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Abstract

The paper is concerned with the analysis of the simultaneous effect of a random perturbation and white noise in
the coefficient of the system on its response. The excitation of the system of the 1st order is described by the sum
of a deterministic signal and additive white noise, which is partly correlated with a parametric noise. The random
perturbation in the parameter is considered statistics in a set of realizations. It reveals that the probability density of
these perturbations must be limited in the phase space, otherwise the system would lose the stochastic stability in
probability, either immediately or after a certain time. The width of the permissible zone depends on the intensity of
the parametric noise, the extent of correlation with the additive excitation noise, and the type of probability density.
The general explanation is demonstrated on cases of normal, uniform, and truncated normal probability densities.
c© 2021 University of West Bohemia.
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1. Introduction

The parameters of dynamic systems are usually burdened by random noises due to the imperfect
function of the system’s external factors, etc. These noises are random functions of time. The
problem, however, may require the determination of the response statistics, if the parameters
of the system have uncertain values thanks to the variance of production, ageing, wear or
degradation of the system, etc. It is coming to light that the character of such formulated
problem, i.e., when the statistical set consists of individual realizations, is completely different
from the case of perturbations randomly variable in time. The problem concerns the investigation
of response statistics of a typical system, and the probable limits within which the response will
occur under these conditions.

In such a case, the coefficients have two sources of perturbations: a random noise, usually
introduced as the time variable Gaussian white noise, and random imperfections, representing
the statistics in the framework of realizations of systems of the same type, described by a certain
density of probability. In this respect the fact of whether the non-zero density of probability is
confined onto a limited area of the phase space is of fundamental significance. If this area is
not limited (e.g., classic normal distribution), the stochastic stability of the system fails; either
immediately or after a certain time. The width of the admissible zone of every phase variable
is dependent on the parametric noise intensity, the extent of its correlation with the additive
excitation noise, and the type of probability density of imperfections. It is obvious that the
stochastic stability is a crucial issue, and the core of the investigation of the problem discussed.
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J. Náprstek et al. / Applied and Computational Mechanics 15 (2021) 185–196

Stochastic stability is a widely elaborated area. Its essentials are discussed in many mono-
graphs, e.g., [2, 3, 7–9]. Furthermore, many papers can be cited investigating specific attributes
of the stochastic stability phenomena related to the topic dealt with in this study, see [1, 11, 12]
and many others. This paper extends the results cited in the references. It applies imperfecti-
ons understood as a set of individual cases of the system characterized by a given probability
density function, and interacting with multiplicative (internal), and additive (external) noises
perturbing the signal evaluated. This problem definition leads to the emerging of a couple of new
effects, which are worth examining, as for instance the existence and quantification of response
asymmetry, necessary limitations of input imperfections PDF, possibilities in approximations,
etc.

This paper is organized as follows: After this introduction, the paper describes the used
mathematical model based on the Fokker-Planck equation. Three subsequent sections apply the
model to individual cases of the probability distributions of imperfections, namely to the normal
distribution, the uniform distribution, and the truncated normal distribution. The last section is
the conclusion.

2. Mathematical model

Let us consider a simple system, the function of which can be described by a stochastic diffe-
rential equation of the first order

u̇(t) = −[C + p+ w(t)]u(t) + f(t) + ϕ(t), (1)

where
C – constant, nominal value of a system parameter,
p – deviation (imperfection) of the parameter from its nominal value; it represents a

centered random variable with a prescribed probability density function h(p) with
respect to multiplicative and additive perturbations w(t), ϕ(t),

f(t) – useful signal (deterministic part of excitation),
w(t), ϕ(t) – time variable parametric perturbation or additive perturbation of excitation; Gaus-

sian white noises of constant intensities.
The initial condition of the response u(0) = u◦ is a random quantity of probability density

h◦(u◦). The imperfection p can be considered a constant. Within every individual realization
of the system or time period of its service, the parameter is not subjected to differentiation or
integration in time.

For every fixed value of p, we can consider in (1) the processes w(t), ϕ(t), u(t) as Markov
processes in time. With respect to (1), the Fokker-Planck equation (FPE) can be deduced. Using
the Itô white noise definition, see [2, 3, 9, 13] and other monographs, the relevant equation can
be written as

∂h(u, t)
∂t

=
∂

∂u

{[(
C + p − 1

2
sw

)
u+
1
2
swϕ − f(t)

]
h(u, t)

}
+

1
2

∂2

∂u2

[(
swu2 − 2swϕu+ sϕ

)
h(u, t)

]
, (2)

where
h = h(u, t) – probability density function of the system response,
sw, swϕ, sϕ – intensities or cross-intensity of parametric and additive noises w(t), ϕ(t).
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Using (2) for the construction of the equations for the first and second stochastic moments
of the response, it can be obtained

u̇s(t) = −
(
C + pi − 1

2
sw

)
us(t)−

1
2
swϕ + f(t), ui

s(0) = ui
s◦, (3)

Ḋu(t) = −2(C + pi − sw)Du(t)− 2swϕus(t) + sϕ, Di
u(0) = Di

u◦, (4)

where
us(t) – expected value of the response for the i-th realization of the parameter imperfection,
Du(t) – variance of the response for the i-th realization of the parameter imperfection,
ui

s◦, D
i
u◦ – random initial conditions (we will introduce the assumption of the statistical inde-

pendence of initial conditions and parameter imperfections),
pi – fixed value of the perturbation p.

Note that the expansion represented by (3) and (4) can be easily extended to higher moments.
We would obtain a hierarchy, where each additional equation contains only one unknown higher
moment, and all lower moments in linear expressions can be considered known from the previous
analysis. For example, see (4) containing a linear expression with us(t). The influence of higher
moments, however, is related to multiplicative perturbation w(t), and can be incorporated into
results on a level of the two first moments approximately, provided the noise w(t) remains
within the scale of a small perturbation. For a detailed discussion, see [12].

The solution of (3) and (4) can be expressed by means of Green functions in the form of

us(t) = usg(t, 0, p
i) · us◦ +

∫ t

0
usg(t, τ, p

i)
(
f(τ)− 1

2
swϕ

)
dτ, (5)

Du(t) = Dug(t, 0, p
i) · Du◦ +

∫ t

0
Dug(t, τ, p

i)(sϕ − 2swϕus(τ)) dτ, (6)

where usg(t, τ, pi), Dug(t, τ, pi) are the Green functions arising from (3) and (4) for an-
nulled right-hand sides, and initial conditions of usg(τ, τ, pi) = 1, Dug(τ, τ, pi) = 0 and
usg(τ, τ, pi) = 0, Dug(τ, τ, pi) = 1, respectively,

usg(t, τ, p
i) = e−(C+pi− 12 sw)(t−τ), (7)

Dug(t, τ, p
i) = e−2(C+pi−sw)(t−τ). (8)

Let us recall that the FPE (2) and subsequent equations characterizing moments us(t, τ, pi),
Du(t, τ, pi) determine the system’s behavior related to one element pi of the set of perturbations p.
To obtain the expected value us(t) and variance of the response Du(t) on the set of realizations,
we apply the expectation operator E{·} to (5) and (6), using the facts that in the given case the
expectation and integration operators are mutually commutable, and that the initial conditions
are independent of imperfections. That means

us(t) = usg(t, 0) · us◦ +
∫ t

0
usg(t, τ)

(
f(τ)− 1

2
swϕ

)
dτ, (9)

Du(t) = Dug(t, 0) · Du◦ +
∫ t

0
Dug(t, τ)(sϕ − 2swϕus(τ)) dτ, (10)

usg(t, τ) = E{usg(t, τ, p
i)}, Dug(t, τ) = E{Dug(t, τ, p

i)}. (11)

187
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The kernels of integrals in (9) and (10) implicitly depend, in the meaning of (11), on the
probability density of the imperfection p, while the influence of particularly the additive noise
ϕ(t) is expressed in (9) and (10) relatively distinctly.

Note that (10) implicitly includes an approximate relation

E{Dug(t, τ, p
i)ui

s(τ)} ≈ E{Dug(t, τ, p
i)} · us(τ),

which is often used when analyzing the hierarchies of (9) and (10) type, see, e.g., [9, 13]. The
aim of this step is to eliminate the secondarily emerging nonlinear term. Indeed, both sets we
are working with consist of a mean value and a certain ε-scaled perturbation. The product
of both perturbations results in a value with ε2-scale (i.e., small of the higher order), and is
therefore negligible. In general, this assumption can also be considered as the independence
of Dug(t, τ, pi) and us(τ). Another interpretation is that the hierarchy (9) and (10) is solved
sequentially, when the averaged us(t) resulting from (9) is substituted into (10). A noteworthy
fact is that (9) remains unaffected by this approximate step. A certain error resulting from this
approximation is further reduced by the fact that the cross-correlation given by the coefficient
swϕ is usually small, which many authors neglect by stating swϕ = 0. Analogous steps can be
taken when a broader expansion, and a higher hierarchy than that in (9) and (10) is dissected.

3. Normal distribution of imperfections

The influence of a discrete set on the stochastic characteristics of the response can be evaluated
examining (7) and (8) as a stochastic set for elements pi limiting the number of realizations
to infinity. This limitation is entitled if the response process for individual cases of pi is stable
(see [5] and later editions of this book) and the theorems on stochastic convergence are applicable.

Evaluating the stability of the system with respect to noises w(t), ϕ(t), and perturbations p,
we manipulate the first two moments. In so doing, we will consider the stability in the meaning
of stability of the expected value us(t), and variance Du(t) investigating their behavior starting
from the initial conditions at t = 0 and limiting t → ∞.

The uncertainty of the quality of individual parts of the system is usually approximated by
the normal distribution or its expected value (zero in this case), and by variance Dp, see [4],

h(p) =
1√
2πDp

· e−
p2

2Dp . (12)

If we substitute (7) and (12) into (11), we obtain after limitation for the number of realizations
growing beyond all limits

usg(t, τ) =
1√
2πDp

∫ ∞

−∞
e−

p2

2Dp
−(C+p− 12sw)(t−τ) dp,

which yields
usg(t, τ) = e

−(C− 12sw)(t−τ)+ 12Dp(t−τ)2 . (13)

Using (8), (12) and (11), we will arrive at the expression for Dsg(t, τ)

Dsg(t, τ) = e
−2(C−sw)(t−τ)+2Dp(t−τ)2 . (14)

From the viewpoint of the analysis of a linear stochastic system and its properties, the results
do not differ qualitatively for various histories of the useful signal f(t), if it is square integrable
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within a finite time interval, see [10]. Thus, the useful signal can be introduced as a constant
f(t) = f◦ > 0. Therefore, we will substitute (13) in (9):

us(t) = us◦ · e−(C− 12 sw)t+ 12Dpt2 +
(
f◦ −

1
2
swϕ

)∫ t

0
e−(C− 12 sw)(t−τ)+ 12Dp(t−τ)2 dτ. (15)

For t = 0, the mean value of the response (15) equals the mean value of the initial condition
us(0) = us◦. For increasing time t, the stochastic stability in probability of the system is
preserved if the exponent of the first term is negative. Hence it follows that

a) C > 1
2sw (16)

For 0 < t < tm = 2(C − 1
2sw)/Dp, i.e., within a finite time interval, the system is stable in

probability. For t > tm, the first term in (15) increases exponentially. The same also holds for the
second term. As both terms increase without limitations, also the whole expression (15) grows
without limitations regardless of the sign of the second term, which is determined by a mutual
relation of f◦, and 12swϕ. Even in the special case when us◦ = −(f◦ − 1

2swϕ) the right-hand side
of (15) diverges for t → ∞.

b) C ≤ 1
2sw (17)

The system is unstable from the very beginning, i.e., for all t > 0. These conclusions would
not change even if f(t) �= const. The loss of stability in both cases results from the non-zero
variance of imperfections Dp. In case of Dp → 0, the system would become stable in probability
for all t > 0 if C > 1

2sw. However, in the case when t → ∞, the expected value of the response
is non-zero even for a zero useful signal if the mutual correlation of both noises differs from
zero. The systematic deviation is non-zero for f◦ > 0 even for independent noises.

a) b)

Fig. 1. Expectation of the response for the normal distribution of imperfections (sϕ = 0, swϕ = 0,
C = 1, sw = 0.3): (a) f0 = 0.0, us0 = 1.0; (b) f0 = 1.0, us0 = 0.0

The character of the expected value ud(t) is demonstrated by the plots in Fig. 1. Either the
temporary stability or no stability is obvious depending on Dp. In order to highlight the influence
of imperfections, noises have been suppressed. The temporary stability is visible especially in
Fig. 1a, when no useful signal is applied. However, even the solely useful signal is able to bring
the system to an unstable state, despite the homogeneous initial condition.
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4. Uniform distribution of imperfections

The conclusions of the preceding section show that the non-zero probability of imperfections p
of unlimited magnitude yields unrealistic results. The possibility of a great deviation from the
nominal value of the parameter C means that the system contains an element that practically
eludes the basic quality requirements. For instance, a material would be so saturated with cracks
that the system would collapse much earlier than expected. Although such a state, provided it
occurs after a certain time, could be interpreted as a moment of the life time period exhaustion,
although the present one-dimensional model is not probably suitable for this type of analysis,
and does not form the object of investigation of this paper. What is substantial is that too large
imperfections p must be eliminated in advance from our analysis. This can be attained by the
limitation of the probability density of imperfections p on either side. Such limitation can be
certainly assumed in practice for the most varied technological and operational reasons.

The simplest distribution of probability complying with these requirements is uniform dis-
tribution, see [3, 7] and Fig. 2,

h(p) =

{
1
2Δ for −Δ < p < Δ,

0 otherwise,
(18)

where Δ is the parameter determining the bounds of imperfections p.

Fig. 2. Uniform distribution

For usg(t, τ), we can write according to (11), taking into account (7) and (18),

usg(t, τ) =
1
2Δ

∫ Δ

−Δ
e
−
(

C+p− 12sw

)
(t−τ)
dp, (19)

from which we obtain by a simple integration

usg(t, τ) = e
−(C− 12sw)(t−τ) · sinh (Δ(t − τ))

Δ(t − τ)
, 0 < τ ≤ t. (20)

For small values of t − τ , we can use

usg(t, τ) ≈ e−(C− 12 sw)(t−τ) ·
(
1+
1
6
Δ2(t − τ)2

)
. (21)

Substituting (20) in (9), we come to the formula for the expectation of the response

us(t) = us◦ e
−(C− 12sw)t sinh Δt

Δt
+

∫ t

0
e−(C− 12sw)(t−τ) sinh (Δ(t − τ))

Δ(t − τ)

(
f(τ)− 1

2
swϕ

)
dτ. (22)
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J. Náprstek et al. / Applied and Computational Mechanics 15 (2021) 185–196

We will introduce the constant useful signal f(t) = f◦. At this state, the integral in (22)
will turn into the integral-exponential. If the system complies with the condition (16) of the
stochastic stability in probability, the first part of the expression diverges for t → ∞ provided
0 < Δ < C− 12sw. This condition constitutes a necessary requirement on probability distribution
h(p), as it was mentioned in the first paragraph of this section. In the opposite case, i.e., when
Δ > C − 1

2sw, the first term vanishes and only the integral term remains. The stationary value
can be obtained when limiting t → ∞

lim
t→∞

us(t) = usn =
f◦ − 1

2swϕ

2Δ
· lg

(
C − 1

2sw +Δ

C − 1
2sw −Δ

)
. (23)

Let us consider some special cases. If sw = 0, swϕ = 0, i.e., there is no parametric noise in
the system, the expected value of the response in the stationary state is as follows

usn =
f◦
2Δ

· lg
(

C +Δ
C −Δ

)
. (24)

If equation (16) holds true, then the argument of the logarithm in (23) will be positive only if

C >
1
2
sw +Δ, (25)

which can be considered as the condition of stochastic stability in probability for the uniform
distribution of the imperfections, and, consequently, as a certain generalization of the condition
(16). In other words, the random deviations p of the parameter C must remain within the interval
±(C − 1

2sw). If the parametric noise w(t) is very powerful, it is possible to permit a smaller
zone of permissible imperfections expressed by the width 2Δ of the uniform distribution, see
equation (18).

If the perturbations p of parameter C disappear, that meansΔ = 0, the limitation of (23) for
Δ→ 0 yields a result corresponding to the parametric and additive noises only

usn =
f◦ − 1

2swϕ

C − 1
2sw

(26)

and the expectation of the response deviation from the response equals

ud
sn =

f◦ − 1
2swϕ

C − 1
2sw

− f◦
C

. (27)

If there is no parametric noise in the system, according to (27), it holds ud
sn = 0. The

character of the response expectation depending on the parameterΔ is obvious from Fig. 3. The
thick curve separates the stable and unstable domains forΔ = C − 1

2sw = 0.85. The individual
plots show cases for excitation induced solely by the initial condition (Fig. 3a), and that with the
homogeneous initial condition, and a constant useful signal (Fig. 3b). Both pictures demonstrate
that the system for super-critical Δ is stable only temporarily. However, for sub-critical Δ it
remains stable permanently.

Let us determine the variance of the system response. We will substitute in (10) according
to (22), and will obtain the following expression

Du(t) = Du◦e
−2t(C−sw) sinh 2Δt

2Δt
+

1
2Δ

∫ t

0
e−2(C−sw)(t−τ) sinh (2Δ(t − τ))

t − τ
(sϕ − 2swϕus(τ)) dτ. (28)
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a) b)

Fig. 3. Expectation of the response for the uniform distribution of imperfections; the parametric noise is
not acting; C = 1, sw = 0.3; initial conditions: (a) f0 = 0, us0 = 1; (b) f0 = 1, us0 = 0

The integral in (28) exists, if the condition

C > (sw +Δ) (29)

is complied with, which case corresponds to the condition of stability in the 2nd stochastic
moment, see [2] or [7], and if us(t) is square integrable.

For a constant useful signal f(τ) = f◦, the stationary expected value of the response is given
by (23). Provided the condition (29) is satisfied, the stationary value of system variance may be
expressed as

Dun =
sϕ − 2swϕusn

2Δ
lim
t→∞

∫ t

0
e−2(C−sw)(t−τ) sinh (2Δ(t − τ))

t − τ
dτ, (30)

which can be evaluated in a form of

Dun =
sϕ − 2swϕusn

4Δ
· lg

(
C − sw +Δ
C − sw −Δ

)
. (31)

If the parameter C is not burdened with the perturbations of p, but merely with the noise w(t),
for Δ→ 0 the last equation can be simplified to

Dun =
1
2sϕ − swϕusn

C − sw
.

If, in addition, the parametric and additive noises are mutually independent, swϕ = 0,
equation (31) simplifies as follows:

Dun =
sϕ

2(C − sw)
, (32)

which corresponds to the solution of an analogous problem with parametric noises, see [10].
The variance of the response increases, provided the condition (29) has been complied with,
faster with the increasing width 2Δ of the zone of perturbations, and slightly more slowly with
the increasing intensity of the noise w(t).

Fig. 4 illustrates the variance of the response corresponding the zero and constant useful
signal f(t) = 1 in the left and right plots, respectively. The stability boundary, which is denoted
by the thick curve, is shifted to the left to Δ = C − sw = 0.7. Comparing Figs. 3 and 4, it can
be seen that the variance for unstable values ofΔ diverges significantly faster than the expected
value.
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a) b)

Fig. 4. Variance of the response for the uniform distribution of imperfections; the noises are assumed
independent; C = 1, sw = 0.3, swϕ = 0.2; initial conditions: (a) f0 = 0, us0 = 1.0, Du0 = 1; (b) f0 = 1,
us0 = 0, Du0 = 0

5. Truncated normal distribution of imperfections
Despite the analysis in Section 4, it is generally known that parameter imperfections are rather
characterized by the normal distribution. We try to avoid the paradox, which emerged in
Section 3, by means of the limitation of imperfection values. Theoretically considered, we
gave up the Gaussian distribution again, but this approximation is probably the nearest to rea-
lity, when working with a selected set of realizations. Hence, let us assume that the probability
density of imperfections p is described by the formulas, see, e.g., [4] and Fig. 5,

h(p) =

⎧⎨
⎩

μ√
2πDp

· e−
p2

2Dp for −Δ < p < Δ,

0 otherwise,
(33)

μ−1 = 2Φ
( Δ√
2Dp

)
=
2√
2π

∫ Δ√
Dp

0
e−

ξ2

2 dξ. (34)

Fig. 5. Truncated normal distribution
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In equations (33) and (34), Dp means the variance of the initial Gauss distribution. The
variance of the distribution according to (33) has the value of

Dpt = Dp

(
1− 2μΔ√

2πDp

e−
Δ2

2Dp

)
, (35)

which for Δ→ ∞ approaches the initial Dp.
As in the two preceding cases, we will substitute in (10) according to (7) and (33)

usg(t, τ) =
μ√
2πDp

∫ Δ

−Δ
e−

p2

2Dp
−(C+p− 12sw)(t−τ) dp, (36)

the integration of which yields

usg(t, τ) = μ

[
Φ

(
Δ+Dp(t − τ)√

2Dp

)
+ Φ

(
Δ− Dp(t − τ)√

2Dp

)]
e−(C− 12 sw)(t−τ)+ 12Dp(t−τ)2 . (37)

Equation (37) is an expression similar to (13). For (t − τ) → ∞, however, it does not diverge
as it can be proved easily. For large magnitudes of t − τ , the asymptotic series applies, see [6],

2Φ(z) ≈
{
1− ψ(z), z 
 0,
−1− ψ(z), z � 0,

ψ(z) =
e−z2

√
π · z (1−

1
2z2
+ . . .). (38)

After the substitution of (35) and (38) into (37) and the subsequent modification, we obtain

usg(t, τ) ≈
√

Dp e
− Δ2

2Dp

2
√
2πΦ

(
Δ√
2Dp

)
(D2p(t − τ)2 −Δ2)

·

[
(Δ− Dp(t − τ)) e(−Δ−C+ 12sw)(t−τ) + (Δ +Dp(t − τ)) e(Δ−C+ 12sw)(t−τ)

]
. (39)

For increasing t − τ , the value of (39) approaches zero, if the condition (25) has been
complied with, and if Δ is finite. For Δ → ∞ (the normal distribution without limitation),
the fraction preceding the square bracket diverges, as the denominator decreases faster than the
numerator, for further details, see [10].

The expression (37), consequently, is meaningful. We will substitute it in (9), and will
ascertain immediately that under the conditions that Δ < ∞, and (25) holds, the influence of
initial conditions successively disappears with increasing t. If we use in the integral term, once
again, the constant useful signal, we obtain for the stationary state

us(t)

∣∣∣∣∣
t→∞

=
f◦ − 1

2swϕ

2Φ
(

Δ√
2Dp

) ∞∫
0

[
Φ

(
Δ+Dpξ√
2Dp

)
+ Φ

(
Δ− Dpξ√
2Dp

)]
· e−(C− 12sw)ξ+ 12Dpξ2 dξ, (40)

which is the final non-zero value influenced by the mutual correlation of both input noises,
which increases without limitations for Δ→ ∞. When Δ→ 0 and Dp → 0, the perturbations
disappear and (40) changes continuously into (26).

If we compare (40) and (23) (numerically), we will ascertain that for identical Δ and
excitation parameters, the expectation of the response is higher for the uniform distribution of
the perturbations of parameter C.
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The variance of the response may be ascertained by a similar method, using equations (8),
(10), (11) and (33) with the assistance of (40) or a more general formula for us(t). The variance
first rises from zero, attains maximum, and then drops, and approaches asymptotically the
constant value characterizing the stationary state. Other qualitative characteristics of the variance
are similar to those of the expected value.

6. Conclusion

The stochastic perturbations of a system parameter, understood in the meaning of a set of
realizations, result in a loss of the stochastic stability of the system, if their probability density
differs from zero in the whole definition interval. For example, if the perturbations follow the
normal probability distribution, the system becomes unstable in probability after a certain time,
and its response in the meaning of the expected value rises exponentially. The physical reason
for this result is the non-zero probability of such a large parameter deviation that brings the
system into a permanently unstable state. This situation may occur either in connection with the
additive noise or even without it, even in the case of a single realization.

The system’s stability is preserved if we abandon the assumption of the “unlimited” Gaussian
distribution of parameter imperfections, and if the standard conditions of the stochastic stability
in probability or in the second stochastic moment are complied with. The width of the permissible
zone of imperfections is determined by the white noise intensity in the coefficient; it decreases
with increasing noise intensity, and vice versa. The width of the permissible zone is larger for
the truncated normal distribution than for the uniform distribution.

The effect of the right-hand side with an additive noise for truncated distribution densities of
parameter imperfections results in a constant stationary expectation of the response, the constant
value of the variance, and, therefore, the stationary correlation function. The same applies to
higher statistical moments, and the density of probability of the response.
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