (16)

95



O. Yakhlef et al. / Applied and Computational Mechanics 11 (2017) 91–104

Following [11], Chapter 5, it is possible to define the order ≤ for the functions in Sobolev space
H1/2(ΓC), consequently we can define the set

Kψ =
{
wS = (wS

1 , w
S
2 ) ∈ W

S;

ψ′(X1)w
S
1 (X1, X2)− wS

2 (X1, X2) ≤ X2 − ψ(X1) on ΓC

}
, (17)

which is closed, convex and non empty.
The problem is to find u ∈ Kψ solution of the constrained optimization problem

inf
wS∈Kψ

1
2
aS(wS,wS)− LS(wS). (18)

It is known, see for example [11], that the problem has a unique solution and verifies the
variational inequality

aS(u,wS − u) ≥ LS(wS − u), ∀wS ∈ Kψ. (19)

Let T S
h be a triangulation of ΩS

0 of size h, with nvS vertices and ntS triangles. We con-
struct the shape functions φi : T S

h → R associated to vertex Ai, which are piecewise linear
function, globally continuous. For the two-dimension displacements, we introduce the basis
φi = (φi

1, φ
i
2) : T S

h → R
2 for i = 1, . . . , 2nvS defined by

φi = (φi, 0), for i = 1, . . . , nvS and φnvS+i = (0, φi), for i = 1, . . . , nvS.

We define the matrix AS ∈ R
2nvS×2nvS and the vector bS ∈ R

2nvS by

AS = (a
S
ij), aS

ij = aS(φ
j, φi), i, j = 1, . . . , 2nvS

and
(bS)i = LS(φ

i), i = 1, . . . , 2nvS.

The constraint wS ∈ Kψ will be treated weakly. So that, we introduce the matrix CS ∈
R

ngC×2nvS , where ngC is the number of vertex Ai ∈ ΓC and the vector clbS ∈ R
ngC by

CS = (c
S
ij), cS

ij =
∫
ΓC

(−ψ′(X1)φ
j
1(X1, X2) + φj

2(X1, X2))φi(X1, X2) ds

for j = 1, . . . , 2nvS and Ai ∈ ΓC and

(clbS )i =
∫
ΓC

(ψ(X1)− X2)φi(X1, X2) ds

for Ai ∈ ΓC .
In order to impose (13), we set ξub, ξlb ∈ R

2nvS

ξub
i = ξub

nvS+i = ξlb
i = ξlb

nvS+i = 0, if Ai ∈ ΓD,

otherwise ξub
i =∞ and ξlb

i = −∞. The discrete form of (18) is

inf
ξ∈R2nvS

1
2
〈ASξ, ξ〉 − 〈bS, ξ〉, (20)

CSξ ≥ clbS , (21)
ξub ≥ ξ ≥ ξlb. (22)
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The optimization problem (20)–(22) will be solved by the library IPOPT implemented in the
software freefem++, see [9]. We set

W
S
h =

{
wS

h =
2nvS∑
i=1

ξiφ
i; such that ξ verify (22)

}
, (23)

Kψ,h =

{
wS

h =
2nvS∑
i=1

ξiφ
i; such that ξ verify (21), (22)

}
. (24)

4. Stokes equations using fictitious domain approach with penalization

The set occupied by the fluid ΩF
u is not a Lipschitz domain when the structure is in contact with

the rigid obstacle and it can change the topology from double to simply connected. The ALE
framework can not by applied. We use the fictitious domain approach consisting to write the
fluid equations in the fixed domain D which includes ΩF

u . The mesh of D does not depend on
the displacement u, it is fixed.

Let us introduce the Hilbert spaces

W =
{
w ∈

(
H1 (D)

)2
, w = 0 on ∂D \ Σ2

}
,

Q = L20 (D) =

{
q ∈ L2 (D) ;

∫
D

qdx = 0
}

and the notations

aF :
(
H1 (D)

)2 × (
H1 (D)

)2 → R, aF (v,w) =
∫

D

2μF ε (v) : ε (w) dx,

bF : W × Q → R, bF (w, p) = −
∫

D

(∇ ·w) p dx.

We assume that fF ∈ (L2(D))2, g ∈
(
H
1/2
00 (Σ4)

)2
and ε > 0 is a penalization parameter. Let

χS
u : D → R be the characteristic function

χS
u(x) =

{
1, x ∈ ΩS

u,
0, x ∈ D \ ΩS

u.

For given u, the fluid problem is to find: the velocity vε ∈ (H1(D))2, vε = g on Σ4, vε = 0
on Σ1 ∪ Σ3 ∪ Σ5 and the pressure pε ∈ Q, such that

aF (vε,w) + bF (w, pε) +
1
ε

∫
D

χS
uvε ·w dx =

∫
D

fF ·w dx, ∀w ∈ W, (25)

bF (vε, q) = 0, ∀q ∈ Q. (26)

This problem has a unique solution, see [7, 8] for example.
Let T be a triangle of vertices A, B, C of coordinates (xA

1 , x
A
2 ), (x

B
1 , xB

2 ), (x
C
1 , xC

2 ).
We denote by G its barycenter, i.e. the point of coordinates xG

1 = (x
A
1 + xB

1 + xC
1 )/3 and

xG
2 = (x

A
2 + xB

2 + xC
2 )/3. For a point x = (x1, x2) ∈ R

2, we introduce the barycentric coordi-
nates λ1(x), λ2(x), λ3(x), as the solution of the linear system⎛⎝ xA

1 xB
1 xC

1

xA
2 xB

2 xC
2

1 1 1

⎞⎠ ⎛⎝λ1(x)
λ2(x)
λ3(x)

⎞⎠ =
⎛⎝ x1

x2
1

⎞⎠ .
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We have λi(x) > 0 if x ∈ int(T ) and λi(x) = 0 if x ∈ ∂T . We define the bubble function
bT : T → R by bT (x) = λ1(x)λ2(x)λ3(x) and the spaces of functions

P1(T ) = {r : T → R; r(x1, x2) = ax1 + bx2 + c; a, b, c ∈ R},
(P1 + b)(T ) = {r : T → R; r(x1, x2) = ax1 + bx2 + c+ dbT (x1, x2); a, b, c, d ∈ R}.

The finite element denoted by P1 + bubble or P1 + b is the triplet

(T, {A, B, C, G}, (P1 + b)(T ))

and the finite element P1 is the triplet (T, {A, B, C}, P1(T )).
Let T F

h be a triangulation of D of size h, with nvF vertices and ntF triangles. We introduce

Wh =
{
wh ∈

(
C0(D)

)2
; ∀T ∈ T F

h ,wh|T ∈ ((P1 + b)(T ))2 ,wh = 0 on ∂D \ Σ2
}

, (27)

Qh =

{
qh ∈ C0(D); ∀T ∈ T F

h , qh|T ∈ P1(T ),
∫

D

qh dx = 0
}

. (28)

5. Computing the surface forces from the fluid acting on the structure

Supposing for instant that structure is not in contact with the obstacle Σ5. We employ the
notations v+ε for the restriction of vε to ΩF

u , v−ε for the restriction of vε to ΩS
u and similarly for

p+ε and p−ε . Usingw with compact support in ΩF
u in (25), we get

−∇ · σF
(
v+ε , p+ε

)
= fF in

(
L2(ΩF

u )
)2

and usingw with compact support in ΩS
u, we get

−∇ · σF
(
v−ε , p−ε

)
+
1
ε
v−ε = f

F in
(
L2(ΩS

u)
)2

.

Even if v+ε and p+ε are not smooth, we can give a sense of σF (v+ε , p+ε )n
F on Γu by the element

j+F ∈
((

H
1/2
00 (Γu)

)2)′
defined by

〈
j+F , γΓu(w

+)
〉
Γu
=

∫
ΩF
u

2μF ε
(
v+ε

)
: ε

(
w+

)
dx−

∫
ΩF
u

(
∇ ·w+

)
p+ε dx−

∫
ΩF
u

fF·w+ dx (29)

for all w+ ∈
(
H1(ΩF

u )
)2, such that w+ = 0 on ∂ΩF

u \ Γu, where 〈·, ·〉Γu is the duality(
H
1/2
00 (Γu)

)′
, H

1/2
00 (Γu) and γΓu is the trace operator on Γu. Similarly, j−F ∈

((
H
1/2
00 (Γu)

)2)′

is defined by

〈
j−F , γΓu(w

−)
〉
Γu
=

∫
ΩS
u

2μF ε
(
v−ε

)
: ε

(
w−)

dx−
∫
ΩS
u

(
∇ ·w−)

p−ε dx+

1
ε

∫
ΩS
u

v−ε ·w− dx−
∫
ΩS
u

fF ·w− dx (30)

for allw− ∈
(
H1(ΩS

u)
)2, such that w− = 0 on ΓD = ∂ΩS

u \ Γu.
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From (25), we get that

j−F = −j+F , in
((

H
1/2
00 (Γu)

)2)′
, (31)

which at least formally means

σF
(
v−ε , p−ε

)
nS = −σF

(
v+ε , p+ε

)
nF .

But at the fluid-structure interface, we have the boundary conditions (10), (11) or

σSnS = −(σFnF ) ◦ ϕ.

Finally, we can compute the surface forces from the fluid acting on the structure using the
right-hand side of (30). As in [7, 8], by using the change of variable formula, we get∫

ΩS
u

2μF ε
(
v−ε

)
: ε

(
w−)

dx−
∫
ΩS
u

(
∇ ·w−)

p−ε dx +

1
ε

∫
ΩS
u

v−ε ·w− dx−
∫
ΩS
u

fF ·w− dx

=
∫
ΩS
0

J
(
σF (vε, pε) ◦ ϕ

)
F−T : ∇XwS dX+

1
ε

∫
ΩS
0

J (vε ◦ ϕ) ·wS dX−
∫
ΩS
0

J
(
fF ◦ ϕ

)
·wS dX,

where ϕ(X) = X+ u(X), F(X) = I+∇Xu(X), J(X) = det F(X), wS = w− ◦ ϕ ∈ W
S.

In the case of small displacement, the right-hand side of the above equality could be appro-
ached by ∫

ΩS
0

2μF εX (v̂ε) : εX
(
wS

)
dX−

∫
ΩS
0

(
∇X ·wS

)
p̂ε dX+

1
ε

∫
ΩS
0

v̂ε ·wSdX−
∫
ΩS
0

(
fF ◦ ϕ

)
·wS dX, (32)

where v̂ε = vε ◦ ϕ and p̂ε = pε ◦ ϕ.

6. Fixed point iterations

The fixed point algorithm was successful used for fluid-structure interaction without contact.
We adapt this method in the case where the structure comes in contact with a rigid obstacle.
Let tol > 0 be a parameter for the stopping test, ω ∈ (0, 1) the relaxation parameter and k the
iterations counter.

Algorithm

Step 1. Choose an initial displacement of the structure u0h ∈ Kψ,h and put k := 0.
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Step 2. Find the velocity vk+1
ε,h ∈ g +Wh and the pressure pk+1

ε,h ∈ Qh by solving the discrete
fluid problem

aF

(
vk+1

ε,h ,wh

)
+ bF

(
wh, p

k+1
ε,h

)
+
1
ε

∫
D

χS
ukvk+1

ε,h ·wh dx =
∫

D

fF ·wh dx, ∀wh ∈ Wh,

bF

(
vk+1

ε,h , qh

)
= 0, ∀qh ∈ Qh.

Step 3. For ϕk(X) = X+ uk(X), set v̂k+1
ε,h = v

k+1
ε,h ◦ ϕk, p̂k+1

ε,h = pk+1
ε,h ◦ ϕk and compute

(b̃S)i = L̃S(φ
i), i = 1, . . . , 2nvS,

where

L̃S

(
wS

)
=

∫
ΩS
0

fS ·wS dX+∫
ΩS
0

2μF εX
(
v̂k+1

ε,h

)
: εX

(
wS

)
dX−

∫
ΩS
0

(
∇X ·wS

)
p̂k+1

ε,h dX+

1
ε

∫
ΩS
0

v̂k+1
ε,h ·wS dX−

∫
ΩS
0

(
fF ◦ ϕk

)
·wS dX. (33)

The last four terms in the right-hand side of (33) represent the approximate surface forces from
the fluid acting on the structure.
Step 4. Solve the constrained optimization problem

inf
ξ∈R2nvS

1
2
〈ASξ, ξ〉 − 〈b̃S, ξ〉

subject to (21) and (22) and put

uk+1
ε,h =

2nvS∑
i=1

ξiφ
i.

Step 5. Stopping test: if
∥∥uk+1

ε,h − uk
h

∥∥
0,ΩS

0
< tol then STOP;

else uk+1
h = uk

h + ω(uk+1
ε,h − uk

h), k := k + 1 and GOTO Step 2.

7. Numerical results

7.1. Linear elasticity with frictionless contact

The rigid foundation is given by ψ : [x0 − γr, x0 + γr]→ R

ψ(x) = y0 +
√

r2 − (x − x0)2,

where x0 = 0.055 m, y0 = −0.012 m, γ = 0.8, r = 0.005 m.
We consider for the undeformed structure domain the rectangle ΩS

0 = ]0, L[× ]0, H [, where
L = 0.06m, H = 0.005m, see Fig. 4. Its boundary admits the decompositionΓD = {0}×]0, H [,
ΓC = ]x0 − γr, x0 + γr[× {0} and ΓN = ∂ΩS

0 \ (ΓD ∪ ΓC).
The mechanical properties of the structure are: Young modulus ES = 3 × 105 N/m2,

Poisson’s ratio νS = 0.3, the applied surface forces hS : ΓN → R
2, hS = (0, 0) N/m2. We will

give different values for the applied volume forces on the structure fS : ΩS
0 → R

2.

100



O. Yakhlef et al. / Applied and Computational Mechanics 11 (2017) 91–104

Fig. 4. The undeformed elastic body and the rigid foundation ψ

Fig. 5. Computed solutions of linear elasticity with frictionless contact for fS = (0,−104) N/m3

Fig. 6. Computed solutions of linear elasticity with frictionless contact for fS = (0,−105) N/m3

Fig. 7. Computed solutions of linear elasticity with frictionless contact for H = 0.0025 m, x0 = 0.05 m,
y0 = −0.01 m and fS = (0,−105) N/m3

The constrained optimization problem (20)–(22) has been solved by the library IPOPT
implemented in the software freefem++, see [9].

We have used different meshes: for the plots on the left of Figs. 5and 6 a mesh of 396 triangles
and 251 vertices, for the plots on the right of Figs. 5 and 6 a mesh of 1650 triangles and
930 vertices, for the plot on the left of Fig. 7 a mesh of 204 triangles and 155 vertices and for
the plot on the right of Fig. 7 a mesh of 856 triangles and 533 vertices.

We observe in Figs. 5–7 that the computed solutions of the elasticity problem with contact
under identical applied volume forces, are not sensitive to the mesh size.

7.2. Fluid-structure interaction with rigid obstacle

The undeformed structure domain is ΩS
0 = ]0, L[ × ]0, H [. The computational fluid domain is

D = ]0, L1[ × ]− H2, H1[ \ B(x0, y0; r) where B(x0, y0; r) is the open disk of center (x0, y0)
and radius r. For the numerical tests, we have used the values: L1 = 0.41 m, L = 0.3 m,
H = 0.03 m, H1 = 0.5 m, H2 = 0.5 m, x0 = 0.2 m, y0 = −0.07 m, r = 0.05 m, see Fig. 8.

The mechanical properties of the elastic structure are: Young modulus ES = 3× 105 N/m2,
Poisson’s ratio νS = 0.45, the applied volume forces on the structure fS : ΩS

0 → R
2,

fS = (0,−9.81× 1100) N/m3, the Lamé coefficients

λS =
νSES

(1− 2νS)(1 + νS)
, μS =

ES

2(1 + νS)
.
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Fig. 8. The dimensions of the structure and fluid domains

The parameters for the fluid are: dynamic viscosity μF = 0.0035 N · s/m2, the applied
volume forces on the fluid fF : D → R

2, fF = (0,−9.81 × 100) N/m3. The inflow velocity
profile is g = (g1, g2) where

g1(x1, x2) = 0, g2(x1, x2) = Vmax × 4
x1(x1 − L1)

L21
m/s, Vmax = 8.

The considered boundary conditions for the fluid are: v = g on Σ4, v = 0 on Σ1 ∪Σ3 ∪Σ5 and
σF (v, p)nF = 0 on Σ2, see Fig. 2 for the notations of the boundaries.

For the approximation of the fluid velocity and pressure we have employed the triangular

Table 1. Numerical parameters for fluid-structure interaction with obstacle

ε ω hF hS k
∥∥∥uk+1ε,h − ukh

∥∥∥
0,ΩS0

‖vε,h‖0,ΩSu ‖vε,h‖0,ΩSu /ε

10−5 0.1 0.01 0.03 18 9.648 18e−005 0.012 967 80 1 296.78

10−5 0.1 0.01 0.015 32 8.327 56e−005 0.013 930 40 1 393.04

10−5 0.1 0.01 0.01 26 9.532 03e−005 0.003 670 61 367.061

10−5 0.1 0.01 0.007 5 26 9.853 70e−005 0.003 334 44 333.444

10−5 0.1 0.01 0.006 27 9.153 94e−005 0.002 642 56 264.256

10−5 0.1 0.01 0.005 26 9.882 92e−005 0.002 597 61 259.761

10−5 0.1 0.007 5 0.015 26 9.566 53e−005 0.015 050 70 1 505.07

10−5 0.1 0.005 0.015 30 9.041 25e−005 0.009 902 33 990.233

10−5 0.1 0.002 5 0.015 25 9.956 13e−005 0.004 303 07 430.307

10−5 0.15 0.01 0.015 20 8.111 15e−005 0.013 921 90 1 392.19

10−5 0.2 0.01 0.015 15 7.313 70e−005 0.014 124 80 1 412.48

10−5 0.25 0.01 0.015 11 7.804 10e−005 0.013 484 30 1 348.43

10−5 0.3 0.01 0.015 10 8.304 74e−005 0.014 109 60 1 410.96

10−3 0.1 0.01 0.015 24 9.871 20e−005 0.028 730 10 28.730 1

10−4 0.1 0.01 0.015 16 6.140 11e−005 0.008 380 58 83.805 8

10−6 0.1 0.01 0.015 99 6.361 00e−004 0.017 138 70 17 138.7

10−5 0.3 0.005 0.005 8 9.343 95e−005 0.002 274 33 227.433

10−5 0.2 0.005 0.006 13 9.328 95e−005 0.002 288 42 228.842

10−5 0.3 0.005 0.007 5 8 9.220 99e−005 0.003 069 85 306.985
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finite elements P1+bubble and P1. The finite element P1 was used in order to solve the structure
problem. The characteristic function was approached by P0, the piecewise constant discontinuous
finite element.

In Table 1, k is the number of iterations in order to achieve the stopping test with tol = 10−4.
For ε = 10−6, the algorithm does not satisfy the stopping test. We remark that in the deformed
structure domain, the fluid velocity is almost zero, see Table 1, column ‖vε,h‖0,ΩS

u
. For a fluid-

structure interaction without obstacle, it is proved that ‖vε‖0,ΩS
u
/ε is bounded independent of ε,

see [8], inequality (5.10). We report the computed values in the last column of Table 1.
Fig. 9 shows computed solutions for different values of the parameters: ε > 0 penalization

parameter, ω ∈ (0, 1) relaxation parameter, hF size of fluid mesh, hS size of structure mesh.

Fig. 9. Computed fluid velocity and structure displacements limited by a circular obstacle using the fixed
point algorithm: (top) ε = 10−4, ω = 0.1, hF = 0.01, hS = 0.015, (middle) ε = 10−5, ω = 0.1,
hF = 0.01, hS = 0.007 5, (bottom) ε = 10−5, ω = 0.3, hF = 0.005, hS = 0.005
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8. Conclusions

A partitioned procedure based on fixed point iterations is proposed to solve a fluid-structure
interaction problem with contact. Employing fictitious domain approach with penalization, it is
possible to compute the surface forces from the fluid acting on the structure by using the fluid
solution in the structure domain. We treat weakly the constraint of non-penetration of the elastic
structure into the rigid obstacle. Solving the contact elasticity problem consists in finding the
solution of a convex constrained optimization problem. In a future work, we extend the actual
results to the dynamic case: interaction between unsteady Navier-Stokes equations and linear
elastodynamics with contact.
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