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Abstract

The present paper introduces a probabilistic approach to simulating the crack bridging effects of chopped glass
strands in cement-based matrices and compares it to a discrete rigid body spring network model with semi-discrete
representation of the chopped strands. The glass strands exhibit random features at various scales, which are taken
into account by both models. Fiber strength and interface stress are considered as random variables at the scale
of a single fiber bundle while the orientation and position of individual bundles with respect to a crack plane
are considered as random variables at the crack bridge scale. At the scale of the whole composite domain, the
distribution of fibers and the resulting number of crack-bridging fibers is considered. All the above random effects
contribute to the variability of the crack bridge performance and result in size-dependent behavior of a multiply
cracked composite.
c© 2017 University of West Bohemia. All rights reserved.
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1. Introduction

Glass fibers as reinforcement in cement-based matrix were first utilized in the 1960s in Russia [2].
A further major step towards glass fiber reinforced concrete (GFRC or GRC) was the develop-
ment of alkali-resistant (AR) glass which was achieved by increasing the content (> 16 %) of
zirconia [9, 18]. This enhancement allowed for the production of a durable high-performance
cement-based composite, which has been used in various modifications in structural and military
engineering since [1, 13].

Each of the AR-glass fibers is essentially a bundle of monofilaments (typically 50 to 400)
which are bonded together by a sizing material. When bridging a crack, these filaments debond
and rupture or are being pulled out and thus increase the toughness of the cement-based com-
posite [10]. Moreover, the short dispersed fibers increase the first cracking stress and, above a
critical volume fraction threshold, the ultimate tensile strength. These features together with the
enhanced durability make the use of GFRC an alternative to traditional steel fiber reinforced
concrete (FRC). However, the bridging mechanism is far more complex than in FRC.

Once a crack has been formed in the matrix, the glass fibers bridging the crack act against
further crack opening by stretching and pullout. During this process, some filaments are com-
pletely pulled out while others rupture. The mechanism exhibits random features that can be
divided into three scales:
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1) At the micro scale, individual filaments within a bundle experience random fiber-matrix
interfacial shear stress that transfer the tensile force from the filament to the neighboring
matrix. The stress transfer depends on filament position within the bundle and thus on
the penetration of the matrix into the bundle core. A second source of randomness at the
micro scale is the fiber strength that is determined by the weakest flaw in the material
structure and also by variations in the filament cross-section.

2) At the meso scale, individual bridging fibers are randomly oriented and positioned within
the composite domain. This randomness causes variability in the bridging force due to
snubbing and non-uniform pullout lengths [8].

3) At the macro scale, the overall number of fibers bridging a crack is a random variable
that depends on the specimen geometry, fiber geometry, fiber volume fraction and also on
production of specimens such as the casting process.

A model that considers these sources of random effects and reflects the complexity and unique
bridging mechanism of the short glass fiber bundles does not exist to date.

The objective of this paper is to introduce two approaches to modeling of a crack bridge in
GFRC: In Section 2, a probabilistic approach that predicts statistical moments of the bridging
force is described. In Section 3, a discrete model with semi-discrete representation of the fiber
bundles is presented. Both models are compared in a computational example in Section 4 and
their possibilities and limitations are discussed in Section 5.

2. Probabilistic model

The semi-analytical probabilistic model is limited to uniaxial tensile loading of a composite with
discrete, planar matrix cracks and mechanically independent fibers. The mechanical indepen-
dence of fibers is provided if matrix deformations are much lower than the fiber deformations
i.e. the matrix stiffness is much higher than that of the fibers: Em(1 − Vf) � EfVf . Here, Em
and Ef are the matrix and fiber elastic moduli, respectively, and Vf is the fiber volume fraction.

The model distinguishes three models for three levels of resolution of the composite: (a) com-
posite crack bridged by bundles of filaments, (b) a single filament bundle and (c) a single filament,
see Fig. 1.

Fig. 1. Multiscale approach to the modeling of GFRC: (a) composite crack bridge with multiple filament
bundles; (b) filament bundle; (c) single filament considered independently from the bundle
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2.1. Single filament

Let us assume that the bridging action of a single filament with embedded length �e and
inclination angle ϕc (with respect to the crack plane normal) is provided in the form

Pf = f(w, �e, ϕc, θθθr, θθθd), (1)

where Pf is the bridging force, w is the crack opening, θθθd is a vector of deterministic parameters
and θθθr a vector of random variables defined over the sampling space Ωr with the corresponding
joint cumulative distribution function (CDF) GΩr . The mean force transmitted by a filament
within a bundle bridging a matrix crack is

μPf (w, �e, ϕc) = EΩr [Pf ] (2)

with EΩ[X] being the expectation operator applied to the random variable X defined over the
sampling space Ω with the joint CDF GΩ(X), i.e.,

EΩ[X] =
∫
Ω
X dGΩ(X). (3)

The variance of the filament bridging force is given by

σ2Pf (w, �e, ϕc) = DΩr[Pf ] (4)

with DΩ[X] being the variance operator applied to the random variable X defined over the
sampling space Ω with the joint CDF GΩ(X), i.e.,

DΩ[X] = EΩ[X2]− EΩ[X]2 =
∫
Ω
X2 dGΩ(X)− EΩ[X]2. (5)

2.2. Filament bundle

Given the number of filaments in a bundle, Nf , the force transmitted by the whole bundle reads

Pb =
Nf∑
i=1

Pf(w, �e, ϕc, θθθr,i, θθθd), (6)

where θθθr,i is the vector of parameters obtained as the ith sample from the sampling space Ωr of
the random variables θθθr. Since the inclinations and embedded lengths of the bridging bundles
are random, the ϕc and �e parameters are to be treated as random variables. Their sampling
space is referred to as Ωϕ. The mean bridging force transmitted by a bundle has the form

μPb(w) = EΩϕΩr[Pb] = NfEΩϕΩr [Pf ]. (7)

For the variance of the bundle bridging force, we have to use the law of total variance, which
states

D[Y ] = E[D(Y |X)] + D[E(Y |X)]. (8)

When this law is applied to the present case, (Y |X) is substituted by Pb(w, �e, ϕc, θθθd|θθθr). One
can alternatively express the conditional probability by explicitly writing the integration domain
for individual statistical operators in the equation. With this notation, the variability of the
randomly oriented filament bundle with random embedded length reads:

σ2Pb(w) = EΩφ
[DΩr(Pb)] + DΩφ

[EΩr(Pb)]

= N2f
(
EΩφ
[DΩr(Pf)] + DΩφ

[EΩr(Pf)]
)
,

(9)

where we do not explicitly write out the dependencies of Pf on its parameters.
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2.3. Multiple bundles

Let us now introduce the variable Nb, which stands for the number of bundles (chopped strands)
bridging a matrix crack. In a composite with randomly dispersed fiber bundles, Nb will be a
random variable with sampling space Ωb. The total force transmitted by all Nb bundles can be
written as

Pc =
Nb∑
j=1

Nf∑
i=1

Pf(w, �e,j, ϕc,j, θθθr,ij, θθθd) =
Nb∑
j=1

Pb,j, (10)

where �e,j and ϕc,j are the jth samples from the Ωϕ sampling space, the vector θθθr,ij is the ijth
sample from the sampling space Ωr and Pb,j can be expressed as

Pb,j =
Nf∑
i=1

Pf(w, �e,j, ϕc,j, θθθr,ij, θθθd). (11)

The mean force resulting from the bridging action of randomly dispersed short fiber bundles has
the form

μPc(w) = EΩbΩϕ,Ωr[Pc] = EΩb [Nb]μPb(w)

= EΩb [Nb]Nf EΩϕΩr[Pf ].
(12)

Applying the law of total variance according to (8) with Pc(w, �e, ϕc, θθθr, θθθd|Nb) substituted for
(Y |X), the variance of the crack bridging force Pc is obtained as

σ2Pc(w) = DΩbΩϕΩr [Pc] = DΩbΩϕΩr

[
Nb∑
j=1

Pb,j

]

= EΩb

[
DΩϕΩr

(
Nb∑
j=1

Pb,j

∣∣∣∣∣ Nb

)]
+DΩb

[
EΩϕΩr

(
Nb∑
j=1

Pb,j

∣∣∣∣∣ Nb

)]
.

(13)

Exploiting the independence of Pb and Nb, equation (13) can be simplified to

σ2Pc(w) = EΩb
[
Nb ·DΩϕΩr (Pb)

]
+DΩb

[
Nb · EΩϕΩr (Pb)

]
= EΩb [Nb] ·DΩϕΩr [Pb] + DΩb [Nb] ·

(
EΩϕΩr [Pb]

)2
.

(14)

In order to evaluate the statistical moments of the bridging response, the distribution functions
of the random variables need to be known. The derivation of distribution functions for individual
random variables is out of the scope of the present publication. Let us just note that the fiber-
in-composite strength distribution is based on the assumption of a compound Pisson-Weibull
process which governs the distribution of flaws in the fiber material. The strength distribution
is of the Weibull form and depends on fiber geometry and bond law. Readers interested in a
detailed derivation are referred to [12, 14].

With no further information, e.g. from SEM, the bond strength distribution has to be chosen
ad hoc since it depends on a number of uncontrollable factors. In [14], the authors have achieved
a fair fit for the bond strength in textile reinforced concrete with Weibull distribution.

The distribution of the number of dispersed short fibers bridging a planar matrix crack is
in detail dealt with in [16, 17] and has been shown to follow the binomial distribution (or its
Poisson limit for a large number of fibers).
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3. Discrete model

The use of the discrete model presented in this section serves for a mutual verification of the two
model approaches. In this rigid body spring network (RBSN) model the fiber and matrix phase
models are both based on a lattice model. The matrix phase is represented by a set of randomly
distributed nodes which are interconnected by springs and kinematic constraints. This nodal
set for the matrix phase has lattice topology and material properties by the Delaunay/Voronoi
tessellations which enable the discretized matrix phase to behave in an elastically homogeneous
fashion (Fig. 2a). As shown in Fig. 2b, the matrix element is defined according to the rigid-
body-spring concept [4]. The linear and rotational zero-size springs are formed at the centroid
C of the area Aij of the Voronoi facet common to nodes i and j. The spring set is constrained
to nodes i and j via rigid arm constraints.

Fig. 2. Lattice discretization of fiber reinforced concrete: (a) Delaunay/Voronoi tessellations of mate-
rial domain; (b) matrix element ij defined by facet centroid C; and (c) fiber element associated with
intersection point I

A fully-discrete approach considers fibers individually and handles them by addition of
degrees of freedom (Fig. 3a). It is suitable only for low number of fibers as the number of
degrees of freedom grow linearly with the number of fibers and can thus be used for detailed
analyses of laboratory-scale specimens [19].

The most recent semi-discrete approach treats fibers individually but incorporates them into
the degrees of freedom of the matrix. The constitutive law of matrix bonds is enhanced by
terms accounting for relevant fibers [6,15]. Since the fibers do not possess additional degrees of
freedom, the semi-discrete approach can be used for problems with relatively high number of
fibers [3]. Its standard version called lumped-force includes the fiber mechanical effects directly
into cells at the crack faces (Fig. 3b). Such an approach works well for the case of single cracking
and coarse discretizations.

When multiple cracking or fine discretizations of the region of interest are present, however,
such lumping of the fiber forces is problematic. Kang et al. [5] distribute the transfer of force
from fiber to matrix along the embedded lengths of a fiber. This distributed force approach not
only solves the aforementioned problems, it also better reflects reality. The distributed forces
along the embedded lengths of the fiber are obtained according to the micromechanics of single
fiber pullout [11]. The distributed-force model [5] is more realistic as it distributes the force
along the fiber path, see Fig. 3c. Because of the more precise representation of the fiber bond,
the distributed-force has been used.
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Fig. 3. Various approaches capable to account for contribution of individual fibers to the model response

The fiber phase can be discretized within the computational domain irrespective of the
background lattice representing the matrix [5]. A fiber element is defined wherever a fiber
passes through the Voronoi facet Aij associated with a matrix element (Fig. 2c). In the semi-
discrete fiber model, a linear zero-size spring for the fiber reinforcement is positioned at the
intersection point I and aligned with the fiber path. The spring is linked to the associated two
nodes i and j through rigid-arm constraints similar to the rigid-body-spring construction of the
matrix elements. The semi-discrete modeling of fibers is computationally efficient, contrary to
the fully-discrete fiber modeling in which a fiber is discretized as a series of the frame elements
with additional nodal degrees of freedom and its elements are linked to the associated nodes via
an ordinary bond link. This feature of the semi-discrete fiber model enables simulations with
large numbers of fibers.

4. Computational example

Having formulated the modeling framework for GFRC in two alternatives, we can proceed
to a computational example, which compares the two approaches. Both models require an
independent model of a fiber bridging action. For this purpose, we apply the analytical form
due to [11] with snubbing and spalling effects according to [7]. For reasons of brevity and
readability, we simplify the general expressions by assuming a perfectly plastic (frictional) bond
with infinite initial stiffness and constant bond strength. With these assumptions, the resulting
form for a filament bridging action in the debonding phase reads

Pf,deb(w, σu =∞) = Af

√
2Efτw

rf
· exp (fϕc) · (cosϕc)s (15)

with Ef , Af and rf being the filament modulus of elasticity, cross-sectional area and radius,
respectively, τ denoting the bond strength, f the snubbing coefficient and s the spalling coeffi-
cient. When the fiber is fully debonded along the embedded length �e, the pullout stage starts.
Again, for reasons of brevity, we ignore any hardening or softening during the pullout stage and
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write the bridging force during the pullout stage simply as

Pf,pull(w, σu =∞) = 2πrfτ(�e + w0 − w) · exp (fϕc) · (cosϕc)s (16)

with w0 being the crack opening at the transition between the debonding and pullout stage. It
can be obtained by formulating the continuity condition

Pf,deb(w0) = Pf,pull(w0)→ w0 =
2�2eτ
rfEf

. (17)

In both, equations (15) and (16), the assumption was that fibers have an infinite strength σu =∞.
If we now include the possibility of fiber rupture, we have to multiply the fiber force in the
debonding phase by H(σu − σf), where σf denotes the fiber stress and H(·) the Heaviside step
function defined as

H(x) =

{
0 : x < 0,
1 : x ≥ 0. (18)

The filament force in the debonding stage then becomes

Pf,deb(w) = Af

√
2Efτw

rf
· exp (fϕc) · (cosϕc)s · H(σu − σf) (19)

with

σf =
Pf,deb(w, σu =∞)

Af
. (20)

In a similar manner, the pullout force has to be multiplied by a Heaviside function which
ensures that fibers have not ruptured at their peak stress during the debonding so that

Pf,pull(w) = 2πrfτ(�e + w0 − w) · exp (fϕc) · (cosϕc)s · H(σu − σf,max), (21)

where
σf,max =

2πrfτ�e
Af

. (22)

The dashed curve in Fig. 4 demonstrates qualitatively how the fiber bridging function would
look like in the case of finite fiber strength σu (the figure depicts a situation when the rupture of
fiber is attained at force Pf = 3.2 cN).

Fig. 4. Analytical model of a single fiber bridging action according to Naaman et al. [11]
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The complete filament bridging action (see Fig. 4) can be written as

Pf(w) = Pf,deb(w) · H(w0 − w) + Pf,pull · H(w − w0). (23)

An example of the filament bridging action is depicted in Fig. 5a for material parameters that
correspond to AR-glass fibers with random τ distributed uniformly between 0.01 and 0.4MPa
and random fiber strength σu with Weibull distribution with shape parameter m = 5 and scale
parameter s = 1.75 GPa.

Fig. 5. Computational example performed with the present modeling framework: (a) single filament
bridging responses (gray curves) sampled from the sampling space of random variables (τ ∼ uniform
distribution between 0.01 and 0.4 MPa and σu ∼ Weibull distribution with shape m = 5 and scale
s = 1.75 GPa) and the mean filament response (black curve); (b) filament bundle responses sampled
from the sampling space of random variables (ϕc ∼ sin(2ϕc) distribution and �e ∼ uniform distribution
between 0 and 9 mm) and the mean bundle response (black curve)

The filaments are embedded perpendicular to the crack plane in this example. The figure
shows samples from the distributions given by (23) and the mean filament response given by (2),
which, multiplied by the number of filaments in a bundle, is the prediction of the response of
a perpendicularly embedded filament bundle. The red curve is a single simulation of a bundle
consisting of 100 filaments performed by the discrete model.

Fig. 5b depicts the bridging force of a bundle consisting of Nf = 100 filaments with
random bond strength and fiber strength as in Fig. 5a but, additionally, the orientation angle
and embedded length are considered as random variables. Random samples of such filament
bundles and the mean bundle bridging force predicted by the probabilistic model with (7) are
depicted. The red curve is the bridging force of Nb = 100 bundles that are randomly oriented
and positioned within the crack predicted by the discrete model.

5. Conclusions

Both the probabilistic and the discrete model are capable of simulating the crack bridging action
of chopped AR-glass strands in a cement-based matrix. The probabilistic model is computatio-
nally very efficient and able to evaluate statistical moments of the response. However, the model
formulation includes a number of assumptions that make the model of use only for uniaxial
tension in its current form.
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The discrete model evaluates the response of the composite as a single sample. Therefore,
repeated calculations would have to be performed when the variability was of interest. The
discrete model, even though more computationally demanding, is much more robust than the
probabilistic model. It is not limited to uniaxial tension and is therefore suitable for general
purposes. Its comparison with the probabilistic model serves as a verification of the semi-
discrete fiber bundle implementation.
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