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Abstract

In this paper, we study the magnetohydrodynamic (MHD) mixed unsteady flow over a vertical porous plate. The
system of non-linear partial differential equations governing the physical model is transformed into a system of
non-linear ordinary differential equations via Lie group analysis. Using the Runge-Kutta fourth order method
along with shooting technique the numerical analysis is carried out to study the effect of associated parameters
on the velocity, temperature and concentration distribution. Computed results for the velocity, temperature and
concentration distribution are discussed graphically.
c© 2017 University of West Bohemia. All rights reserved.
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1. Introduction

In recent years, the flow of fluid through porous media has attracted extensive attention of many
researchers due to their vast applications in material sciences and engineering such as Petroleum
industries, seepage of water in riverbeds, filtration and purification of chemical processes and
many others. The mixed convection flow come across many industrial applications such as
cooling of nuclear reactors, cooling of sophisticated electronic devices, solar panel exposed
to wind currents etc. In the literature a comprehensive survey of convective heat transfer
mechanism through porous media was first reported by Nield et al. [7]. A systematic simulation
for the mass transfer effect on the two-dimensional unsteady MHD free convective flow past
a vertical porous plate with variable suction were investigated by Ramana Kumari et al. [13].
Kandasamy et al. [6] reported the effects of thermal and mass transfer diffusion in MHD mixed
convective flow over a porous wedge with heat radiation and considering suction/injection. The
hydromagnetic unsteady mixed convection flow past porous plate sop in porous media was
studied by Sharma et al. [16]. Uddin et al. [26] analysed unsteady MHD convective flow of
heat and mass transfer past a vertical surface. Unsteady hydromagnetic mixed convection flow
of heat and mass transfer in the stagnation region with a complex wall condition were studied
by Chamka et al. [2]. Elbashbeshy and Aldawody [4] explained the impact of magnetism and
radiation on unsteady mixed convection flow and heat transfer past a porous medium with
generation/absorption of heat.
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Nomenclature
Gr Grashof number
Gm modified Grashof number
x, y dimensionless coordinaates (m)
t′ time in x′, y′ coordinate system (s)
t time in dimensionless coordinates (s)
u dimensionless velocity component in

x-direction (s)
T temeparature of fluid (K)
Tw temperature of fluid near plate (K)
C concentration of the fluid (mol ·m−3)
Cp specific heat at constant pressure
g gravity accelaration (m/s2)
Pr Prandtl number
Dm mass diffusivity (m2 · s−1)
Sc Schmidt number
Fs local Forchheimer number
M magnetic number
Ec Eckert number
Kr chemical reaction parameter
Da local Darcy number
Ke mean absorption coefficient
Cw concentration of the fluid near plate (mol·m−3)

Greek symbols:
β coefficient of volume expansion for heat transfer

(K−1)
β∗ coefficient of volume expansion for mass transfer

(m3 · kg−1)
σ electrical conductivity of fluid (S ·m−1)
ν kinematic viscosity (m2 · s−1)
θ non dimensional temperature (K)
φ concentration of fluid (mol ·m−3)
ρ density of the fluid (Kg ·m−3)
σs Stefan-Boltzmann constant

Several authors have studied the MHD free convection flow of heat and mass transfer through
porous media subject to different boundary conditions. Raju et al. [9] have investigated unsteady
MHD flow past an exponentially accelerated isothermal vertical plate in the existence of heat
absorption and variable temperature by using Laplace transform. Sheri et al. [23] studied the
transient MHD free convection flow past an infinite vertical plate fixed in a porous medium with
viscous dissipation. Raju et al. [10] applied FEM to unsteady MHD free convection flow past
a vertically inclined porous plate. Raju et al. [11] studied numerically MHD free convection
Couette flow with the effect of Soret and Dufour numbers. Raju et al. [8] has investigated
combined effects of thermal-diffusion and diffusion-thermo over free convection flow over an
infinite porous plate with magnetic field and chemical reaction using FEM. Further Srinivasa
et al. [25] studied numerically the effects of chemical reaction on unsteady MHD flow past an
exponentially accelerated plate in existence of heat absorption and variable temperature using
FEM and LTT. The MHD boundary layer flow of nanofluid and heat transfer over nonlinear
stretching sheet in the existence of chemical reaction is analysed by Ramya et al. [14]. Das [3]
obtained a complete solution of free convection flow over vertical plate with heat and mass
transfer with thermal radiation. Raju et al. [12] investigated effects of thermal radiation and heat
source on an unsteady MHD free convective flow past an infinite vertical plate in porous medium
in presence of thermal diffusion. In recent decades various research articles are published about
nanofluid heat transfer enhancement [17–22].

The study reported here in considers an unsteady mixed convection flow with radiation
over a vertical porous plate. The system of non-linear partial differential equations governing
the physical model has been transformed into non-linear ordinary differential equations in
similarity variables via the Lie group analysis and solved numerically by a Runge-Kutta fourth
order method along with shooting technique. The flow phenomenon has been characterized by
associated parameters and their effects on the velocity, temperature and concentration profiles
have been analysed and the results obtained are discussed graphically. It is hoped that the present
investigation will serve as an effective complement to the previous studies.
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2. Problem formulation

Consider an incompressible, unsteady flow of an electrically conducting viscous fluid over
vertical porous plate. We considered infinite plate at x-axis, which is in parallel with free stream
velocity and the y-axis is taken normal to the plate. B0 is the magnetic induction which is
employed in the flow direction. Initially the plate and fluid follows the equal temperature T∞
in a stable condition with concentration C∞ at all points. The plate starts moving impulsively
for t > 0 with a constant velocity U0 and its temperature and concentration boost to Tw and Cw

respectively. All the fluid physical properties are considered to be constant except the influence
of the body force term. The flow geometry is described in Fig. 1.

Fig. 1. Flow Geometry

With an assumptions that the Boussinesq and boundary layer approximations hold good,
and accepting the Darcy-Forchheimer model, the system of equations which models the flow is
given by

∂v

∂y
= 0, (1)

∂u

∂t′
+ v

∂u

∂y
= ν

∂2u

∂y2
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σB20
ρ
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K
u2, (2)
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+

v

cp

(
∂u

∂y

)2
, (3)

∂C

∂t
+ v

∂C

∂y
= Dm

∂2C

∂y2
− kr(C − C∞). (4)

By using the Rosseland approximation [15, 24], the radiative heat flux qr is given by

qr = −4σs

3ke

∂T 4

∂y
. (5)

Here u and v are the Darcian velocity components along the x and y directions, respectively. The
symbol α stands for the thermal diffusivity, ρ is the density of fluid, β is the volume expansion
coefficient, ν is the kinematic viscosity, β∗ is the coefficient of volumetric expansion, K is the
Darcy permeability, b is the empirical constant, T is the fluid temperature inside the thermal
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boundary layer and T∞ is the temperature of fluid over the free stream while C and C∞ are
the corresponding concentrations, respectively. Also σs is the Stefan-Boltzmann constant and
ke the mean absorption coefficient. Dm is the mass diffusivity coefficient, kr is chemical reaction
parameter.

Therefore, the no slip boundary conditions at the surface of the plate are given by

u=U0, T =Tw, C =Cw at y = 0,
u=0, T =T∞, C =C∞ as y→∞.

(6)

2.1. Reduction to non-dimensional form

U =
u

u0
, Y =

u0y

ν
, t =

u0t
′

ν
, θ =

T − T∞

Tw − T∞
, φ =

C − C∞

Cw − C∞
,

Gr =
νβg(Tw − T∞)

u30
, Gm =

νβ∗g(Cw − C∞)
u30

, P r =
ν

α
, Sc =

ν

Dm
, (7)

M =
σB20ν

ρu20
, Ec =

u20
cp(Tw − T∞)

, R =
KT

4σr

K∗

T 3∞
,

Da =
Ku20
ν2

, Fs =
bu0
ν

, K2r =
krν

u20
.

By using the dimensionless variables and constants (7), the system of equations (2)–(4) is
reduced to

∂U

∂t
− ∂U

∂Y
=

∂2U

∂Y 2
+Grθ +Gmφ − MU − 1

Da
U − Fs

Da
U2, (8)

∂θ

∂t
− ∂θ

∂Y
=
1

Pr

[
1 +

4
3R

]
∂2θ

∂Y 2
+ Ec

(
∂U

∂Y

)2
, (9)

∂φ

∂t
− ∂φ

∂Y
=
1
Sc

∂2φ

∂Y 2
− K2rφ. (10)

The boundary conditions are

U =1, θ=1, φ=1 at Y = 0,
U =0, θ=0, φ=0 as Y →∞,

(11)

where Gr is the thermal Grashof number, Gm is the solutal Grashof number, M is the magnetic
parameter, Da is the local Darcy number, Fs is the local Forchheimer number, Pr is the Prandtl
number, R is the thermal radiation, Ec is the Eckert number, Sc is the Schmidt number and
Kr is a chemical reaction parameter. We select Pr = 0.71 which corresponds to 20 ◦C in the air
and 1 atmospheric pressure of Sc = 0.6. We have chosen the values of Gr and Gm larger due
to the convection problem that causes cooling in the plate.

3. Lie group symmetry analysis

Most of the physical problems are modeled either in terms of nonlinear ordinary or partial diffe-
rential equations. A suitable method for dealing such types of nonlinear equations is provided by
the Lie group analysis. The Lie group analysis proposes an accurate mathematical formulation
of spontaneous ideas of symmetry and provides constructive methods for solving non-linear
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differential equations analytically. The Lie group analysis affirms symmetries of differential
equations that cannot be seen otherwise. Various physical phenomena can be explored using the
Lie symmetries to acsertain various group invariant solutions and conservation laws that cater
significant physical insight into the problem. Nowadays the Lie group analysis is extensively
used both in applying classical and developing new methods. An exhaustive collection of the
results of applications of the Lie group analysis to applied mathematics is given in three volumes
of [5]. In this section our aim is to impart the use of the group theoretic approach. Let us consider
a one-parameter Lie group of infinitesimal transformations as

t∗ = t+ εξT (t, Y, U, θ, φ) +O(ε2),

Y ∗ = Y + εξY (t, Y, U, θ, φ) +O(ε2),

U∗ = U + εηU(t, Y, U, θ, φ) +O(ε2), (12)
θ∗ = θ + εηθ(t, Y, U, θ, φ) +O(ε2),

φ∗ = φ+ εηφ(t, Y, U, θ, φ) +O(ε2),

where small group parameter ε � 1.
Consider the associated Lie algebra as

χ = ξt(t, Y, U, θ, φ)
∂

∂x
+ ξY (t, Y, U, θ, φ)

∂

∂y
+ ηY (t, Y, U, θ, φ)

∂

∂u
+

ηθ(t, Y, U, θ, φ)
∂

∂θ
+ ηφ(t, Y, U, θ, φ)

∂

∂φ
. (13)

The action of χ is extended to all derivatives appearing in the equations (8)–(11) and can be
written as

χ[2] = χ+ ηU
t

∂

∂ut

+ ηU
Y

∂

∂uY

+ ηθ
t

∂

∂θt

+ ηθ
Y

∂

∂θY

+ ηφ
t

∂

∂φt

+ ηφ
Y

∂

∂φY

+

ηU
Y Y

∂

∂uY Y
+ ηθ

Y Y

∂

∂θY Y
+ ηφ

Y Y

∂

∂φY Y
, (14)

where

ηY
t = Dx(η

U)− UtDt(ξ
t)− UY Dt(ξ

Y ),

ηU
Y = DY (η

U)− UtDt(ξ
t)− UY Dt(ξ

Y ),

ηθ
t = Dt(η

θ)− θtDt(ξ
t)− θY Dt(ξ

Y ),

ηθ
Y = DY (η

θ)− θtDY (ξ
t)− θY DY (ξ

Y ),

ηφ
t = Dt(η

φ)− φtDt(ξ
t)− φY Dt(ξ

Y ), (15)
ηφ

Y = DY (η
φ)− φtDt(ξ

t)− φY Dt(ξ
Y ),

ηU
Y Y = DY (η

U
Y )− UtY DY (ξ

t)− UY Y DY (ξ
Y ),

ηθ
Y Y = DY (η

θ
Y )− θtY DY (ξ

t)− θY Y DY (ξ
Y ),

ηφ
Y Y = DY (η

φ
Y )− φtY DY (ξ

t)− φY Y DY (ξ
Y ),

where Dt and DY are total differentiation operators w.r.t. x and y, respectively.
The operator χ is the point symmetry of the equations (8)–(11), if

χ[2](Δj)
∣∣
Δj
= 0, j = 1, 2, 3, 4, (16)

where Δj are given by equations (8)–(11), respectively.
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As the coefficients of χ do not contains differentiations, hence we separate the equation (16)
w.r.t. the derivatives and model of linear homogeneous partial differential equation (15) yields

ξt
φ = ξt

θ = ξt
U = ξt

t = ξt
Y = 0,

ξY
φ = ξY

θ = ξY
U = ξY

Y = 0,

ηθ = ηφ = ηU = 0, (17)
UξY

t = 0,

where the suffixes denote the partial derivatives.
The required form of the infinitesimals are

ξt = c,

ξY = g(t),

ηU = 0, (18)
ηθ = 0,

ηφ = 0,

where c is a constant of translation transformation and g(t) is an arbitrary functions.
Considering the boundary conditions (11), equation (18) becomes

ξt = c,

ξY = 0,

ηU = 0, (19)
ηθ = 0,

ηφ = 0.

3.1. Reductions to ODEs

Using the infinitesimals reported by Bluman and Kumai [1], the characteristic equations are
given by

dt
c
=
dY
0
=
dU
0
=
dθ
0
=
dφ
0

. (20)

This yields similarity variables as

η = Y, U = f1(η), θ = f2(η), φ = f3(η). (21)

Substituting similarity variables (21) into basic equations (8)–(11), we obtain the similarity
equations

f ′′
1 + f ′

1 +Grf2 +Gmf3 − Mf1 −
1

Da
f1 −

Fs

Da
f 21 = 0, (22)

f ′′
2
1

Pr

(
1 +

4
3R

)
+ f ′

2 + Ecf ′
1
2 = 0, (23)

1
Sc

f ′′
3 + f ′

3 − K2r f3 = 0 (24)

with the transformed boundary conditions

f1(0) = 1, f2(0) = 1, f3(0) = 1,

f1(∞) = f2(∞) = f3(∞) = 0. (25)
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4. Numerical solution

The similarity equations (22)–(24) with boundary conditions (25) are the set of coupled nonlinear
boundary value problems. The Runge-Kutta fourth order technique along with shooting scheme
is employed to this set of coupled nonlinear ordinary differential equations that transformed it
into an initial value problem with unknown initial values. To determine these values we utilize
few initial guesses. We found η∞ = 6 is a value appropriate for all the profiles which satisfies
the boundary conditions (25) at infinity with step size of h = 0.001 and the accuracy of error
tolerance 10−7 is used.

5. Result and discussion

The reduced system of ordinary differential equations (22)–(24) along with the boundary con-
ditions (25) is solved numerically by using the Runge-Kutta fourth order method along with
shooting technique. The important features of unsteady MHD flow are outlined graphically
through Figs. 2–8. Fig. 2 reveals the influence of the Grashof number Gr and the modified
Grashof number Gm on the velocity profile. It is seen that the velocity changes remarkably
when the Grashof and modified Grashof number increase, with the remaining present parame-
ters which are in field of velocity treated as constant. It indicates the thermal buoyancy force
effect on boundary layer to the force of viscous hydrodynamics. Hence the velocity accelerates
due to enhancement in the thermal buoyancy forces and as the values of Gr and Gm escalate,
it complements to the cooling of the plate.

Fig. 2. Velocity profile for the values of Gr and Gm

Fig. 3 is drawn to analyse the magnetic parameter effects on the velocity profile. As the
strength of magnetic field increases, it decline the fluid velocity. As expected, the magnetic field
maintains a retarding force over the flow of free convection.

Figs. 4 and 5 reflect the influence of the Prandtl number Pr on the velocity and the tem-
perature profile. Fig. 4 demonstrates the increase in Prandtl number Pr causes a decrease in
velocity. It is clear from Fig. 5 that the thickness of the thermal boundary layer decreases due
to an addition in Prandtl number Pr. The smaller values of Prandtl number Pr increases the
thermal conductivity, due to which the heat is rapidly diffused away compared to the higher
values of Pr from the heated plate. Hence in present state, the rate of heat transfer decreases.
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Fig. 3. Velocity profile for different values of magnetic parameter M

Fig. 4. Velocity profiles with distinct values of the Prandtl number Pr

Fig. 5. Temperature profiles with distinct values of Pr
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Fig. 6. Concentration profile of the distinct values of Sc

Fig. 6 reveals the effect of Sc on the concentration profile. Increase in Schmidt number
corresponds to fall down in the concentration profile. This affect on concentration buoyancy
effects to drop off the velocity of the fluid. This contraction of concentration profile causes the
reduction in the concentration boundary layer.

Next Fig. 7 reveals the consequences of radiation parameter R on the concentration profile.
Here it is clearly found that the temperature profile falls down as the radiation rises up, which
declines the thickness of the thermal boundary layer.

The response of the chemical reaction parameter Kr for different values over the velocity
profile is shown in Fig. 8. Increase in Kr decreases the concentration boundary layer.

Fig. 7. Effects of R on the temperature profile
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Fig. 8. Effects of Kr on the concentration profile

6. Conclusion

Similarity solutions are obtained for the unsteady mixed convection flow containing magnetic
field considering radiation over vertical plate in porous medium by the Lie group symmetry
analysis. The above study affirms the following deductions of physical interest on the velocity,
temperature and the concentration profiles as well as the associated parameters of the flow field.

• The Grashof and modified Grashof numbers have accelerating effects on the velocity of
the flow field.

• Velocity and temperature profile decreases due to increase in Prandtl number.

• The increase in Schmidt number declines the concentration profile.

• The increase in the radiation parameter leads to faster reduction in the temperature of flow
field.
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