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Abstract

The paper is focused on the solution of a vibrating system with one-degree-of-freedom with the objective to deal
with the method for periodical response calculation (if exists) reminding Harmonic Balance Method of linear
systems having time dependent parameters of mass, damping and stiffness under arbitrary periodical excitation.
As a starting point of the investigation, a periodic Green’s function (PGF) construction of the stationary part of
the original differential equation is used. The PGF then enables a transformation of the differential equation to
the integro-differential one whose analytical solution is given in this paper. Such solution exists only in the case
that the investigated system is stable and can be expressed in exact form. The second goal of the paper is to
assess the stability and solution existence. For this purpose, a methodology of (in)stable parametric domain border
determination is developed.
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1. Introduction

Periodic systems have been subjected to the continuing interest in many branches of engineering.
Mainly the stability of these systems has been intensively investigated and, therefore, a lot of
works covering this topic can be found in the literature. Hill [6] seems to be one of the pioneers
who laid the first mathematical foundations for the stability assessment of parametric systems.
Since then various techniques have been developed. Methods used for the stability assessment
of periodic systems can be divided into several categories.

First of all, there are perturbation methods [7, 15, 16]. According to them, the solution
is given by the first several terms of an asymptotic expansion. The standard is usually not
to use more than two terms. These approaches are known as first-order and second-order
perturbation techniques. It should be mentioned in the connection with a stability assessment
that the perturbation methods are primarily suitable for systems containing only small fluctuation
parameters. Further, the various approaches of the perturbation techniques can be shown in the
relation to the assessment of stability. They include the methods of Wentzel-Kramers-Brillouin
(WKB) [14] or Poincare-Lindstedt [5].

The second category of assessment methods includes those based on the Lyapunov theory [7,
18]. Lyapunov was the first to use linearisation of nonlinear systems for stability assessment
near a point of equilibrium (work point). A linearisation using the Jacobian matrix corresponds
to the expansion of the function on the right hand side to a power series and all no-linear terms
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are omitted. Whether the system is stable or not then depends on the eigenvalue properties of the
Jacobian matrix. This technique is known as the First method of Lyapunov. The Second method
of Lyapunov uses a Lyapunov function having an analogy to the potential function of physical
systems.

The last and quite broad category of methods includes those based on the Floquet theory [3].
This theory allows to study the stability of linear time periodic systems. For a nonlinear periodic
system, the stability of the solution can be analysed by means of a linearised mathematical model
(e.g., see [7, 11]). However, sometimes it gives less accurate prediction of stability boundaries
when individual steps of the solution are approximated by linear systems. In the context of
the Floquet theory, further methods were developed such as the State Transition Matrix (STM)
methods [4, 16] and the Infinite Determinant (ID) methods [7, 21]. The STM methods are
essentially numerical in nature and are applicable without restrictions to the order of the system
and the magnitude of the parameters. This is one of the main reasons why these methods are
widely used for the calculation of characteristic exponents. In contrast, the ID methods are more
commonly applied to second-order systems with small periodic parameters. The use of the ID
method for systems of any order and with arbitrary coefficients is demonstrated in [1]. However,
in these cases, the calculation is rather cumbersome because of the need to compute a quite
large determinant. As alternative to ID methods, the method of multiple scales and the method
of strained parameters can be found in [16].

Besides stability assessment, the second important task in the investigation of ordinary
differential equations (ODEs) with time periodic coefficients is to find their periodic solutions
(if exist). From a practical point of view, one of the most important is the second-order ODE
known as Hill’s equation, which was first studied by Hill in 1886. Whittaker and Watson
in [21] provided the periodic solutions involving Hill’s ID. Further, more general results on the
Hill’s homogeneous equation can be found in [10]. Shadman and Mehri [19] investigated the
existence of periodic solutions of forced Hill’s equation and extended the problem to the case of
a non-homogeneous matrix valued Hill’s equation. Additionally, there are several works such
as [16] that use the Harmonic Balance Method (HBM) to find an approximate solution of the
Hill’s equation. In special cases where Hill’s equation has a specific form, this one becomes
the Mathieu’s equation [12], the Whittaker-Hill’s equation [20] or the Meissner’s equation [13].
Among them, the best known is probably the Mathieu’s equation which in the past was studied
by many researchers including MacLachlan [9], Newland [17] or Jordan and Smith [7]. Kourdis
and Vakakis [8] solved the equation of linear oscillator under parametric excitation of general
type and used an analytical approach based on amplitude-phase decomposition of the response.

The current work builds on and significantly expands our previous study [2], where we
presented an analytical solution and stability assessment of a one-degree-of-freedom (1 DOF)
linear vibrating system with periodic stiffness that was excited by a periodic force. In this paper,
the equation of motion with other periodically varying parameters under periodic excitation is
studied. To find the steady-state solution, presented approach uses the periodic Green’s function
(PGF) as a response to the Dirac chain. The application of the dynamical compliance method
leads to an integro-differential equation with degenerated kernel. This approach may resemble
the use of HBM to calculate the periodic solution of linear differential equations with varying
parameters. The main difference between the classical HBM and the presented method is the
introduction of a system matrix depending on the fluctuation matrices of stiffness, mass and
damping. The sign of a 2T -periodic characteristic matrix determinant decides on (in)stability
and existence of the periodical steady-state solution. The ability of the proposed methodology
is illustrated through examples.
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2. Theoretical background

2.1. Periodic solution to equation of motion

Let us assume that the behaviour of a system is described by the equation of motion

[ms − μmm(t)] q̈(t) + [bs − μbb(t)] q̇(t) + [ks − μkk(t)] q(t) = f(t) , (1)

where some parameters and excitation are time periodic. It means that the following conditions
of periodicity are satisfied:

m(t)=m(t+ T ) =
N∑

n=−N

mnen(t) , b(t)= b(t+ T ) =
N∑

n=−N

bnen(t) ,

k(t)= k(t+ T ) =
N∑

n=−N

knen(t) , f(t)= f(t+ T ) =
N∑

n=−N

fnen(t) .

(2)

All these functions can be expressed in the form of the Fourier series while using the compact
notation

en(t) = e
inωt with ω = 2π/T and i2 = −1 , (3)

where ω is the basic angular frequency and T is the period corresponding to the frequency ω. The
parameters μm, μb, μk in (1) represent the measures of mass, damping and stiffness modulation,
respectively. The remaining symbols have the following meaning: ms, bs, ks are stationary
mass, damping and stiffness parameters, respectively. Further, let us assume that the number N
is sufficiently large for a good approximation of the periodic functions.

PGF should be taken as a starting point for finding a solution to the equation of motion (1).
This function can be obtained as the periodic response of the stationary part of the system to
a Dirac chain excitation and has the following form [2]

H(t) =
1
T

N∑
n=−N

Lnen(t) with Ln =
1

−n2ω2ms + inωbs + ks
. (4)

The solution of (1) can be written in the form of convolution integrals (excitation consists of the
parametric and external parts)

q(t) = μm

∫ T

0
H(t − s)m(s)q̈(s) ds+ μb

∫ T

0
H(t − s)b(s)q̇(s) ds+

μk

∫ T

0
H(t− s)k(s)q(s) ds+

∫ T

0
H(t− s)f(s) ds . (5)

Substituting (2) and the relation

H(t − s) =
1
T

N∑
n=−N

Lnen(t − s) =
1
T

N∑
n=−N

Lnen(t)en(−s) =
1
T

N∑
n=−N

Lnen(t)e−n(s) (6)
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into (5) and considering e−n(s)ej(s) = ej−n(s), the function q(t) can be briefly written

q(t) =
μm
T

∫ T

0

N∑
n=−N

N∑
j=−N

Lnmj q̈(s)en(t)ej−n(s) ds+

μb
T

∫ T

0

N∑
n=−N

N∑
j=−N

Lnbj q̇(s)en(t)ej−n(s) ds+

μk
T

∫ T

0

N∑
n=−N

N∑
j=−N

Lnkjq(s)en(t)ej−n(s) ds+

1
T

∫ T

0

N∑
n=−N

N∑
j=−N

Lnfjen(t)ej−n(s) ds . (7)

Let us introduce matricesAm,Ab,Ak∈ C2N+1,2N+1 with elements

Ax
n,j =

{
Lnxj+n for j + n ∈ {−N,−N + 1, . . . , N − 1, N} ,
0 for j + n /∈ {−N,−N + 1, . . . , N − 1, N} ,

x ∈ {m, b, k} . (8)

Equation (7) represents an integro-differential equation with degenerated kernel for the func-
tion q(t). Using (8), this integro-differential equation can be rewritten into the form

q(t) =
μm
T
eT(t)

∫ T

0
Ame(s)q̈(s) ds+

μb
T
eT(t)

∫ T

0
Abe(s)q̇(s) ds+

μk
T
eT(t)

∫ T

0
Ake(s)q(s) ds+ eT(t)Lf , (9)

where we used the condition of orthogonality∫ T

0
ej−n(s) ds =

∫ T

0
eijωse−inωs ds = Tδjn =

{
T for j = n ,
0 for j �= n

(10)

and

L = diag {Ln} ∈ C
2N+1,2N+1 for n ∈ {−N,−N + 1, . . . , N − 1, N} , (11)

e(t) = [e−N(t), e−N+1(t), . . . , eN−1(t), eN(t)]
T ∈ C

2N+1, (12)
f = [f−N , f−N+1, . . . , fN−1, fN ]

T ∈ C
2N+1. (13)

The matrix L represents the dynamic compliance of the stationary part of the system that
corresponds to individual harmonics. Let us introduce the following notations

α =
1
T

∫ T

0
Ake(t)q(t) dt , β =

1
T

∫ T

0
Abe(t)q̇(t) dt , γ =

1
T

∫ T

0
Ame(t)q̈(t) dt , (14)

so that (9) can be rewritten into the form

q(t) = μm eT(t)γ + μb eT(t)β + μk eT(t)α+ eT(t)Lf . (15)

The first and the second time derivatives of (15) are

ė(t) = iωNe(t) , ë(t) = −ω2N2e(t) , (16)
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where

N = diag {n} ∈ Z
2N+1,2N+1 for n ∈ {−N,−N + 1, . . . , N − 1, N} . (17)

The derivatives of the function q(t) can be expressed as

q̇(t) = iω
[
μmeT(t)Nγ + μbeT(t)Nβ + μkeT(t)Nα+ eT(t)NLf

]
, (18)

q̈(t) = −ω2
[
μmeT(t)N2γ + μbeT(t)N2β + μkeT(t)N2α+ eT(t)N2Lf

]
. (19)

To obtain α, β, γ, we pre-multiply (15), (18), (19) by T−1Ake(t), T−1Abe(t), T−1Ame(t),
respectively, and integrate from 0 to T . Taking into consideration (14), the equations can be
further rewritten as

α = μmAkÎγ + μbAkÎβ + μkAkÎα+AkÎLf ,

β = iμmωAbÎNγ + iμbωAbÎNβ + iμkωAbÎNα+ iωAbÎNLf , (20)
γ = −μmω2AmÎN2γ − μbω

2AmÎN2β − μkω
2AmÎN2α − ω2AmÎN2Lf ,

where ∫ T

0
e(t)eT(t) dt = T Î , Î =

⎡
⎢⎣

1

. .
.

1

⎤
⎥⎦ ∈ R

2N+1,2N+1. (21)

The matrix productsAmÎ,AbÎ,AkÎ can be replaced as follows:

AmÎ = LHm ,AbÎ = LHb ,AkÎ = LHk , (22)

which can be easily proven by direct substitution. All matrices

Hx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 x−1 x−2 · · · x−N

x1 x0 x−1 x−2
. . .

x2 x1 x0 x−1
. . . x−N

... x2 x1 x0
. . .

. . .
...

xN

. . .
. . .

. . .
. . . x−2

. . .
. . .

. . .
. . . x−1

xN · · · x2 x1 x0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

2N+1,2N+1 for x ∈ {m, b, k} (23)

are Hermitean, i.e.,
HHx = Hx , HHx = H

T
x , (24)

which follows from the fact that x−j = xj for j �= 0, x0 ∈ R. The bar notation means complex
conjugated expression. Matrices Hm, Hb and Hk express fluctuation of mass, damping and
stiffness, respectively. Taking (22) and (20), the system of equations (20) can be converted into
the matrix form

y = μAy+ b , (25)

where

A =

⎡
⎣ cαLHk cβLHk cγLHk
iωcαLHbN iωcβLHbN iωcγLHbN

−ω2cαLHmN2 −ω2cβLHmN2 −ω2cγLHmN2

⎤
⎦ ∈ C

3(2N+1),3(2N+1), (26)
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y =

⎡
⎣ α

β
γ

⎤
⎦ ∈ C

3(2N+1), b =

⎡
⎣ LHk
iωLHbN

−ω2LHmN2

⎤
⎦Lf ∈ C

3(2N+1). (27)

Let us denoteA as a T -periodic system matrix and vector b as a T -periodic system excitation.
Vector y contains coefficients of linear combination of approximation functions. Parameter μ
can be freely chosen from the set μ ∈ {μk, μb, μm}, while the values of cα, cβ, cγ have to be
changed accordingly, for example,

μ = μk =⇒ {cα, cβ, cγ} =
{
1,

μb
μk

,
μm
μk

}
. (28)

The solution of (25) has the form

y = (I− μA)−1 b , (29)

where I is an identity matrix of the same type asA. The matrix in round brackets can be called
as a T -periodic characteristic matrix. Taking (28), the solution (15) can be rewritten as

q(t) = μ
[
cαeT(t)α+ cβeT(t)β + cγeT(t)γ

]
+ eT(t)Lf (30)

and subsequently as
q(t) = μE(t)y + eT(t)Lf , (31)

where
E(t) =

[
cαeT(t), cβeT(t), cγeT(t)

]
∈ C

1,3(2N+1). (32)

The use of (29) to the final solution of (1) then yields

q(t) = μE(t) (I− μA)−1 b+ eT(t)Lf . (33)

The accuracy of this analytical periodic solution depends on the number of N harmonics taken
into account. Let us denote the solution approximated by 2N + 1 terms of the Fourier series as
qN(t). Thereafter, we assume the solution qN(t)→ q(t) if the condition

‖qN (t)− qN+1(t)‖ < ε for qN (t), qN+1(t) ∈ L2(0, T ) (34)

is satisfied, where ε is a small positive number.

2.2. Existence of periodic solution and system stability assessment

If the aforementioned system is unstable, then the periodic solution (33) does not exist and,
therefore, we focus mainly on the stability assessment. It is necessary to take into account
resonant stage with parametric excitation having half frequency ω∗ = ω/2, see [2]. It corresponds
to the 2T -periodic solution, which has to be identical with the T -periodic solution. It will be
proven bellow.

The 2T -periodic solution can be expressed in the analogical form to (30). Then

q∗(t) = μ
[
cαe∗T(t)α∗ + cβe∗T(t)β∗ + cγe∗T(t)γ∗]+ e∗T(t)L∗f∗, (35)

where

L∗ = diag
{
Ln/2

}
∈ C

4N+1,4N+1 for n ∈ {−2N,−2N + 1, . . . , 2N − 1, 2N} , (36)

e∗(t) =
[
e−N(t), e−N+ 12

(t), e−N+1(t), . . . , eN−1(t), eN− 12
(t), eN(t)

]T
∈ C

4N+1, (37)

f∗ = [f−N , 0, f−N+1, . . . , f−1, 0, f0, 0, f1, . . . , fN−1, 0, fN ]
T ∈ C

4N+1, (38)
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α∗ =
[
α−N , α−N+ 12

, α−N+1, . . . , αN−1, αN− 12
, αN

]T
∈ C

4N+1,

β∗ =
[
β−N , β−N+ 12

, β−N+1, . . . , βN−1, βN− 12
, βN

]T
∈ C

4N+1, (39)

γ∗ =
[
γ−N , γ−N+ 12

, γ−N+1, . . . , γN−1, γN− 12
, γN

]T
∈ C

4N+1.

Remark 1. The relations given above can be derived analogously to those in Section 2.1.
We start by finding the 2T -periodic PGF defined as the response of the stationary part of the
investigated system to a Dirac chain excitation with a 2T period. It follows that

δ∗T(t) =
1
2T

N∗∑
n=−N∗

cos
nωt

2
=
1
2T

N∗∑
n=−N∗

ei
nωt
2 for N∗ = 2N . (40)

We make sure that the following relations hold

f∗ = Jf , f = JTf∗, e(t) = JTe∗(t) , (41)

Hx = JTH∗
xJ , L = JTL∗J , LHxL = JTL∗H∗

xL
∗J for x ∈ {m, b, k} , (42)

where matrix J is defined in (A.2) and matrixH∗
x is given as

H∗
x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 0 x−1 0 x−2 0 · · · x−N

0 x0 0 x−1 0 x−2 0 x−N

x1 0 x0 0 x−1 0 x−2
. . .

. . .

0 x1 0 x0 0 x−1 0
. . .

. . . x−N

x2 0 x1 0 x0 0
. . .

. . .
. . .

. . .
...

0 x2 0 x1 0 x0
. . .

. . .
. . .

. . . 0
... 0

. . . 0
. . .

. . .
. . .

. . .
. . .

. . . x−2

xN
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0

xN
. . .

. . .
. . .

. . .
. . .

. . .
. . . x−1

. . .
. . .

. . .
. . .

. . . 0 x0 0
xN · · · 0 x2 0 x1 0 x0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
4N+1,2N+1. (43)

Similarly,Hx, see (24), as well asH∗
x is Hermitean for x ∈ {m, b, k}. The subscripts correspond

to the original angular frequency ω. Applying the same procedure as in the T -periodic system,
we can come to the equation for the calculation of the Fourier-coefficients vector. The form of
this equation is analogous to (25), i.e.,

y∗ = μA∗y∗ + b∗ , (44)

where

A∗ =

⎡
⎣ cαL∗H∗

k cβL∗H∗
k cγL∗H∗

k

iωcαL∗H∗
bN

∗ iωcβL∗H∗
bN

∗ iωcγL∗H∗
bN

∗

−ω2cαL∗H∗
mN

∗2 −ω2cβL∗H∗
mN

∗2 −ω2cγL∗H∗
mN

∗2

⎤
⎦ ∈ C

3(4N+1),3(4N+1), (45)
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y∗ =

⎡
⎣α∗

β∗

γ∗

⎤
⎦ ∈ C

3(4N+1), b∗ =

⎡
⎣ L∗H∗

k

iωL∗H∗
bN

∗

−ω2L∗H∗
mN

∗2

⎤
⎦L∗f∗ ∈ C

3(4N+1), (46)

where

N∗ = diag {n/2} ∈ R
4N+1,4N+1 for n ∈ {−2N,−2N + 1, . . . , 2N − 1, 2N} . (47)

The total 2T -periodic solution has the form (35) and can be written in a similar form as (31) or
(33), i.e.,

q∗(t) = μE∗(t)y∗ + e∗T(t)L∗f∗ = μE∗(t) (I− μA∗)−1 b∗ + e∗T(t)L∗f∗ , (48)

where
E∗(t) =

[
cαe∗T(t), cβe∗T(t), cγe∗T(t)

]
∈ C

1,3(4N+1) (49)

and I is an identity matrix of the same type as the 2T -periodic system matrix A∗. The matrix
I− μA∗ can be called a 2T -periodic characteristic matrix.

Lemma 1. The 2T -periodic solution to the equation of motion is identical to the T -periodic
solution, i.e.,

q∗(t) ≡ q(t) . (50)

Lemma 2. Let q(t) in (33) be the T -periodic solution to the equation of motion (1) in steady-
state. Then, this solution can be also written in the form

q(t) = eT(t)
[
I+ μ (I− μAred)

−1Ared
]
Lf (51)

using a T -periodic reduced system matrix

Ared = cαLHk + iωcβLHbN− ω2cγLHmN2, Ared ∈ C
2N+1,2N+1. (52)

Proofs of Lemmas 1 and 2 are provided in Appendixes B and C, respectively.
Now, let us turn our attention to the investigation of the (in)stability border. It is evident

from (48) that some solution q∗(t) exists only if the matrix I− μA∗ is not singular. Otherwise,
1/μ is equal to one of the eigenvalues of the matrixA∗. As shown below, the determinant ofA∗

is real and the eigenvalues of A∗ are either real or complex conjugate pairs. Consequently, the
real eigenvalues correspond to the changes of determinant sign and determine the (in)stability
border in the parametric plane ω and μ.

First, it can be easily shown that the relations

Σ(A∗) ≡ Σ(Ã) ≡ Σ(Â) (53)

are valid because of the orthogonality of matrices P̃ and Q (P̃TP̃ = I and QTQ = I), see
Appendix A. For this reason, A∗, Ã and Â are similar matrices with identical spectra. The
symbol Σ denotes the set of eigenvalues of the relevant matrix. The proof of (53) follows from
the relations between the matrixA∗ and the matrices Ã and Â

Ã = P̃TA∗P̃ and Â = QTP̃TA∗P̃Q . (54)

Lemma 3. The set of nonzero eigenvalues of the matricesA∗, Ã and Â is identical to the set of
eigenvalues of a 2T -periodic reduced system matrix

A∗
red = cαL∗H∗

k + iωcβL∗H∗
bN

∗ − ω2cγL∗H∗
mN

∗2, A∗
red ∈ C

4N+1,4N+1. (55)
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From this lemma follows the fact that in order to obtain the borders of system (in)stability,
it is possible to solve the set of eigenvalues of matrixA∗

red instead of that of matrixA∗.

Lemma 4. Eigenvalues of the 2T -periodic reduced system matrix A∗
red are either real or

complex conjugate pairs. For this reason, the determinant of this matrix is a real value because
the matrix determinant can be expressed as a product of all eigenvalues.

Proofs of Lemmas 3 and 4 are given in Appendixes D and E, respectively.

3. Results and discussion

The verification of the relations derived in previous sections will now be demonstrated on
a simple problem. For this purpose, let us consider the system

(mS − mA cosωt) q̈(t) + (bS − bA cos 2ωt) q̇(t) + (kS − kA cos 2ωt) q(t) = f(t) . (56)

At this point, it is appropriate to transform this equation using the dimensionless time τ = Ωt
into the form

(1− μcγ cos ητ) q′′(τ) + 2D (1− μcβ cos 2ητ) q′(τ)+

(1− μcα cos 2ητ) q(τ) = f(τ)/kS , (57)

where
Ω =

√
kS/mS , D = bS/(2mSΩ) , η =

ω

Ω
(58)

and
mA
mS
= μm = μcγ ,

bA
bS
= μb = μcβ ,

kA
kS
= μk = μcα . (59)

The derivations of the variable q with respect to dimensionless time can be denoted by ()′ = d/dτ
and the coefficients cα, cβ, cγ are used in accordance with (28).

3.1. Stability problem

The stability assessment is performed for homogeneous equation (57). As mentioned earlier, the
determination of the (in)stability boundaries corresponds to the eigenvalue problem of matrix
A∗
red, see Lemma 3. This matrix is defined for a damped system (D = 0.01) by (55) and has

a reduced form cαL∗H∗
k − ω2cγL∗H∗

mN
∗2 corresponding to the conservative system (D = 0).

According to Lemma 4, the eigenvalues of matrix A∗
red are either real or come in complex

conjugate pairs. However, only the real eigenvalues define the (in)stability borders because the
investigated system has real periodic parameters. Two different value sets of parameters cα, cβ,
cγ are presented: cα = cβ = cγ = 1 in the first case and cα = cβ = 1.1, cγ = 1 in the second
one. When analysing the undamped system, the parameter cβ is omitted in both aforementioned
cases. Numerical experiments showed that for N > 10, the number N has a negligible effect
on the accuracy of values |μ| < 1. Therefore, all computations in this paper are performed for
(in)stability borders with parameter settings N = 10.

The results of stability assessment are shown in Fig. 1. It can be noted that a relatively small
change in parameters cα, cβ leads to stability regions of considerably different shapes. This
behaviour can be seen in the undamped (Fig. 1(a) and (c)) as well as in the damped (Fig. 1(b)
and (d)) system. The most apparent differences are particularly obvious for the largest value
of 1/η2 (the smallest value of the parameter ω). The Floquet theory was applied to verify the
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Fig. 1. Stable and instable regions for various parameters cα, cβ , cγ ; problems with (b), (d) and without
(a), (c) damping

correctness of the derived (in)stability borders. The characteristic exponents were computed
for the combinations of 1/η2 and μ by using the Runge-Kutta integration method. The dots in
Fig. 1 represent points of stability. As the reader can see, the obtained results are in a good
agreement. Considering only periodic stiffness in (57) (known as the Mathieu equation), the
stability regions become symmetric as shown, e.g., in [2]. All numerical tests have shown that
the determinant of matrix I − μA∗

red is positive in the regions of stability and negative in the
regions of instability. In the later case, a periodic solution for steady state does not exist. It could
be used as a criterion for determining the stability of linear systems.

3.2. System response

The validity of (51) for the steady-state response is demonstrated for two types of excitation.
Because the stability of the system given by (57) has already been proven, the response can be
also solved. The two periodic excitations were chosen in the form of a linear cosine function
which can be defined as

f(t) = f1(t) = f1(t+ T ) =
2fS
T

∫ t+T/4

0
sign cosωξ dξ for t ∈ 〈0,∞) (60)

and in the form of a saw function

f(t) = f2(t) = f2(t+ T ) = fS
t

T
for t ∈ 〈0, T ) . (61)
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(a)

Fig. 2. Time periodical exciting functions (a) f1(t) and (b) f2(t)

The functions f1(t) and f2(t) are depicted in Fig. 2(a) and (b), respectively. Due to the T -
periodicity of both functions, they can be expressed in the form of Fourier series. The original
functions f1(t) and f2(t) can be transformed into the form

f1(τ) ≈ fS

N1∑
n=−N1

an e
inητ with an =

{
0 for n = 0,

[1− (−1)n] /(πn)2 otherwise (62)

and

f2(τ) ≈
fS
2

N2∑
n=−N2

bn e
inητ with bn =

{
1 for n = 0,

i/(πn) otherwise. (63)

The parameter fS is assumed to be fS = kS qS in both cases of excitations, where qS is a static
displacement corresponding to the fS value. An appropriate number of Fourier series terms
N1 and N2 to describe the functions f1(τ) and f2(τ), respectively, was taken with respect to
numerical experiments and to the negligible effect of higher terms on the total response. The
values N1 = 25 and N2 = 50 are used for the subsequent calculations.

Because only the periodic steady state response is required in this work, the sought solution
corresponds only to the particular solution of the equation of motion (1) and is given by
a convolute integral, see equation (5). Then the solution consists of the solution with no excitation
and with null initial conditions. For this reason, the verification of numerical results by the Runge-
Kutta integration method respects homogeneous initial conditions in the following examples.
All analyses are then performed with respect to (57).

Recall that the presented solution q(t) given by (51) makes sense only in the stable region.
If the parameters are chosen from the unstable domain, e.g., D = 0.01, η−2 = 2, μ = 0.7,
cα = cβ = 1.1 and cγ = 1.0 (see Fig. 1), then a periodic steady state response does not exist.
This is shown in Fig. 3, where results are obtained by the Runge-Kutta integration method. It is
also well known that any exitation of linear systems do not affect the stability assessment.

Results obtained from the analytical solution and the Runge-Kutta continuation are compared
in Figs. 4 and 5 for the two different excitations f1 and f2. In these cases, the same input
parameters D = 0.01, η−2 = 2, μ = 0.25, cα = cβ = 1.1 and cγ = 1.0 are chosen so that
the solutions lie within the stable region. As can be seen in Figs. 4(a) and 5(a), the influence
of initial conditions gradually diminishes for values greater than t/T = 30. It is also apparent
from Figs. 4(b) and 5(b) that the increasing number of periods brings the Runge-Kutta solution
closer to the analytical one. A good agreement between the analytical and numerical results is
also shown in the phase portraits, see Figs. 4(c) and 5(c). The velocities (analytical solution) are
calculated using (18).
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Fig. 3. Runge-Kutta solution for parameters from unstable domain; result obtained for excitation function
(a) f1(τ) and (b) f2(τ)

4. Conclusions

In this paper, a methodology for analytical solution and stability assessment of differential
equations with periodically varying parameters was presented. The differential equations can
describe behaviour of mechanical vibrating systems containing time periodically varying mass,
damping and stiffness parameters. The main idea of the presented parametric system investi-
gation was the transformation of the differential equation with time dependent coefficients to
the integro-differential equation, whose response was expressed by means of convolution of
periodic Green’s function and a sum of the external and parametric excitation. The paper made
several statements with corresponding proofs. The first statement was related to the real valued
determinant of the 2T -periodic characteristic matrix I− μA∗, whose eigenvalues are either real
values or complex conjugate pairs. In this work, it was proven that non-zero eigenvalues of
the 2T -periodic system matrix A∗ can be calculated from the so-called 2T -periodic reduced
system matrixA∗

red, whose order is three times smaller than that of the original matrixA∗. The
proposed approach for the determination of stability domain and its border was demonstrated
on examples and the obtained results were checked by the Floquet method showing very good
agreement. Furthermore, the performed numerical experiments have shown the same results as
in [2], namely, that a positive sign of the determinant of the 2T -periodic characteristic matrix
corresponds to the solution in the stable region. The periodical response obtained by presented
analytical approach in stable parameter domain

q(t) = eT(t)
[
I+ μ (I− μAred)

−1Ared
]
Lf for det (I− μA∗

red) > 0
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Fig. 4. System response to excitation function f1(τ) in a stable region; (a) Runge-Kutta solution, (b) ana-
lytical and Runge-Kutta solution after selected number of periods, (c) phase portraits of analytical and
Runge-Kutta solution in period t/T = 75

Fig. 5. System response to excitation function f2(τ) in a stable region; (a) Runge-Kutta solution, (b) ana-
lytical and Runge-Kutta solution after selected number of periods, (c) phase portraits of analytical and
Runge-Kutta solution in period t/T = 75
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(do not confuse Ared and A∗
red) showed also good agreement with the results of the Runge-

Kutta continuation. The main benefits and advantages of the presented approach (PA) can be
summarised in the following points:

• Unlike the classical harmonic balance method, the PA enables to perform stability assess-
ment based on the knowledge of fluctuation matrices of mass, damping, and stiffness and
the real valued determinant of the 2T -periodic characteristic matrix.

• The PA enables to exactly determine the border of (in)stability with arbitrary accuracy.
This approach is not limited by the magnitude of parameters μm, μb and μk.

• In case of stability, the presented methodology enables to find an analytical solution of
the system response in the steady state.

• The PA can be used in sensitivity analysis required, e.g., for the solution of stochastic
vibration or in an optimisation process.

• The PA can be extended for systems with n < ∞ DOF.
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Pures et Appliquées 13 (1868) 137–203. (in French)

[13] Meissner, E., About shaking oscillations in systems with periodically variable elasticity, Schweizer
Bauzeitun 72 (10) (1918) 95–98. (in German) https://doi.org/10.1021/ie50098a004

[14] Moriguchi, H., An improvement of the WKB method in the presence of turning points and the
asymptotic solutions of a class of Hill equations, Journal of the Physical Society of Japan 14 (1959)
1771–1796. https://doi.org/10.1143/JPSJ.14.1771

[15] Nayfeh, A. H., Perturbation methods, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2004.

[16] Nayfeh, A. H., Mook, D. T., Nonlinear oscillations, John Wiley & Sons, New York, 1995.
https://doi.org/10.1002/9783527617586

[17] Newland, D. E., Mechanical vibration analysis and computation, Longman Scientific and Techni-
cal, Essex, 1989.

[18] Parks, P. C., A. M. Lyapunov’s stability theory – 100 years on, IMA Journal of Mathematical
Control and Information 9 (1992) 275–303. https://doi.org/10.1093/imamci/9.4.275

[19] Shadman, D., Mehri, B., A non-homogeneous Hill’s equation, Applied Mathematics and Compu-
tation 167 (2005) 68–75. https://doi.org/10.1016/j.amc.2004.06.072

[20] Urwin, K. M., Arscott, F. M., Theory of the Whittaker-Hill equation, Proceedings of the Royal
Society of Edinburgh, Vol. 69, 1970, pp. 28–44. https://doi.org/10.1017/S0080454100008530

[21] Whittaker, E. T., Watson, G. N., A course of modern analysis, Cambridge University Press, Oxford,
1962.

Appendix A Transformation relations

The Fourier-coefficients vectors can be expressed in changed order in such a way that upper
subvector is formed by coefficients corresponding to the T -periodic solution and the remaining
coefficients are assembled to lower subvector according to scheme (δ∗ ∈ {α∗, β∗, γ∗})

δ̃ =

[
δU
δL

]
=

[
JT

UT

]
δ∗ with δU = JTδ∗, δL = UTδ∗, (A.1)

where

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 0 0 · · · 0
0 1 0 · · · 0
0 0 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [i1, i3, i5, . . . , i2N+1] ∈ R

4N+1,2N+1,

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
1 0 · · · 0
0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= [i2, i4, . . . , i2N ] ∈ R

4N+1,2N , (A.2)
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δU =

⎡
⎢⎢⎢⎢⎢⎣

δ−N

δ−N+1
...

δN−1
δN

⎤
⎥⎥⎥⎥⎥⎦∈ C

2N+1, δL =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ−N+ 12
δ−N+ 32

...
δN− 32
δN− 12

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ C

2N . (A.3)

Each vector in (n = 1, . . . , 4N + 1) in (A.2) corresponds to the n-th column of the identity
matrix I ∈ R4N+1,4N+1. Equations (A.1) can be also given in the forms:

δ̃ = PTδ∗ and δ∗ = Pδ̃ , (A.4)

where
P = [J U] ∈ R

4N+1,4N+1 and PTP = I . (A.5)

Due to the orthogonality of the permutation matrix P, the matrices J andU are orthogonal,

JTJ = I ∈ R
2N+1,2N+1, UTU = I ∈ R

2N,2N , (A.6)

and generate vector subspaces P1 and P2, respectively. Both subspaces represent orthogonal
supplements to each other, which can be written as

JTU = 0 ∈ R
2N+1,2N . (A.7)

Let us introduce an orthogonal matrix

P̃ =

⎡
⎣P P

P

⎤
⎦ =

⎡
⎣ [J U] [J U]

[J U]

⎤
⎦ (A.8)

and multiply the right hand side of the equation y∗ = μA∗y∗ + b∗ by the matrix P̃T. The use
of (A.1) then yields

ỹ = P̃Ty∗ = μP̃TA∗P̃ỹ + P̃Tb∗, (A.9)

where
ỹ =

[
α̃T, β̃T, γ̃T

]T
=

[
αTU, α

T
L , β

T
U, β

T
L , γ

T
U, γTL

]T
. (A.10)

Let us put the following notations

Ã = P̃TA∗P̃=

⎡
⎣ cαPTL∗H∗

kP cβPTL∗H∗
kP cγPTL∗H∗

kP
iωcαPTL∗H∗

bN
∗P iωcβPTL∗H∗

bN
∗P iωcγPTL∗H∗

bN
∗P

−ω2cαPTL∗H∗
mN

∗2P −ω2cβPTL∗H∗
mN

∗2P −ω2cγPTL∗H∗
mN

∗2P

⎤
⎦, (A.11)

b̃ = P̃Tb∗ =

⎡
⎣ PTL∗H∗

k

iωPTL∗H∗
bN

∗

−ω2PTL∗H∗
mN

∗2

⎤
⎦L∗f∗. (A.12)

Then, equation (A.9) can be rewritten as

ỹ = μÃỹ + b̃ . (A.13)

In order to re-express the matrix Ã in the other forms, the following submatrices are analysed:

cjPTL∗H∗
kP , iωcjPTL∗H∗

bN
∗P and − ω2cjPTL∗H∗

mN
∗2P for j ∈ {α, β, γ} .
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The first of them can be so arranged as to be block diagonal

cjPTL∗H∗
kP = cj

[
JTL∗H∗

kJ J
TL∗H∗

kU
UTL∗H∗

kJ U
TL∗H∗

kU

]
= cj

[
LHk 0
0 UTL∗H∗

kU

]
, (A.14)

because of JTL∗H∗
kU = 0, as the result of orthogonality (A.7), and JTL∗J = L and JTH∗

kJ =
Hk. Similarly, it can be shown that

iωcjPTL∗H∗
bN

∗P = iωcj

[
JTL∗H∗

bN
∗J JTL∗H∗

bN
∗U

UTL∗H∗
bN

∗J UTL∗H∗
bN

∗U

]
=

iωcj

[
LHbN 0
0 UTL∗H∗

bN
∗U

]
(A.15)

and

− ω2cjPTL∗H∗
mN

∗2P = −ω2cj

[
JTL∗H∗

mN
∗2J JTL∗H∗

mN
∗2U

UTL∗H∗
mN

∗2J UTL∗H∗
mN

∗2U

]
=

−ω2cj

[
LHmN2 0
0 UTL∗H∗

mN
∗2U

]
. (A.16)

By comparing matrices in (A.11) and (26), and by taking into account (A.14)–(A.16), it is
possible to write

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 0 A12 0 A13 0
0 cαZk 0 cβZk 0 cγZk
A21 0 A22 0 A23 0
0 cαZb 0 cβZb 0 cγZb
A31 0 A32 0 A33 0
0 cαZm 0 cβZm 0 cγZm

⎤
⎥⎥⎥⎥⎥⎥⎦
, (A.17)

where

Zk = UTL∗H∗
kU , Zb = iωUTL∗H∗

bN
∗U , Zm = −ω2UTL∗H∗

mN
∗2U

and where notation of the submatrices Aij (i, j = 1, 2, 3) follows from (26). The vector b̃ in
(A.12) can be rewritten as

b̃ = P̃Tb∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

JTL∗H∗
kL

∗Jf
UTL∗H∗

kL
∗Jf

iωJTL∗H∗
bN

∗L∗Jf
iωUTL∗H∗

bN
∗L∗Jf

−ω2JTL∗H∗
mN

∗2L∗Jf
−ω2UTL∗H∗

mN
∗2L∗Jf

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

LHkLf
0

iωLHbNLf
0

−ω2LHmN2Lf
0

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

b1
0
b2
0
b3
0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (A.18)

when the relation f∗ = Jf is respected. Let us remind the matrix Ã, see (A.17), as well as the
vectors b̃, see (A.18), and ỹ, see (A.10), satisfy equation (A.13).

Now let us use the substitution
ỹ = Qŷ , (A.19)
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where

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0
0 0 0 I 0 0
0 I 0 0 0 0
0 0 0 0 I 0
0 0 I 0 0 0
0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R

3(4N+1),3(4N+1), ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎣

αU
βU
γU
αL
βL
γL

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ C

3(4N+1) (A.20)

and substitute (A.19) to (A.13). Types of the identity matrices I in the matrix Q correspond to
dimensions of the subvectors αU, αL etc. Pre-multiplying (A.19) by the matrixQT, we obtain
due to its orthogonality

ŷ = μÂŷ + b̂ , (A.21)

where

Â = QTÃQ =
[
A 0
0 Z

]
∈ C

3(4N+1),3(4N+1), (A.22)

b̂ = QTb̃ =
[
b
0

]
∈ C

3(4N+1), ŷ = QTỹ =
[
yU
yL

]
∈ C

3(4N+1), (A.23)

where

Z =

⎡
⎣ cαZk cβZk cγZk

cαZb cβZb cγZb
cαZm cβZm cγZm

⎤
⎦ ∈ C

6N,6N , Zk,Zb,Zm ∈ C
2N,2N . (A.24)

Then, the system of algebraic equations (A.21) can be divided into two subsystems

yU = μAyU + b (A.25)

and
(I− μZ)yL = 0 . (A.26)

Equations (A.25) have the same solution as (25) and for this reason we can declare that

yU = y and αU = α , βU = β , γU = γ . (A.27)

Equations (A.26) have nontrivial solution when 1/μ ∈ Σ(Z) but it would mean that parameter
lies on the border of (in)stability. Because the periodic solution is sought, it excludes parameters
laying on this border. It means that

1
μ

/∈ Σ(Z) . (A.28)

In this case, only the trivial solution of (A.26) exists and

yL = 0 and αL = 0 , βL = 0 , γL = 0 . (A.29)

Appendix B Proof of Lemma 1

The purpose of this part is to prove the validity of relation

μE∗(t)y∗ + e∗T(t)L∗f∗ = μE(t)y + eT(t)Lf , (B.1)

see (48) and (31). With regard to the clarity, let us divide this proof into two parts and prove the
identity of the individual terms in (B.1) separately.
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(i) The terms μE∗(t)y∗ and μE(t)y are compared. According to (A.1), we can write

ẽ(t) =
[
eU(t)
eL(t)

]
=

[
JT

UT

]
e∗(t) = PTe∗(t) , eU(t) = JTe∗(t) , eL(t) = UTe∗(t) , (B.2)

where

eU(t) =

⎡
⎢⎢⎢⎣

e−N(t)
e−N+1(t)

...
eN (t)

⎤
⎥⎥⎥⎦ ∈ C

2N+1, eL(t) =

⎡
⎢⎢⎢⎢⎣

e−N+ 12
(t)

e−N+ 32
(t)

...
eN− 12

(t)

⎤
⎥⎥⎥⎥⎦ ∈ C

2N . (B.3)

Further, with the help of (A.9) and (49), one obtains

E∗(t)y∗ = E∗(t)P̃ỹ = Ẽ(t)ỹ , (B.4)

where

Ẽ(t) =
[
cα

[
eTU(t), e

T
L(t)

]
, cβ

[
eTU(t), e

T
L(t)

]
, cγ

[
eTU(t), e

T
L(t)

]]
=[

cαẽT(t), cβẽT(t), cγ ẽT(t)
]
, (B.5)

while the vector ỹ in (A.10) takes the form

ỹ =
[
αTU, 0, β

T
U, 0, γ

T
U, 0

]T (B.6)

with respect to (A.27) and (A.29). Multiplying Ẽ(t) and ỹ, and taking into consideration
that eU(t) ≡ e(t), the following equalities hold:

E∗(t)y∗ = Ẽ(t)ỹ = E(t)yU = E(t)y . (B.7)

It means that the first terms on both sides of (B.1) are equal to each other.

(ii) The terms e∗T(t)L∗f∗ and eT(t)Lf are compared. Let us remind the dependencies given in
(41), (42) and (A.4), i.e.,

f∗ = Jf , L = JTL∗J , e∗(t) = Pẽ(t) .

The second term on the left hand side of (B.1) can be rewritten into the form

e∗T(t)L∗f∗ = ẽT(t)PTL∗Jf =
[
eTU(t), e

T
L(t)

][ JT
UT

]
L∗Jf =

[
eTU(t), e

T
L(t)

][ JTL∗J
UTL∗J

]
f = eT(t)Lf . (B.8)

The validity of UTL∗J = 0 follows from the orthogonality of matrices J and U, see
(A.7), and from the fact that the matrix L∗ is the diagonal one.

These results indicate that the proof of identity (B.1) is completed and the identity (50) is also
proven.
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Appendix C Proof of Lemma 2

To transformA into the block triangular form, let us introduce the relation

y =Wx with x =

⎡
⎣xα

xβ

xγ

⎤
⎦ ∈ C

3(2N+1) , (C.1)

where

W =

⎡
⎢⎣ I −cβ

cα

I −cγ

cα

I

I
I

⎤
⎥⎦ ∈ R

3(2N+1),3(2N+1) for cα �= 0. (C.2)

The substitution into (25) and the pre-multiplication of (25) by the matrixW−1 then lead to

x = μAWx+ bW or (I− μAW)x = bW , (C.3)

where

AW =W−1AW =

⎡
⎣ cαLHk + iωcβLHbN− ω2cγLHmN2 0 0

iωcαLHbN 0 0
−ω2cαLHmN2 0 0

⎤
⎦, (C.4)

bW =W−1b =

⎡
⎢⎣
1
cα

(
cαLHk + iωcβLHbN− ω2cγLHmN2

)
iωLHbN

−ω2LHmN2

⎤
⎥⎦Lf . (C.5)

Let us use notation introduced in (52). Taking into consideration (C.3)–(C.5), it is easy to show
that

xα =
1
cα
(I− μAred)

−1AredLf . (C.6)

The vector y can be rewritten as

y =

⎡
⎣α

β
γ

⎤
⎦ =Wx =

⎡
⎢⎣xα − cβ

cα

xβ − cγ

cα

xγ

xβ

xγ

⎤
⎥⎦ (C.7)

and can be substituted into (30). It follows that

q(t) = μ
[
cαeT(t)α+ cβeT(t)β + cγeT(t)γ

]
+ eT(t)Lf =

μ
[
eT(t) (cαxα − cβxβ − cγxγ) + eT(t)cβxβ + eT(t)cγxγ

]
+ eT(t)Lf =

μ eT(t) (I− μAred)
−1AredLf + eT(t)Lf , (C.8)

which is the form of the solution given in Lemma 2.

Appendix D Proof of Lemma 3

Let us solve the eigenvalue problem

(A∗ − λI)y∗ = 0 , (D.1)
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where the matrixA∗ is defined in (45). If the transformation

y∗ =W∗x∗ , W∗ =

⎡
⎢⎣ I −cβ

cα
I −cγ

cα
I

I
I

⎤
⎥⎦ ∈ R

3(4N+1),3(4N+1) for cα �= 0 (D.2)

is used, and the substitution (D.2) into (D.1) and the pre-multiplication (D.1) by the matrix
(W∗)−1 are performed, the original eigenvalue problem can be reformulated as

(A∗
W − λI)x∗ = 0 , (D.3)

where

A∗
W = (W

∗)−1A∗W∗ =

⎡
⎣ cαL∗H∗

k + iωcβL∗H∗
bN

∗ − ω2cγL∗H∗
mN

∗2 0 0
iωcαL∗H∗

bN
∗ 0 0

−ω2cαL∗H∗
mN

∗2 0 0

⎤
⎦. (D.4)

The set of eigenvalues of block triangular matrix consists of eigenvalue subsets corresponding
to the individual diagonal block submatrices. However, this means that the spectral matrix of
the matrixA∗ has the form

ΛA∗ =

[
ΛAred

0

]
∈ C

3(4N+1),3(4N+1), ΛAred ∈ C
4N+1,4N+1. (D.5)

The proof is hereby completed.

Appendix E Proof of Lemma 4

The independence of numbers cα, cβ and cγ is assumed. This condition is sufficient for eigen-
values in the individual terms of (55) to be either real or complex conjugate pairs because

tr
(
cαL∗H∗

k + iωcβL∗H∗
bN

∗ − ω2cγL∗H∗
mN

∗2) = cα tr(L∗H∗
k) + cβ tr(iωL∗H∗

bN
∗) +

cγ tr
(
−ω2L∗H∗

mN
∗2) . (E.1)

Let us introduce the symbols

R = cαL∗H∗
k , S = iωcβL∗H∗

bN
∗ , T = −ω2cγL∗H∗

mN
∗2. (E.2)

Then, equations (E.1) can be rewritten into the form

tr(ΛR +ΛS +ΛT) = tr(ΛR) + tr(ΛS) + tr(ΛT) , (E.3)

where ΛR, ΛS and ΛT are the spectral matrices (diagonal matrices having eigenvalues on the
diagonal) corresponding to the matricesR,S andT, respectively, which are analysed separately.

i) Properties of the matrixR, see (E.2)1:
The matrix H∗

k is Hermitean, see (43), and it means that H∗T
k = H

∗
k, where bar denotes

complex conjugated matrix. Considering

Î Î = I , ÎL∗Î = L∗H = L
∗
, ÎH∗

kÎ = H
∗T
k = H

∗
k , (E.4)
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where the matrix Î is defined in (21), we can gradually write

Σ(L∗H∗
k) ≡ Σ

(
Î−1L∗H∗

kÎ
)
≡ Σ

(
ÎL∗H∗

kÎ
)
≡ Σ

(
ÎL∗Î ÎH∗

kÎ
)
≡

Σ
(
L

∗
H

∗
k

)
≡ Σ

(
L∗H∗

k

)
. (E.5)

From (E.5) follows the fact that the spectrum of the matrix L∗H∗
k is identical with the

spectrum of its complex conjugated matrix L∗H∗
k. For this reason, their eigenvalues have

to be either real or complex conjugate pairs. Assuming that cα, cβ, cγ are real constants,
we can extend this statement to the matrixR = cαL∗H∗

k.

ii) Properties of the matrix S, see (E.2)2:
Taking the relations

ÎN∗Î = −N∗ , N∗ = N
∗
, ÎH∗

bÎ = H
∗T
b = H

∗
b (E.6)

and the relations in (E.4), we want to prove the equality of the first two terms in the
equation

Σ(iωL∗H∗
bN

∗) ≡ Σ
(
iωL∗H∗

bN∗
)
= Σ

(
−iωL∗

H
∗
bN

∗
)

, (E.7)

becauseN∗ is real valued. By simple arrangements, we can come to

Σ(iωL∗H∗
bN

∗) ≡ Σ
(
iωÎ−1L∗H∗

bN
∗Î

)
≡ Σ

(
iωÎL∗Î ÎH∗

bÎ ÎN
∗Î

)
≡

Σ
(
−iωL∗

H
∗
bN

∗
)
≡ Σ

(
iωL∗H∗

bN∗
)
. (E.8)

Comparing the last terms in (E.7) and (E.8), we can say that the equality of the first
two terms in (E.7) is proven. This equality means also that the spectrum of the matrix
iωL∗H∗

bN
∗ and the matrix S consists of eigenvalues which are either real or complex

conjugate pairs.

iii) Properties of the matrix T, see (E.2)3:
Considering

ÎN∗2Î = N∗2 , N∗2 = N
∗2

, ÎH∗
mÎ = H

∗T
m = H

∗
m , (E.9)

we can come to

Σ
(
−ω2L∗H∗

mN
∗2) ≡ Σ

(
−ω2Î−1L∗H∗

mN
∗2Î

)
≡ Σ

(
−ω2ÎL∗Î ÎH∗

mÎ ÎN
∗2Î

)
≡

Σ
(
−ω2L

∗
H

∗
mN

∗2
)
≡ Σ

(
−ω2L∗H∗

mN∗2
)

. (E.10)

When the spectrum of the complex conjugated matrix is identical with that one of the
original matrix, we can say that it consists of either real or complex conjugate pairs of
eigenvalues.

The proof of Lemma 4 is finished.
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