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Abstract

The paper proposes modal reduction method of the dynamic systems composed of linear nonconservative sub-
systems coupled by nonlinear discrete couplings. Classical approach to the modal reduction is based on the
transformation of the generalized coordinates by the real modal submatrix of the linear conservative part of the
whole system. In case of modal synthesis method, transformation matrices are the real modal submatrices of the
conservative part of mutually isolated subsystems. Rotating mechanical systems contain gyroscopic effects and
other influences of rotation and damping. The paper introduces a generalized modal reduction method based on the
complex modal values of the whole system or the isolated subsystems. Their complex eigenvalues and eigenvectors
are used for transformation of the generalized coordinates and reduction of the number of degrees of freedom. The
presented method is focused on vibrating rotating systems with gyroscopic and dissipative effects and nonlinear
internal couplings.
c© 2020 University of West Bohemia. All rights reserved.

Keywords: modal reduction method, complex modal values, rotating systems, nonlinear couplings

1. Introduction

The rotating mechanical systems (e.g. high-speed gearboxes, bladed disks, rotors, turbochargers)
are composed of many flexible and rigid bodies (below subsystems) mutually joined by flexible
nonlinear discrete couplings. The mathematical models of these subsystems are nonconservative
with nonsymmetrical matrices and after discretization by the finite element method have large
number of degrees of freedom (DOF number). The standard numerical methods of dynamic
analyses of the rotating systems with nonlinear couplings are very difficult to apply. On this
account, different methods of dynamic modal reduction were developed. Standard methods are
based on nodal coordinates reduction and reduction of the natural modes respected in dynamic
response. The first is based on subdivision of the generalized coordinates into master and
slave DOFs [5, 7] which are computed directly from the master coordinates neglecting inertia
and damping forces. Both standard methods in different modifications called substructuring or
reduction techniques are the most widely used for the linear structures. A general knowledge
of the substructuring techniques applied in commercial software is presented, e.g., in [1]. A
comparison of various reduction techniques for flexible multibody dynamics was presented
in [15]. One of the most suitable and well established methods for DOF reduction of large
multi-body systems is the modal synthesis method [8, 18, 21]. The classical approach of the
modal synthesis method is based on the reduction of the natural modes of conservative models
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of subsystems with respect to the dynamic response. This method was used at the author’s
workplace for vibration analysis of the screw compressors [17] and for modelling of rotating
bladed disks [13]. Parametric optimization of gear drives from the steady-state vibration poit of
view excited by the kinematic transmission errors was shown in paper [22]. The modal synthesis
method was used for modelling of gear drives vibration influenced by the time dependend gear
mesh [4, 19]. An influence of the various level of DOF number reduction in rotor dynamics
with flexible disks was studied in [23]. The coordinates transformation of all or of the chosen
subsystems was used by means of their modal submatrices composed of low-frequency real
eigenvectors of mutually isolated, undamped and nonrotating subsystems. This approach was
generalized [20] by quasistatic consideration of frequency higher eigenvectors of subsystems,
whereas DOF number of the reduced model was conserved as in the classical approach.

Rotatig mechanical systems contain gyroscopic effects and additional influences of rotation
and dissipation [2, 6, 14, 16]. On this account, the eigenvalues and the right and the left eigen-
vectors of such rotating subsystems are complex. All modes corresponding to the eigenvalues
from the frequency spectrum of excitation must be respected in the reduced model. An accu-
racy of the reduced linear dynamic models can be tested by the orthogonality matrix test. The
cross-orthogonality matrix can be used as an indicator of the accuracy of the DOFs number re-
duction [1,7]. The concept can be applied to the comparison of pairs of compatible eigenvectors
of the reduced and full model using the modal assurance criterion (MAC).

The main aim of this paper is to present the generalized modal reduction method with
reduction DOF number of the whole system or individual subsystems for modelling of the
rotating multi-body systems with strong gyroscopic effects, damping and friction in couplings.
This method is tested on rotating blade triplet linked by the rigid blade shrouding with friction
in contact surfaces. An influence of different levels of DOF reduction on the dynamic response
accuracy excited by the harmonic forces is shown. A comparison with the classical approach to
the modal reduction is further discussed.

2. Modal synthesis method

Let us consider the mechanical system (rotor, blade packet, rings) which can be decomposed
into N linearized rotating or nonrotating subsystems. In general, equations of motion of axially
symmetrical subsystem j rotating with constant angular velocity ω0 about own spin axis can be
expressed in the matrix form [3, 6]

Mj q̈j(t)+(Bj+ω0Gj)q̇j(t)+(Kj+ω20Kj,ω+ω0Cj)qj(t) = fC
j +fE

j (t), j = 1, . . . , N. (1)

Vector qj(t) of the generalized coordinates has dimension nj (DOF number containing the
generalized coordinates in the inertia or rotating frame). Mass matrix Mj is symmetrical.
Damping Bj and stiffness Kj matrices, including the external couplings with the frame, can
be symmetrical or nonsymmetrical, ω0Gj is the skew-symmetric gyroscopic matrix. Skew-
symmetric circulatory matrix ω0Cj in the case of modelling in the inertia frame is generated
by a rotating internal damping and in the rotating frame by an external izotropic medium,
respectively. The term ω20Kj,ω is explicitly added for the centrifugal stiffening. In the case
of modelling in the rotating frame, matrix Kj,ω is reduced owing to softening under rotation.
Skew-symmetric matrices ω0Gj , ω0Cj and symmetric matrix ω20Kj,ω vanish for nonrotating
subsystems. Force vector fC

j expresses effects of internal linear or nonlinear couplings of the
subsystem j with surrouding subsystems and fE

j (t) is the time-dependent vector in which all
excitation forces are listed, including the unbalance force.
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The first step of modelling consists in the first-order formulation of the equations of motion
(1) in the state space defined by state vector in the form [2, 6, 7]

uj = [q̇
T
j , qT

j ]
T . (2)

The equations corresponding to mathematical model (1) are

Nju̇j + Pjuj = pj, j = 1, . . . , N, (3)

where

Nj =

[
0 Mj

Mj Bj + ω0Gj

]
, Pj =

[
−Mj 0

0 Kj + ω20Kj,ω + ω0Cj

]
,

pj =

[
0

fC
j + fE

j (t)

]
. (4)

Let all modal values λ
(j)
ν (ν = 1, . . . , nj) of each mutually uncoupled subsystem j (for

fC
j = 0) satisfy the stability conditions Re[λ(j)ν ] < 0. Modal properties of subsystem j are

expressed by the complex diagonal spectral matrix Λj ∈ C2nj ,2nj and complex couple right and
left modal matrices Uj ∈ C2nj ,2nj , Wj ∈ C2nj ,2nj . These matrices satisfy the biorthonormality
conditions [2, 10, 14]

W T
j NjUj = Ej, W T

j PjUj = −Λj , j = 1, . . . , N, (5)

where Ej is the identity matrix of the 2nj-th order. We chose for each subsystem j two sets
of 2mj (mj ≤ nj) so called master right and left natural modes corresponding to mj pairs of
complex conjugate eigenvalues (diagonal elements of Λj) λ

(j)
ν = α

(j)
ν +iβ

(j)
ν , λ(j)∗ν = α

(j)
ν −iβ(j)ν

sorted according to the size of the imaginary parts β
(j)
1 ≤ β

(j)
2 ≤ . . . ≤ β

(j)
mj . Corresponding

natural modes are represented by pairs of the complex conjugate right u
(j)
ν , u

(j)∗
ν and left w

(j)
ν ,

w
(j)∗
ν eigenvectors ordered in the master (subscript m) right and left modal submatrices

mUj = [u
(j)
1 , . . . , u(j)mj

, u
(j)∗
1 , . . . , u(j)∗mj

] ∈ C2nj ,2mj ,

mWj = [w
(j)
1 , . . . , w(j)mj

, w
(j)∗
1 , . . . , w(j)∗mj

] ∈ C2nj ,2mj , j = 1, . . . , N, (6)

corresponding to master spectral submatrix

mΛj = diag [λ
(j)
1 , . . . , λ(j)mj

, λ
(j)∗
1 , . . . , λ(j)∗mj

] ∈ C2mj ,2mj , j = 1, . . . , N. (7)

State vectors uj in model (3) are transformed by the master right modal submatrices mUj ∈
C2nj ,2mj mutually uncoupled subsystems into the modal coordinates as

uj =
mUjxj =

mj∑
ν=1

(
u(j)ν x(j)ν + u(j)∗ν x(j)∗ν

)
, j = 1, . . . , N. (8)

We note that for mj < nj , the frequency-higher natural modes usually contribute less to the
subsystem vibration and their contribution in a dynamic response of the whole coupled system
can be neglected. After modal transformation (8) and premultiplying of equations (3) by the
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transposed left master modal submatrices mW T
j , with regard to the biorthonormality conditions

(5), equations (3) become

ẋj − mΛjxj =
mW T

j pj, j = 1, . . . , N. (9)

Taking into account structure of state vectors uj, the eigenvectors of the subsystems can be
written in the form

u(j)ν =

[
λ
(j)
ν q

(j)
ν

q
(j)
ν

]
, w(j)ν =

[
λ
(j)
ν r

(j)
ν

r
(j)
ν

]
, ν = 1, . . . , nj, j = 1, . . . , N. (10)

The modal submatrices defined in (6) can be written as

mUj =

[
mQj

mΛj
mQj

]
, mWj =

[
mRj

mΛj
mRj

]
, j = 1, . . . , N, (11)

where

mQj = [q
(j)
1 , . . . , q(j)mj

, q
(j)∗
1 , . . . , q(j)∗mj

] ∈ Cnj ,2mj ,

mRj = [r
(j)
1 , . . . , r(j)mj

, r
(j)∗
1 , . . . , r(j)∗mj

] ∈ Cnj ,2mj (12)

are the right and left master modal submatrices of uncoupled subsystems in the original confi-
guration space of generalized coordinates qj. Equations (9) can be rewritten in the form

ẋj − mΛjxj =
mRT

j (f
C
j + fE

j (t)), j = 1, . . . , N. (13)

The global form is
ẋ − mΛx = mRT [fC(q, q̇) + fE(t)], (14)

where

x =

⎡
⎢⎣

x1
...

xN

⎤
⎥⎦ , q =

⎡
⎢⎣

q1
...

qN

⎤
⎥⎦ , fC(q, q̇) =

⎡
⎢⎣

fC
1
...

fC
N

⎤
⎥⎦ , fE(t) =

⎡
⎢⎣

fE
1 (t)
...

fE
N (t)

⎤
⎥⎦ ,

mΛ = diag [mΛ1, . . . ,
mΛN ] ∈ C2m,2m, mRT = diag [mRT

1 , . . . ,
mRT

N ] ∈ C2m,n. (15)

Matrices mΛ, mR and vector x in (14) can be rewritten in the form

mΛ = diag [mΛ, mΛ
∗
], mR = [mR, mR

∗
], x =

[
x
x∗

]
. (16)

Spectral submatrix mΛ includes the chosen eigenvalues λ
(j)
ν = α

(j)
ν +iβ

(j)
ν of the all subsystems

with positive imaginary part and left master modal submatrix mR includes corresponding
eigenvectors r

(j)
ν . The complex conjugate eigenvalues are arranged in matrices mΛ

∗
, mR

∗
and

the complex conjugate modal coordinates are arranged in vector x∗. We can use the MATLAB
built in ode45 solver for integration of submodel

ẋ − mΛx = mR
T
[fC(q, q̇) + fE(t)], (17)
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where

mΛ = diag [mΛ1, . . . ,
mΛN ] ∈ Cm,m, mR

T
= [mR

T

1 , . . . ,
m R

T

N ] ∈ Cm,n.

Equations (17) are solved under zero initial conditions x(0) = 0 using ode45MATLAB built-in
solver. It incorporates Runge-Kutta method which is of medium order. According to (8) and
(11), the vector q of generalized coordinates can be expressed as

q = mQx+ mQ
∗
x∗, q̇ = mQmΛx+ mQ

∗mΛ
∗
x∗, (18)

where right master modal submatrix mQ corresponds to mΛ. Model (17) of the coupled system
in space of modal coordinates x

(j)
ν uncoupled rotating subsystems has m =

∑N
j=1mj DOF

number and for
∑N

j=1mj <
∑N

j=1 nj is reduced.
According to (2), (8) and (11), the dynamic response of the arbitrary subsystem j in the

original generalized coordinates and velocities is real

qj =
mQjxj =

mj∑
ν=1

(q(j)ν x(j)ν + q(j)∗ν x(j)∗ν ), j = 1, . . . , N, (19)

q̇j =
mQj

mΛjxj =
mj∑
ν=1

(λ(j)ν q(j)ν x(j)ν + λ(j)∗ν q(j)∗ν x(j)∗ν ), j = 1, . . . , N. (20)

Complex modal coordinates x
(j)
ν of subvector

xj = [x
(j)
1 , . . . , x(j)mj

] (21)

are separated from vector x = [xT
1 , . . . , x

T
N ]

T of submodel (17).

3. Modal reduction of the global model

If the linear part of elastic and viscous forces in couplings between subsystems can be excluded
from the nonlinear couplings, vector fC(q, q̇) in (14) can be written in the form

fC = −KCq − BC q̇ + fF (q, q̇). (22)

Global stiffness and damping matrices KC and BC describe the linearized forces in couplings,
vector fF (q, q̇) expresses the nonlinear friction forces and q = [qT

1 , . . . , qT
N ]

T is the global
vector of the generalized coordinates. All equations of motion (1) can be expressed in the global
form

Mq̈ + (B +BC + ω0G)q̇ + (K +KC + ω20Kω + ω0C)q = fF (q, q̇) + fE(t), (23)

where M , B, G, K, Kω, C are block diagonal matrices formed from corresponding matrices
Mj, Bj , Gj , Kj, Kj,ω, Cj of the uncoupled subsystems. The first-order formulation in the state
space

u = [q̇T , qT ]T (24)

is then
Nu̇+ Pu = p, (25)
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where

N =

[
0 M

M B +BC + ω0G

]
, P =

[
−M 0
0 K +KC + ω20Kω + ω0C

]
,

p =

[
0

fF (q, q̇) + fE(t)

]
. (26)

Chosen natural modes of the global model with linearized couplings are expressed by one pair
of right and left master global submatrices

mU =

[
mQmΛ

mQ

]
∈ C2n,2m, mW =

[
mRmΛ

mR

]
∈ C2n,2m, (27)

corresponding to spectral submatrix
mΛ = diag [λ1, . . . , λm, λ∗

1, . . . , λ
∗
m]. (28)

Using transformation

u = mUx =
m∑

ν=1

(uνxν + u∗
νx

∗
ν) (29)

and biorthonormality conditions
mW T NmU = E, mW T P mU = −mΛ, (30)

equation (25) can be rewritten in the configuration space of master modal coordinates

x = [x1, . . . , xm, x∗
1, . . . , x

∗
m]

T (31)

of the system coupled by the linearized couplings. Its form is

ẋ − mΛx = mRT [fF (q, q̇) + fE(t)], (32)

where according to (27),
mR = [r1, . . . , rm, r∗

1, . . . , r
∗
m] ∈ Cn,2m (33)

is the left master modal submatrix. A dynamic response in generalized coordinates, according
to (24), (27) and (29), is real

q = mQx =
m∑

ν=1

(qνxν + q∗
νx

∗
ν), q̇ = mQmΛx =

m∑
ν=1

(λνqνxν + λ∗
νq

∗
νx

∗
ν). (34)

Modal values λν , right eigenvectors uν = [λνq
T
ν , qT

ν ]
T , left eigenvectors wν = [λνr

T
ν , rT

ν ]
T and

corresponding complex conjugate modal values satisfy the definition relations

det [λνN + P ] = 0, (λνN + P )uν = 0, (λνN
T + P T )wν = 0

and biorthonormality conditions (30).
Similarly to Section 2, the following submodel

ẋ − mΛx = mR
T
[fF (q, q̇) + fE(t)] (35)

can be integrated instead of equations (32). Vector x and left master modal submatrix mR
correspond to spectral submatrix mΛ = diag [λ1, . . . , λm] including eigenvalues λν = αν + iβν

with the positive imaginary part. We note that matrices N , P of the rotating mechanical systems
are functions of the spin speed ω0. The calculation of modal values λν , uν , wν can be repeated
for each value of the speed.
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4. Application – modelling of rotating blades

The presented modal reduction method was tested using three rotating blades (Fig. 1) with
friction effects in contact surfaces of the blade shrouding. The flexible blades are fixed to a
disk rotating with constant angular velocity ω0. The blades are discretized by FEM using 1D
Rayleigh rotating beam elements derived in [9, 13]. The position on the blades j (j = 1, 2, 3)
is described in rotating coordinate system xj , yj, zj by three displacements u

(j)
i , v

(j)
i , w

(j)
i and

three small Euler’s angles ϕ
(j)
i , ϑ(j)i , ψ(j)i in each nodal point i. The rigid blade shrouds are fixed

in end nodal points Cj (j = 1, 2, 3) of the corresponding blades.
Mathematical model of the one decoupled rotating blade j with shroud (subscript B) can be

written in the matrix form [3]

MBq̈j + (BB + ω0GB)q̇ + [Ks,B + ω20(Kω,B − Kd,B)]qj = ω20fB, j = 1, 2, 3, (36)

where MB, BB , Ks,B, Kω,B are the symmetrical mass, material damping, stiffness and centrifu-
gal bending stiffening matrices, respectively. Symmetrical matrix Kd,B expresses the softening
under rotation. Matrix ω0GB is the skew-symmetric gyroscopic matrix. Force vector ω20fB

describes centrifugal forces acting on the blade finite elements and shrouds concentrated in the
nodal points. For the j-th blade, the vector of generalized coordinates qj has the structure

qj = [· · · , u
(j)
i , v

(j)
i , w

(j)
i , ϕ

(j)
i , ϑ

(j)
i , ψ

(j)
i , · · · ]T , i = 1, . . . , N, j = 1, 2, 3. (37)

η   , η

ω

A Bj

0 u
(j)
i

ϕ(j)
i

v
i
(j)

υ(j)
i

x j

ω0

B

C

C

j = 1

j = 2

j = 3

3

1

z j

0

N0

δ

δ

ξ

ξA

B

N 0

x j

N

NB

A

AA

AB

C

BR

R A

2

A

ζ
B

(j)
iw

(j)ψ
i

i

Aζ

y    y

C2

Fig. 1. Blade triplet and contact forces acting on central blade shroud
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Let us consider a static preloading of the external blade shrouds by normal pressure forces N0
(see Fig. 1). Consequently, normal forces NA, NB , radial RA, RB and axial AA, AB components
of the friction forces act on the internal contact surfaces of the blade shrouds. All the contact
forces are concentrated into central points of the contact surfaces in planes ξAηA and ξBηB ,
respectively. All contact forces acting on the central blade shroud are shown in Fig. 1. The
resulting normal forces, acting in axes ζA, ζB perpendicular to contact surfaces, can be written
in the form

NA = Nst + kC(n
T
AqC2 − nT

BqC1), NB = Nst + kC(n
T
AqC3 − nT

BqC2), (38)

where Nst is magnitude of the normal force resulting from equilibrium conditions of three blades
loaded by pressure forces N0 and centrifugal forces in case of constant angular velocity ω0 of
the disk. Contact stiffness kC is linearized [12] on the basis of contact pressure σ = Nst

Aef
, where

Aef is the effective area of the contact surfaces. Vectors nA and nB of dimension 6 transform
the blade displacements in nodal points Cj into the normal displacements at contact points A, B.

Components of the friction forces acting on central blade shroud (see Fig. 1) can be expressed
in dependence on slip velocities of contact surfaces in the form

RA = fNA

rT
Bq̇C1 − rT

Aq̇C2

c1,2
, RB = fNB

rT
Bq̇C2 − rT

Aq̇C3

c2,3
, (39)

AA = fNA

aT
Bq̇C1 − aT

Aq̇C2

c1,2
, AB = fNB

aT
Bq̇C2 − aT

Aq̇C3

c2,3
, (40)

where f is the friction coefficient between contact surfaces of the blade shrouds experimentally
and numerically investigated in [11]. The normal forces and components of friction forces acting
on the outside blade shrouds in points A, B have opposite directions. Absolute values of the slip
velocities are

c1,2 =
√
(rT

Bq̇C1 − rT
Aq̇C2)

2 + (aT
Bq̇C1 − aT

Aq̇C2)
2,

c2,3 =
√
(rT

Bq̇C2 − rT
Aq̇C3)

2 + (aT
Bq̇C2 − aT

Aq̇C3)
2. (41)

Vectors rA, rB and aA, aB of dimension 6 transform vectors q̇Cj
of blade velocities in nodal

points Cj to the translational velocities in ξA, ξB radial directions and in ηA, ηB axial directions,
respectively.

The mathematical model of three mutually coupled blades (see Fig. 1) in general coordinates
q = [qT

1 , qT
2 , q

T
3 ]

T loaded by pressure forces N0, centrifugal forces and external excitation can
be expressed, according to (37)–(41), in the global matrix form

Mq̈ + (B + ω0G)q̇ + [Ks + ω20(Kω − Kd)]q = f0 + ω20f + fC(q, q̇) + fE(t), (42)

where M , B, G, Ks, Kω, Kd are the block diagonal matrices having the structure

X = diag [XB, XB, XB].

Force vector f0 expresses the loading by pressure forces N0 and ω20f = ω20[f
T
B , fT

B , fT
B ]

T is the
vector of centrifugal forces. A dominant significance has resulting vector fC(q, q̇) of all the
contact forces which includes moreover linearized normal forces (38) and also nonlinear friction
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forces (39), (40) in couplings. This vector, after a transformation of the mentioned forces NA,
NB, RA, RB , AA, AB into corresponding nodal points Cj, can be expressed in the form

fC(q, q̇) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
nBNA − rBRA − aBAA

—
0
−nANA + rARA + aAAA + nBNB − rBRB − aBAB

—
0
−nANB + rARB + aAAB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

The nonzero coordinates of vector fC(q, q̇) correspond to vectors qCj
positions in global vector

q. In the case of continuous contact between all blade shrouds, according to (38) up to (43), the
resulting vector of contact forces can be rewritten in the form

fC(q, q̇) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
nB

—
0
−nA + nB

—
0
−nA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Nst + kC

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
nB(nT

AqC2 − nT
BqC1)

—
0
−nA(nT

AqC2 − nT
BqC1) + nB(nT

AqC3 − nT
BqC2)

—
0
−nA(nT

AqC3 − nT
BqC2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−rBRA − aBAA

—
0
rARA − rBRB + aAAA − aBAB

—
rARB + aAAB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (44)

in short
fC(q, q̇) = fst − KCq + fF (q, q̇). (45)

Linearized contact stiffness matrix KC in the reduced form (only with nonzero elements at the
marked positions corresponding to vectors qCj

in global vector q) is

KC = kC

⎡
⎣ nBnT

B −nBnT
A 0

−nAnT
B nAnT

A + nBnT
B −nBnT

A

0 −nAnT
B nAnT

A

⎤
⎦ . (46)

Finally, mathematical model (42) can be written in the form

Mq̈+(B+ω0G)q̇+[Ks+ω20(Kω−Kd)+KC]q = f0+ω20f+fst+fF (q, q̇)+fE(t). (47)

Let us find the solution of (47) in the form q(t) = q0 + q̃(t) where constant vector q0 satisfies
the equilibrium conditions of the non-vibrating system

[Ks + ω20(Kω − Kd) +KC ]q0 = f0 + ω20f + fst. (48)
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Vector q̃(t) expresses the blades vibration satisfying the nonlinear equations of motion

M ¨̃q + (B + ω0G) ˙̃q +KΣ(ω0)q̃ = fF (q0 + q̃, ˙̃q) + fE(t), (49)

where global stiffness matrix

KΣ(ω0) =Ks + ω20(Kω − Kd) +KC (50)

includes elastic properties of the blades and couplings, bending stiffening produced by centri-
fugal forces acting on the blade and softening as a consequence of the modelling in the rotating
frame. Nonlinear vector fF (q, q̇) of the friction forces is defined as the third member on the
right side in (44), where components of friction forces are expressed in (38) to (40) by means
of q = q0 + q̃ and q̇ = ˙̃q.

Using the method presented in Section 3, state vector u, matrices N , P and vector p in
model (25) have this structure

u =

[
˙̃q
q̃

]
, N =

[
0 M

M B + ω0G

]
,

P =

[
−M 0
0 KΣ(ω0)

]
, p =

[
0

fF (q0 + q̃, ˙̃q) + fE(t)

]
. (51)

According to (34), the blades dynamic response in space of generalized coordinates q̃ is

q̃ =
m∑

ν=1

(qνxν + q∗
νx

∗
ν), (52)

where qν , q∗
ν are pairs of the complex conjugate right eigenvectors.

5. Numerical experiments

The method presented in Section 3 and applied to rotating blades in Section 4 was verified using
three rotating simple steel blades with shroud (Fig. 2) described by parameters [13] listed in
Table 1.

The contact stiffness was assumed to be kC = 5 · 106N/m and the friction coefficient is
varied from 0 to 0.2. Each blade was devided into N = 10 rotating beam finite elements using
N nodal points. The rigid shroud is fixed to the last blade nodal point N = Cj.

0b

h

y

z b

s
l

h

i

j

j

ji = N   C

S

S

S

x j

δ

Fig. 2. Geometric parameters of blades (j = 1, 2, 3) with shrouds
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Table 1. Parameters of the steel blades with shroud

Geometric dimensions [mm] and angle between blade axes
b = 20 h = 10 l = 210 bS = 39.8 hS = 20 sS = 10 δ = 6◦

Material parameters
material density Young’s modulus Poisson’s ratio damping factors

ρ = 7800 [kg/m3] E = 210 [GPa] ν = 0.3 D = 0.003

For illustration, several low-frequency eigenvalues of linear model of the three blades with
smooth contact surfaces between blade shrouds (in (49) is f = 0 ⇒ fF (q, q̇) = 0) rotating
by angular velocity ω0 = πn0

30 rad/s (n0 is rotational speed in rpm) are presented in Table 2
including the description of the corresponding mode shapes. Bending stiffening effects under
rotation increase imaginary part of eigenvalues.

Table 2. Eigenvalues of the blade triplet with smooth contact surfaces

Eigenvalues λν [Hz]
ν n0 = 3600 rpm n0 = 5000 rpm Mode shape
1÷ 3 −0.311 + 153.6i −0.310 + 164.7i individual blade bending in xy plane
4 −0.622 + 281.5i −0.622 + 282.0i common blade bending in xz plane
5 −1.356 + 934.3i −1.348 + 934.8i 1st and 3rd blade bending in opposite phase in xz

plane
6÷ 8 −5.040 + 960.3i −5.041 + 971.1i individual blade bending in xy plane
9 −5.575 + 1313i −5.545 + 1315i 1st and 3rd blade bending in opposite phase

with 2nd blade bending in xz plane
10÷ 12 −16.428 + 1759i −16.430 + 1759i individual blade torsion

The improvement of the dynamic response using generalized modal reduction method com-
pared with the classical approach to the modal reduction was analysed using reference reduced
model of the three blades (see Fig. 1) with smooth contact surfaces between blade shrouds. A
classical approach is based on transformation of the generalized coordinates in model (49) in
the form

q̃ = mV x =
m∑

ν=1

vνxν , (53)

where mV ∈ Rn,m is the master modal submatrix of the undamped (B = 0) and nonrotating
(ω0 = 0) blade triple with smooth contact surfaces (f = 0, fF = 0). Equation (49), using
transformation (53) and orthonormality conditions

mV T MmV = E, mV T (Ks +KC)
mV = mΛ, (54)

can be rewritten into the form

ẍ+ mV T (B + ω0G)mV ẋ+ [mΛ+ ω20
mV T (Kω − Kd)mV ]x =

= mV T [fF (q0 +mV x, mV ẋ) + fE(t)]. (55)

The reduced model (55) rewritten in the first-order formulation is characterized by matrices

N =

[
0 E
E mV T (B + ω0G)mV

]
, P =

[
−E 0
0 mV T KΣ(ω0)mV

]
. (56)

91



V. Zeman et al. / Applied and Computational Mechanics 14 (2020) 81–98

The difference of the several low-frequencyr eigenvalues λ
(m)
ν of the homogenous part of

equation (55) with regard to exact eigenvalues λν of the homogenous part of equation (49)
is shown in Table 3 for n0 = 3 600 rpm and different numbers of master mode shapes. The
cumulative relative error for 10 frequency lower eigenvalues λ

(m)
ν with positive imaginary parts

ε(λ(m)ν ) =
10∑

ν=1

|λ(m)ν − λν |
|λν |

(57)

for different numbers m of master mode shapes of the reduced model (55) is shown in Table 4.

Table 3. Comparison of the eigenvalues for different levels of reduction using the classical approach for
n0=3600[rpm]

λν [Hz] λ
(m)
ν [Hz] of the reduced model (55)

ν exact m = 10 m = 30 m = 50
1÷ 3 −0.310 6 + 153.6i −0.310 7 + 153.6i −0.310 6 + 153.6i −0.310 6 + 153.6i
4 −0.622 2 + 281.5i −0.622 4 + 281.5i −0.622 2 + 281.5i −0.622 2 + 281.5i
5 −1.356 + 934.3i −1.424 + 938.8i −1.415 + 938.5i −1.415 + 938.5i
6÷ 8 −5.040 + 960.3i −5.040 + 960.3i −5.040 + 960.3i −5.040 + 960.3i
9 −5.575 + 1313i −5.699 + 1308i −5.667 + 1308i −5.668 + 1308i

10÷ 12 −16.428 + 1759i −16.428 + 1759i −16.428 + 1759i −16.430 + 1759i

Table 4. Cumulative relative error of the eigenvalues of the different levels of the reduction using the
classical approach

m 10 20 30 40 50 160

ε(λ(m)ν ) 0.013 31 0.013 21 0.013 20 0.013 18 0.013 20 0.013 21

To illustrate the applicability of the new modal reduction method (MRM), we consider
fictitious harmonic excitation acting in y axis direction only on the central blade shroud in nodal
point C2. Let us consider Nst = 10N and harmonic force F0 cosωt. Basic angular frequency ω
of harmonic excitation is ω = ω0pS , where in practice pS denotes the number of the stator blades
uniformly distributed around the circumference of the rotating disk. Corresponding excitation
vector fE(t) in (49) and (51) is

fE(t) = F0[. . . , 0, . . . , cosωt, . . . , 0, . . .]T . (58)

The nonzero element corresponds to generalized coordinate v
(2)
i for i = N in direction of

axis y. As a reference excitation, we consider amplitude F0 = 10N and angular frequency
ω = 1 131.5 rad/s corresponding to excitation frequency 180Hz (blade rotating speed
n0 = 3 600 rpm, pS = 3) close to the first triplet eigenfrequencies of the linear model (see
Table 2). Each blade was discretized by N = 10 finite elements. The original nonreduced model
of the simple testing blade triplet had 180DOF. This DOF number we can arbitrarily increase.

As an illustration, the time behaviour of central blade displacement v
(2)
N (see Fig. 1) in

the end blade nodal point C2 in y-axis direction of the reference blade triplet model (for
m = 30 and Coulomb friction coefficient f = 0.2) is shown in Fig. 3 (top). Differences
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Fig. 3. Vertical displacement v
(2)
N in the end central blade nodal point C2 and differences δv

(2)
N for

variously reduced models
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Fig. 4. Vertical displacements v
(j)
N in the end blade nodal points Cj , j = 1, 2, 3 for the different friction

coeficients and m = 30

δ
(2)
N = v

(2)
N (30)− v

(2)
N (m) of the same displacement v

(2)
N for different reduced models (m = 10

and m = 20) are shown in the remaining graphs of Fig. 3. In the case of excitation in the
form (58), the vertical blade displacements for the differently reduced models differ only
slightly. The dynamic response of blades is characterized by beating vibrations with period
Tb = 1

180−153.6
.
= 0.038 s caused by slightly different eigenfrequencies Im [λν ] = 153.6Hz

(ν = 1, 2, 3) in comparison with excitation frequency ω = 180Hz. Fig. 4 shows an influence of
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the friction coefficient on the end blade nodal points displacements v
(j)
N of all blades gained for

m = 30 DOF. The coefficient of dry friction affects strongly the triple blade vibration.
The practice-oriented blades excitation is characterized by harmonic forces in the y and

z axes directions. Let us consider harmonic forces Fy cosωt and Fz cosωt acting on the third
blade shroud. The excitation of the previous blade shrouds for j = 2, 1 are mutually delayed by
time interval Δtj = (3 − j) δ

ω0
, where the angle between neighbour blade axes of the rotating

disk with number of blades pB is δ = 2π
pB

. If all forces act in nodal points Cj (j = 1, 2, 3), the
excitation vector has the form

fT
E (t) = [. . . , 0, . . . , Fy cosω(t−Δt1), Fz cosω(t −Δt1), . . . , 0, . . . , . . . , Fy cosω(t−Δt2),

Fz cosω(t −Δt2), . . . , 0, . . . , Fy cosωt, Fz cosωt, . . . , 0, . . .], (59)

where nonzero elements correspond to generalized coordinates v
(j)
i and w

(j)
i for i = N and

j = 1, 2, 3. We consider the excitation generated by force amplitudes Fy = Fz = 10N with
frequency 900Hz which is close to the fifth eigenfrequency (see Table 2). The considered
phase shift ωΔt1 = π between blades 1 and 3 corresponds to pB = 60 (δ = 6◦), pS = 15
(ω = 15ω0) and blade rotating speed n0 = 3 600 rpm. This operating state is characterized by
large bending vibrations of the outer blades in opposite phase in xz plane. As an illustration, the
time behaviour of the end blade nodal points displacements w

(j)
N (see Fig. 1) in z-axis direction

in time interval 〈0; 0.2〉 s of different reduced models (m = 30, 40, 50DOF) is shown in Fig. 5.
In this case of excitation, the dominant tangential displacements of the outer blades for variously
reduced models are practically the same. The small tangential displacement of the central blade
is influenced by the different reduction level. The beating vibrations of the outer blades are
caused by slightly different eigenfrequency Im [λ5] = 934.3Hz in comparison with excitation
frequency ω = 900Hz.
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Fig. 5. Tangential displacements in the end blade nodal points Cj , j = 1, 2, 3 for the variously reduced
models and f = 0.2
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The dynamic response in modal coordinates, using the classical modal reduction method,
is investigated by integration of m second order nonlinear equations (55) instead of the simple
m first order nonlinear equations (35). Figs. 6–9 show the comparison of the time behaviour of
tangential displacements w

(1)
N and w

(2)
N in time interval t ∈ 〈0; 0.05〉 s computed for harmonic

excitation (59). Two variants for m = 10 and m = 30, n0 = 3 600 rpm and f = 0.2 by both
modal reduction methods (MRM) with the full model of the blade triplet are presented. As an
illustration, a comparison of the computational times using the classical tC and the generalized
tG modal reduction method indicates ratio τ(m) = tC (m)

tG(m)
. This ratio for presented case is

τ(30) = 1.86.
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the classical MRM for m = 10 with the full model (n = 180)
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6. Conclusions

The main objective of the paper is to present the new modal reduction method based on the
complex modal values of the linear nonconservative part of the models.With regard to high
computational costs, an application of this method is suitable especially for dynamic analysis of
the large rotating systems with nonlinear couplings. The method enables dynamic analyses of the
damped rotating systems including all rotation effects and nonlinear contact forces in internal
couplings between subsystems. The classical approach is characterized by transformation of
the generalized coordinates using the real modal submatrix of the linear part of the undamped
and nonrotating system. The new approach is based on the transformation by the complex
modal submatrix of the nonconservative linear part of the rotating system including all rotating
and dissipative effects. The dynamic response in master modal coordinates is investigated by
integration of the first order nonlinear equations whose number corresponds to identical number
of the second order nonlinear equations, using a classical approach. Consideration of the chosen
master complex mode shapes improves approximation of the damped gyroscopic structures
behaviour in comparison with classical modal reduction in the basis of the real mode shapes of
the undamped and nonrotating structures. In addition, the computational time is shorter. This
fact was verified by means of numerical experiments with the rotating blade triplet with smooth
contact surfaces between blade shrouds for eigenvalues and with friction in contact surfaces for
the harmonically excited dynamic response.

Acknowledgements

This work was supported by the project LO1506 of the Ministry of Education, Youth and Sports
of the Czech Republic.

References

[1] Braun, S. G., Ewins, D. J., Rao, S. S., Encyklopedia of vibration, Volume One, Academic Press,
London, 2002.
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