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Abstract

The paper is motivated by a series of wind tunnel experiments, which deal with aeroelastic Single Degree of
Freedom (SDOF) and Two Degrees of Freedom (TDOF) section models. Most of them can be mathematically
expressed by van der Pol-Duffing type equations or their combination. Excitation due to aeroelastic forces consists
mostly of a deterministic periodic part and random components, both of them are applied as additive processes. The
lock-in state represents an auto-synchronization of the vortex shedding and basic eigen-frequency of the system.
This problem seems to be very polymorphous and, therefore, several isolated regimes have been outlined together
with their characterization. Parameter setting with solely random excitation is further investigated in the paper.
The strategy of stochastic averaging is then employed to formulate normal form of stochastic system for partial
amplitudes of harmonic approximates of the response. The random part of excitation is considered as a Gaussian
process with significantly variable spectral density. Hence, a conventional way of investigation based on an idea
of white noise excitation is no more applicable. Therefore, the general formulation of diffuse and drift coefficients
should be used to construct the relevant Fokker-Planck equation (FPE). Semi-analytical solution of FPE is deduced
in the exponential form by means of a probability potential. It is later used for stochastic stability investigation
together with consideration about the stationary probability distribution existence. Open problems and further
research steps are outlined.
c© 2018 University of West Bohemia. All rights reserved.
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1. Introduction

The paper is motivated by a series of wind tunnel experiments investigating aeroelastic Single
Degree of Freedom (SDOF) and Two Degrees of Freedom (TDOF) section models of various
shape and aeroelastic properties. It reveals that most of them can be theoretically modeled
by van der Pol-Duffing type equations or their combination adjusting degree of individual
nonlinear terms or their coefficients. Many experimental analyzes have been published proving
this hypothesis, see for instance papers [1, 3]. It should be emphasized that this character of the
system response is very stable and is obvious in linear as well as in weakly nonlinear domain
when post-critical effect emerge. Moreover, many special effects identified by experimental way
evoke properties recognized in the pure theory of differential equations. Authors take part in
this research as well, see for instance [8] or [11], following both theoretical and experimental
way of investigation.

In general, the commonly adopted model is of TDOF type, see Fig. 1. It seems to be mea-
ningful from theoretical point of view to investigate individual variants of linear and nonlinear
equations/systems representing large variety of cases which can be encountered. Nevertheless,
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J. Náprstek et al. / Applied and Computational Mechanics 12 (2018) 45–58

Fig. 1. General TDOF model of cross section aeroelastic behavior

the universal general TDOF model is complicated and does not enable to get through many
mechanisms and phenomena regarding stochastic stability on the level of an (semi) analytical
approach and only a numerical simulation of particular settings is possible. However, many
particular settings exhibit one dominant component only and, therefore, the second component
can be more or less neglected. For precise analysis of individual alternatives with respect to
bifurcation in a critical and early post-critical state, see [6, 11]. In such a case one speaks about
the simplified flutter, whatever is the dominating component (pitching or heaving). Both alterna-
tives have been observed in a wind tunnel. In theoretical treatment can be the model formulated
as an SDOF system.

Earlier papers, e.g., [12] and others, show a variability of the ratio ϕ(t)/u(t), provided
the system finds on the aeroelastic stability limit and the Hopf bifurcation decides about the
subsequent post-critical process. In dependence from cross-section shape, elements of the linear
part of the stiffness matrix and damping parameters, both components of the response can be
commeasurable. Nevertheless, it seems with respect to results of the careful parametric analysis
a dominance of one component, either ϕ(t) or u(t), is more probable. For this reason it is
worthy to start with an SDOF version in order to verify applicability and effectiveness of
mathematical procedures, which are based on Markov processes approach and Fokker-Planck
equation analysis. Moreover the SDOF formulation leads to more transparent results and enable
to explain explicitly special effects which occur during the process of the stability loss.

Excitation due to aeroelastic forces is in principle a combination consisting of a deterministic
periodic part (vortex shedding) and of random components represented by stochastic processes
of additive and multiplicative types. Which one is dominant depends on the stream velocity V
and, consequently, on aeroelastic processes ruling around the investigated profile. Basically
three regimes can be encountered:

(i) V0 < V < Vcrit: vortex shedding is dominant; despite this rather deterministic process is
accompanied by random excitation processes, their influence is very small and excitation
and response can be taken to be deterministic with the known frequency, V0 is a bottom
limit of the vortex shedding regime.

(ii) V = Vcrit ± δ, where δ is a small velocity detuning from Vcrit: influence of the vortex
shedding and random perturbations are co-measurable and quasi-periodic effects represent
the response.

(iii) V > Vcrit: vortex shedding nearly disappeared and random effects are dominating.

For this reason a series of consecutive papers dealing with various types of special and more
general mathematical models considered as a theoretical support of aeroelastic experiments in
the wind tunnel are planed.
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Fig. 2. Spectral density of the in wind additive excitation due to pressure fluctuations

As the first step authors attempt to develop an authentic theoretical counterpart characterizing
response of a nonlinear SDOF system associated with aeroelastic model, which is investigated in
conditions of the homogeneous stream with the velocity slowly sweeping up and down outside
the resonance domain. In this regime the random excitation component of the additive type is
dominant. This regime corresponds to super-critical state, see the variant (iii) above, typical for
high Reynolds number being characteristic for high velocities of the stream. It is completely
different from the lock-in state typical for the variant (ii) ruling in the resonance zone where the
vortex shedding with a small detuning δ from the system eigen-frequency and relevant random
component makes a combination of deterministic and stochastic excitation producing a number
of special effects. Let us take a note, that following experimental results the exciting random
processes are different from a white noise and its spectral density cannot be considered as a
constant. A sample of the relevant spectral density measured in a wind channel is shown in
Fig. 2, where we can see a significant variability of the spectral density in the frequency domain.
In the same time we can regard these processes to be ergodic and correlation stationary.

So that, we concentrate in this paper to the case (iii). In the first step the basic mathema-
tical model will be formulated. Later stationary response using stochastic averaging will be
investigated together with some parametric analyzes.

2. Generalized van der Pol system with additive excitation

2.1. Character of basic mathematical model

Let us consider the van der Pol with extended nonlinear damping part with random excitation
of the additive type:

ü − (η − νu2 + ϑu4) · u̇+ ω20 · u = Pω2 · cosωt+ h · ξ(t), (1)

where:
u = u(t)— displacement [m],
η, ν, ϑ — parameters of the damping [s−1, s−1·m−2, s−1·m−4]; basically it holds ν > 0, while η

should be considered positive or negative, and ϑ varies in an interval (−∞, ϑmax), where

ϑmax = ν2/4η < 0, η > 0, (2)
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ω0 — eigen-frequency of the adjoint linear SDOF system,
ω — excitation frequency of the vortex shedding [s−1],
Pω2 — amplitude of the harmonic excitation force [m·s−2],
ξ(t)— broadband weakly stationary Gaussian random process [m·s−2],
h — multiplicative constant [m·s−2].

When applied in aeroelasticity of the SDOF or TDOF systems, we should be aware that coeffici-
ents η, ν, ϑ are functions of the stream velocity V . Regarding ν, ϑ, they vanish for V = 0, as they
follow from aeroelastic processes only. Coefficient η consists of two components: (i) elastic part
ηe < 0 corresponding to conventional damping ratio of a linear SDOF system and (ii) aeroelas-
tic part ηa ≥ 0, which is zero for V = 0 and rises monotonously for increasing V . Therefore,
the total value of η crosses zero for a certain value of Vz and becomes positive. Starting this
point, the trivial solution of the homogeneous equation is no more stable and nonlinear part of
the damping should stabilize the response in the first limit cycle which is stable and makes an
attractor, if ϑ < ϑmax.

Consequently, coefficients η, ν, ϑ and their relation are responsible for the response portrait
and solution stability, for more details, see, e.g., [13, 17]. The ratio of these parameters decides
about existence of respective Limit Cycles (LC). It can be shown that in aeroelasticity of systems
modeled by (1), see, e.g., [9], can exist one (stable) or two (one stable and one unstable) limit
cycles, see Fig. 3. If η < 0, the homogeneous system is stable in the trivial state and no LC
emerge. Therefore, we concentrate to case for η > 0, which indicates that linear part of the
damping becomes negative and only its nonlinear part could stabilize the response on the level
of the stable LC, if any. The particular shape of the stabilized state depends on ϑ, see Fig. 3:
(i) −∞ < ϑ < 0 — only one stable LC exists, the system cannot be destabilized and moves
within the attractor area around this LC; (ii) ϑ = 0— one stable LC, although the second unstable
LC also exists, the infinite volume of energy would be needed to reach it; (iii) 0 < ϑ < ϑmax —
one stable (inner) and one unstable (outer) LC exists. The reaching the outer unstable LC means
final orbital stability loss. Beyond this limit the system response is no more periodic and its
amplitude rises to infinity; (iv) ϑ = ϑmax — both LC coincides into one double LC which is
stable on internal side and unstable (repulsive) on outer side; (v) ϑ > ϑmax — the system is
absolutely unstable and absolute value of its response is monotonously rising beyond all limits.

Fig. 3. Attractive and repulsive limit cycles; (a) stable and unstable limit cycles meet at a certain point
creating the separatrix manifold (valid for 0 < ϑ < ϑmax); (b) stability diagram a = f(ϑ) for ϑ varying
in the interval ϑ ∈ 〈−0.2, ϑmax〉, while ν > 0, η > 0
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2.2. Deterministic and random parts of the excitation

Concerning the right side of (1), the vortex shedding is the origin of additive harmonic excitation.
First of all we look through the vortex shedding frequency as a function of the stream velocity
in the wind tunnel. Observing Fig. 4, the lock-in zone is obvious, for details see [1]. From the
dynamical viewpoint the lock-in zone represents the resonance zone where the vortex shedding
frequency is nearly synchronized with the eigen-frequency of the system ω0 even if a certain
detuning is visible. The detuning can be influenced by means of conditions in which the system
is working, e.g., roughness of the surface, damping ratio, etc. Therefore, the mechanism in
a particular case should be carefully studied in order to adopt an appropriate measure for
suppression of this undesired phenomenon.

Fig. 4. Vortex shedding frequency as a function of the stream velocity, see [1]

These considerations lead to the finding that in the resonance zone two components of
the total response are to be expected: (i) self-excited vibration following from the fact that
the trivial solution of the homogeneous variant of (1) already has fallen into unstable state
and (ii) forced vibration due to deterministic part harmonic excitation on the right side. The
resulting response exhibits a character of quasi-periodic beatings. This phenomenon can be
found in theoretical studies of the van der Pol systems, see, e.g., [8], but it has been proved by
experimental measurements as well, e.g., [3].

Outside the resonance zone the vortex shedding frequency is given by aerodynamic properties
of the model and the stream velocity. In such a frequency domain no self-exciting response
component can emerge and hence the response has a character of solely forced vibration, as it
has been pointed out in Section 1. In this zone random excitation components are dominant.
This particular setting will be treated in this paper.

3. Response types following excitation and system parameters

3.1. Semi-analytical solution form — Ito system

It is understood that the terms (η−νu2+ϑu4) · u̇ and Pω2 are of a small order ε, and h ·ξ(t) is of
order ε1/2, without being so indicated in (1). Respecting these conditions we are entitled to apply
solution methods supposing a slow variability of the response partial amplitudes following this
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expression:

u(t) = ac · cosωt+ as · sinωt, u̇(t) = −acω sinωt+ asω cosωt (3)

with auxiliary condition:
ȧc · cosωt+ ȧs · sinωt = 0, (4)

where argument of the “slow” time is omitted: ac = ac(τ), as = as(τ).
Substituting assumptions (3) into the system (1) and employing the condition (4), one obtains

after several modifications the normal form of the differential system for amplitudes ac, as, which
are slowly variable in time:

ȧc =
ω20 − ω2

ω
sinωt(ac cosωt+ as sinωt)−

sinωt[η − ν(ac cosωt+ as sinωt)2 + ϑ(ac cosωt+ as sinωt)4] ·

(−ac sinωt+ as cosωt)− Pω sinωt cosωt − h

ω
sinωt · ξ(t),

ȧs = −ω20 − ω2

ω
cosωt(ac cosωt+ as sinωt) +

cosωt[η − ν(ac cosωt+ as sinωt)2 + ϑ(ac cosωt+ as sinωt)4] ·

(−ac sinωt+ as cosωt) + Pω cosωt cosωt+
h

ω
cosωt · ξ(t). (5)

When detuning 0 < δ < δr is small, so 2δ = (ω20−ω2)/ω ≈ |ω0−ω| is small as well. The same
holds regarding right sides of equation (5) and, therefore, ac, as are slowly variable amplitudes.
The input process can be considered of the Markov type and, therefore, we are entitled to rewrite
the problem in a form of Ito stochastic differential system and moreover the stochastic averaging
operation can be applied. This operation eliminates the fast varying parts in (5). As the result
we obtain simplified Ito differential system having the general form, see, e.g., [2, 5, 14]:

dac = Dcdt+ σccdBw,
das = Dsdt+ σssdBw,

(6)

where Dc, Ds are averaged deterministic parts of the right-hand sides of (5). Because random
processes do not act in parametric position, respective Wong-Zakai parts vanish, see, e.g., [7,16].

As the deterministic parts of the right-hand sides of (5) are smooth enough, Dc, Ds equal to
their averaged values without any complement. Bw(t) is a unit Wiener processes and σcc, σss

are expressions, which can be written in the form, see, e.g., [2, 5, 14]:

σ2ii =

∞∫
−∞

gii(t)gii(t+ τ)Rii(τ) dτ, ii = cc, ss, (7)

where R(τ) is the auto-correlation function of the process ξ(t). If ξ(t) degenerates to a Gaussian
white noise, R(τ) = dir(τ) and σ2ii(t) = 2πKξξg

2
ii(t), where Kξξ is the stochastic intensity of

the process ξ(t). Coefficients gii are coefficients in random parts of the right-hand sides of (5).
In particular:

gcc = −h

ω
sinωt, gss =

h

ω
cosωt. (8)
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If the process ξ(t) is not the Gaussian white noise, as it corresponds with experiments, then the
integral (7) should be evaluated with respect to (8):

σ2cc = σ2ss = 2πΦξξ(ω), (9)

where Φξξ(ω) is the spectral density of the process ξ(t) at frequency ω. Subjecting now the
system of equations (5) to operation of averaging with respect to above considerations, one
obtains after a couple of adaptations the Ito system as follows:

dac =
π

ω
[ηac + δas −

1
4
ν · ac(a

2
c + a2s) +

1
8
ϑ · ac(a

2
c + a2s)

2] dt+
( π

ω2
Φξξ(ω)

)1/2
· dBc(t),

das =
π

ω
[−δac + ηas −

1
4
ν · as(a

2
c + a2s) +

1
8
ϑ · as(a

2
c + a2s)

2] dt+
π

ω
Pω dt+

( π

ω2
Φξξ(ω)

)1/2
· dBc(t), (10)

where Bc(t) is the Wiener process related with input excitation ξ(t).

3.2. Fokker-Planck equation for the response partial amplitudes

Equations (10) indicate that, given time, the unknown ac, as will tend to stationary random
processes if the averaged system is stable. Then the reduced FPE for the stationary cross
probability density function (PDF) p(ac, as) (left side of the FPE is put to zero) can be written
in the form:

∂

∂ac

[
ηac + δas −

1
4
ν · ac(a

2
c + a2s) +

1
8
ϑ · ac(a

2
c + a2s)

2

]
p − 1
2ω
Φξξ(ω)

∂2p

∂a2c
+

∂

∂as

[
−δac + ηas −

1
4
ν · as(a

2
c + a2s) +

1
8
ϑ · as(a

2
c + a2s)

2 + P

]
p−

1
2ω
Φξξ(ω)

∂2p

∂a2s
= 0. (11)

FPE (11) should be solved subjected to the boundary conditions:

lim
|ac|+|as|→∞

[
ηac + δas −

1
4
ν · ac(a

2
c + a2s) +

1
8
ϑ · ac(a

2
c + a2s)

2

]
p − 1
2ω
Φξξ(ω)

∂p

∂ac

= 0,

lim
|ac|+|as|→∞

[
−δac + ηas −

1
4
ν · as(a

2
c + a2s) +

1
8
ϑ · as(a

2
c + a2s)

2 + P

]
p −

1
2ω
Φξξ(ω)

∂p

∂as
= 0. (12)

We should be aware that even when the averaged random processes ac, as reach the stationary
state, the original processes ac, as may remain non-stationary.
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J. Náprstek et al. / Applied and Computational Mechanics 12 (2018) 45–58

Let us add to the FPE a neutral member: D∂2p/∂ac∂as − D∂2p/∂ac∂as. Putting that into
(11) one obtains after a mild modification:

∂

∂ac

[(
ηac + δas −

1
4
ν · ac(a

2
c + a2s) +

1
8
ϑ · ac(a

2
c + a2s)

2

)
p−

1
2ω
Φξξ(ω)

∂p

∂ac
− D

∂p

∂as

]
+

∂

∂as

[(
−δac + ηas −

1
4
ν · as(a

2
c + a2s) +

1
8
ϑ · as(a

2
c + a2s)

2 + P

)
p+

D
∂p

∂ac

− 1
2ω
Φξξ(ω)

∂p

∂as

]
= 0, (13)

where D is an arbitrary constant. It can be shown, see [15], that equation (13) can be satisfied,
if it holds separately:
(

ηac + δas −
1
4
ν · ac(a

2
c + a2s) +

1
8
ϑ · ac(a

2
c + a2s)

2

)
p − 1
2ω
Φξξ(ω)

∂p

∂ac

− D
∂p

∂as

= 0,
(
−δac + ηas −

1
4
ν · as(a

2
c + a2s) +

1
8
ϑ · as(a

2
c + a2s)

2 + P

)
p+

D
∂p

∂ac
− 1
2ω
Φξξ(ω)

∂p

∂as
= 0. (14)

The above equations can be considered as the system of two linear algebraic equations for
∂p/∂ac and ∂p/∂as. Hence it holds:

∂p

∂ac

=
1

S2 +D2

(
(Sη +Dδ)ac + (Sδ − Dη)as −

1
4
ν(Sac − Das)(a

2
c + a2s) +

1
8
ϑ(Sac − Das)(a

2
c + a2s)

2 − D · P
)
· p,

∂p

∂as
=

1
S2 +D2

(
(−Sδ +Dδ)ac + (Sη +Dδ)as −

1
4
ν(Dac + Sas)(a

2
c + a2s) +

1
8
ϑ(Dac + Sas)(a

2
c + a2s)

2 +D · P
)
· p, (15)

where it has been denoted: S = Φξξ(ω)/2ω.
The solution of (11) can be expressed by means of stationary potential:

p(ac, as) = C exp(−Φ(ac, as)), (16)

where C is the normalization constant. The potentialΦ(ac, as) exists provided that the following
condition is fulfilled:

∂

∂as

(
∂Φ
∂ac

)
=

∂

∂ac

(
∂Φ
∂as

)
. (17)

Upon substituting (15) into (17) we obtain:

2(Sδ − Dη) +D(a2c + a2s)

(
ν − 3
4
ϑ(a2c + a2s)

)
= 0. (18)
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Let us fix the free parameter D to eliminate the first part of the left side of equation (18):

D = S · δ/η. (19)

Anyway, for arbitrary ac, as, equation (18) can be satisfied only if it holds: D = 0 which
implicates (i) S = 0 or absence of random excitation, or (ii) δ = 0 or coincidence ω = ω0 and
vanishing amplitude of harmonic excitation part. The latter case means that random excitation
only is acting.

Let us have a look at the case of purely random excitation. As it has been stressed earlier,
the excitation process is in general non-Gaussian and, therefore, the spectral densityΦ(ω) is not
constant. Nevertheless, we still consider the excitation for a broadband process. Its influence
in FPE discussed (13) manifests through the fixed value S = Φ(ω0)/ω0, that is as the spectral
density value in the basic eigen-frequency of the system ω0.

Returning back to equations (15), they can be rewritten with respect to (17), (18) and (19)
in the form:

− ∂p

∂ac
=
1
S

(
ηac −

1
4
νac(a

2
c + a2s) +

1
8
ϑac(a

2
c + a2s)

2

)
,

− ∂p

∂as

=
1
S

(
(ηas −

1
4
νas(a

2
c + a2s) +

1
8
ϑas(a

2
c + a2s)

2

)
. (20)

Each of equations (20) can be integrated following variable ac or as and to result an arbitrary
function of as or ac can be added, respectively. Finally, we obtain the same result of both
integrations providing the stationary potential in the form:

Φ(ac, as) = −a2c + a2s
2S

(
η − 1
8
ν(a2c + a2s) +

1
24

ϑ(a2c + a2s)
2

)
. (21)

It is obvious that the potential function is rotation symmetric. Therefore, the PDF following
equation (16) depends on the absolute amplitude A2 = a2c + a2s only and remains independent
on the phase shift ϕ = ac/as. In other words, the probability distribution in circumferential
direction is uniform. The transformation into the polar coordinates and subsequent integration
of (16) following circumferential direction leads to PDF in the radial direction A ≥ 0:

p(A) = CA exp

(
A2

2S
(η − 1

8
νA2 +

1
24

ϑA4)

)
. (22)

We shall examine the above formula. Its basic character follows from the relation of damping
parameters η, ν, ϑ. Let us determine the zero points of the potential Φ:

A21 = 0, A23,5 =
3
2ϑ

(
ν ± (ν2 − 32

3
ηϑ)1/2

)
, (23)

where A2,4,6 ≤ 0 were omitted as A ≥ 0 only is considered. As amplitude A2 is a real value,
A3,5 following (23) is meaningful only if holds:

ν2 ≥ 32
3

ηϑ, (24)

where the ν2 = 32
3 ηϑ means a certain limit case of the double root A23 = A25, beyond which real

roots A3,5 do not exist. Positions of potential extreme values are:

A2e1 = 0, A2e3,e5 =
1
ϑ

(
ν ± (ν2 − 8ηϑ)1/2

)
, (25)
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provided it is valid:
ν2 ≥ 8ηϑ. (26)

Several plots of the potential Φ(A) and corresponding PDF p(A) are presented in Figs. 5 and 6
in Section 3.3.

3.3. System parameter ϑ

Let us discuss two cases, in particular when ϑ is negative and when ϑ is positive. Provided
the parameter ϑ ≤ 0, conditions (24) and (26) are satisfied implicitly. The term with A4 has a
stabilizing character, unstable limit cycle vanishes and all trajectories are approaching the inner
limit cycle which is stable. In such a case the function (22) is integrable and the normalizing
constant C can be evaluated, even if it cannot be evaluated exactly and should be evaluated
numerically.

We pay attention to some plots exhibited in Fig. 5. They represent potential Φ(ac, as) of
the PDF with respect to equation (21) for settings which are indicated in individual pictu-
res and caption. The bold black curve in every picture means the case for ϑ = 0. It sepa-
rates cases providing stationary cases (ϑ ≤ 0 and cases leading to collapse of the system
ϑ > 0. It is obvious that curves for ϑ ≤ 0 are exclusively in upper half-plane starting a cer-
tain zero crossing point and getting the negative potential Φ(ac, as) for every higher values
A. It enables integrability of Φ(ac, as) on the whole space and guarantees existence of the
normalization constant C. Unlike from that ϑ positive leads every time to positive potential
Φ(ac, as) since some starting point and, therefore, to exploding increase of the PDF. Roughly
speaking, it is apparent that curves for negative ϑ starting a certain value of A always rise
to +∞ as A6. Therefore, PDF following (22) rises beyond all limits and normalization con-
stant C does not exist. Provided ϑ is positive, the potential Φ(ac, as) becomes negative since
the last zero point. Consequently, the exponential in (22) approaches asymptotically zero for
A → ∞ and is integrable. Hence, the stationary PDF exists and can be physically interpre-
ted.

Take a notice that ν having the stabilizing character (being always positive) has a diminishing
influence on the PDF. The potential takes up even more and more smaller area of negative values
and leads to more shallow PDF. Rising ν has stabilizing character and reduces the response
variance of the system. We can observe this process also in Fig. 6, where the system response
PDF is exhibited for several corresponding parameter settings as in Fig. 5.

As a verification of results obtained in this paper using a semi-analytical procedure can serve
the analysis performed numerically by means of the Finite Element Method (FEM), see [4]
or [10] and other resources. Although qualitative match is obvious some differences in details
can be observed. They follow from a limited extent of trigonometric series (3). They imply
slightly more complicated form of the limit cycle and, therefore, not constant crest of the PDF
which we can see in Fig. 6.

Let us pay attention now to case with the positive value of the parameter ϑ. This setting
changes character of further investigation substantially. Provided the excitation is determi-
nistic (e.g., harmonic) the outer limit cycle represents a limit beyond which the response
rises to infinity and the solution as the system response still enable a meaningful interpre-
tation from the viewpoint of the stability analysis. Unlike the deterministic case an existence
of the outer unstable (repulsive) limit cycle leads in principle to state (even if with a very
small probability) when the stochastic stability limit is reached in final time and is broken
through.
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Fig. 5. Potential of probability Φ(ac, as) for η = 1, S = 1 as a function of the total amplitude A; bold
black curve concerns ϑ = 0
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Fig. 6. Probability density function p(A) = p(ac, as) corresponding to (22) in non-normalized form,
η = 1, S = 1, C = 1; relevant values of ν and ϑ are written out in individual plots

The stationary or asymptotically stable solution of FPE does not exist any more. It means that
the operation of the stochastic averaging which leads to the system (10) is no more applicable.
From the viewpoint of the function (22) the PDF is not integrable with respect to amplitude
A and the normalization constant does not exist. Therefore, if the excitation process admits
infinite values, the solution cannot be considered as a PDF either constant (independent on
time) or variable with respect to the slow time having a form of a function either asymptotically
converging to a certain integrable limit or to a quasi-periodic function. It is obvious that the PDF
of excitation noise ξ(t) has a crucial character. Basically, the excitation PDF could be defined
with limited values preventing that the response never reach the outer limit cycle. However,
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such a formulation is beyond the definition of basic stochastic system leading to the FPE (11)
supposing Gaussian character of the excitation.

This facts can be demonstrated by pictures plotted in the right column of Fig. 6. It is obvious
that PDF in the area nearby the origin behaves similarly for both negative and positive ϑ if
the absolute value of this parameter is identical (let us remember again that PDF is plotted in
non-normalized state). Nevertheless since a certain distance from the origin, PDF starts increase
dramatically, following the exponential law.

These findings force us to go back to reconsider results obtained in wind tunnels. It is known
that model tested in a wind tunnel can be brought to collapse, which corresponds with the model
investigated in this paper. Therefore, the task becomes a character of the problem of the first
excursion beyond a defined limit. On the other hand the time of the first excursion beyond a
critical limit is very long and in practice is hardly to be reached. Another possibility would still
be to abandon the perfectly Gaussian excitation character and admit the PDF of the exciting
process to be given by a so-called limited distribution of probability. In other words, the PDF
of excitation is, for instance, rectangular with limitations before the position of the second
(unstable) limit cycle. Of course, this approach would require a completely different solution
procedure than that used in this paper. Authors will pay attention to these approaches in the next
paper.

4. Conclusions

The problem of a mathematical model characterizing the generalized van der Pol system under
combined harmonic and random excitations has been discussed and classified into a couple of
categories. Namely TDOF and SDOF systems have been mentioned as an integral framework.
At the moment the SDOF system has been treated in general and in details regarding the response
probability density. This basis will be used from a methodological point of view as a background
of an extensive study of the general TDOF system with combined deterministic and random
excitation. This strategy has been inspired by results of TDOF stability study, which indicates
possible dominance of single response component (heaving or pitching) in the moment of
stability loss in the Hopf bifurcation point. Regarding the random part of excitation a distinctly
variable spectral density in frequency has been considered. Commonly adopted suggestion of
its white noise character has been abandoned due to experimental results in a wind tunnel
measurements. While the deterministic task admits to work with both stable and unstable limit
cycles, the random broadband excitation would lead to unstable collapsing solution. Therefore,
the cases with an unstable limit cycle have been avoided and they will be studied separately as a
problem of the first excursion of the reliability domain. A particular solution has been obtained
using the stochastic averaging, which provides the solution of exponential PDF distribution
with the stationary homogeneous probability potential. A short comparison with numerical
solution of the relevant Fokker-Planck equation has been done. Applicability and shortcomings
of approaches used are commented. A few hints for engineering applications in a design practice
are given. Open problems are indicated together with enumeration of variants planed to be
investigated in the near future.
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[3] Koloušek, V., Pirner, M., Fischer, O., Náprstek, J., Wind Effects on Civil Engineering Structures,
Elsevier, Academia, Prague, 1983.
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