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Abstract

A new analytical solution is presented for functionally graded (FG) beams to investigate the bending behaviour under
the hygro-thermo-mechanical loading using a new fifth order shear and normal deformation theory (FOSNDT).
The material properties of the FG beam are varied along the thickness direction according to the power law index.
In the present theory, a polynomial shape function is expanded up to fifth-order in terms of thickness coordinate
to consider the effects of transverse shear and normal deformations. The present theory is free from the shear
correction factor. Using the Navier’s solution technique the closed-form solution is obtained for simply supported
FG beams. All the results are presented in non-dimensional form and validated it by developing the classical
beam theory (CBT), first order shear deformation theory (FSDT by Mindlin) and third order shear deformation
theory (TSDT by Reddy) considering the hygro-thermo-mechanical loading effects which is mostly missing in the
literature. It is noticed that the presented FOSNDT is very simple and accurate to predict the bending behaviour of
FG beams under linear and non-linear hygro-thermo-mechanical loadings.
c© 2020 University of West Bohemia. All rights reserved.
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1. Introduction
The composites are usually a mixture of two or more than two materials in combination. The
materials having the proper and significant chemical properties are normally chosen to get the
typical mixture and required strength. Functionally graded materials (FGMs) are similar kinds
of composite material having unique characteristics. Nowadays, FG materials are used in many
engineering and structural applications because of its novel properties. The greatest advantage
of FG material is flexibility in design, which makes it more suitable to grade the material
properties in any specific direction as per requirement. Currently, the main focus of scientists and
researchers is to suggest and introduce a new type of material which is light in weight, suits for
any environmental conditions, should be reliable in service performance and able to minimize the
size of structural elements. The available materials are not much suitable for all the engineering
applications, hence the FG beams are used in main structural components of aerospace vehicles,
defense sector units, shipbuilding industries, seashore structures, many automobile and chemical
industries. In fact, the beams made from FG materials are very strong to resist the thermal stresses
produced in spacecrafts and aircrafts operations. FG beams are even most suitable to resist hygro
stresses generally developed in seashore and marine structures located in humid environment.
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Hence, before using FG beam for important engineering applications, it is absolutely necessary
to study the bending behaviour of FG beam under hygro-thermo-mechanical loading. Laminated
composites may fail due to delamination failure or stress concentration at the layer interfaces
during the life span. To overcome the delamination failure one can use FG material which
is free from layers and the properties of such a material can be tailored in specific direction
using a power law index. The ceramic and metal are the two major constituents used to form
the FG materials. The ceramic constituents are having low thermal conductivity and good for
wearing resistance, whereas the metals having good ductile performance, which sustains the
deformations and can prevent the fractures caused due to stress. Looking into current scenario,
the present research is an attempt towards fulfillment of the industry demands by developing
the new solution technique to analyze important weight sensitive structures where safety and
accuracy is on top propriety.

The several analytical techniques, numerical methods and few elasticity solutions are avai-
lable in the literature which is addressed by various researchers across the globe, to study the
static and dynamic response of the FG beams under mechanical and thermo-mechanical loading.
But there is acute shortage of literature on the FG beams subjected to hygro-thermo-mechanical
loadings. Hence, the main aim of this study is to present the bending analysis of FG beams
considering the linear and non-linear variations of hygro-thermo-mechanical loadings. In this
study, non-linearity is related to loadings and not a geometric.

The CBT (classical beam theory) which is developed by Euler-Bernoulli ignores the effect of
shear deformation. The CBT is a simple beam theory used for the analysis of thin beams hence it
not recommended for the analysis of thick beams due to neglect of the shear deformation effect. In
the thick beam analysis, CBT underestimates the stresses and deformations. In 1921, Timoshenko
developed the FSDT which assumes the first order variation in the axial displacement. But this
theory needs the problem dependent shear correction factor to address the correct behaviour
shear deformation. FSDT also fails to satisfy the zero transverse shear stress conditions at the
top and bottom surfaces of the beam. To address the deficiencies of CBT and FDST, many
researchers are trying to develop the new kinds of higher order theories.

During the space plane project in 1984, Japanese scientists introduced the FG materials
to resist the ultra-high temperature. The FG sheets tested under high temperature fluctuations
across the thin cross-sectional thickness. The use and applications of the FG materials can be
found in the literature by Koizumi [59, 60], Muller et al. [69], Birman and Byrd [25], etc. The
detailed information on the FG beams and plates is available in the review articles published
by Jha et al. [53], Swaminathan et al. [90], Swaminathan and Sangeeta [91], Sayyad and
Ghugal [85, 87, 88]. This reviews given the good insights over the available literature which
influences the many researchers to extend their efforts to analyze the FG beams under linear and
non-linear hygro-thermo-mechanical loading which is very rarely addressed in the literature.
Sankar [80], Ding et al. [38], Zhong and Yu [99], Daouadji et al. [36], Chu et al. [31], Ying et
al. [95] and Xu et al. [94] presented an elasticity solution for the FG beams. The 3-D elasticity
solutions are analytically very complicated, cumbersome and difficult to solve. Therefore,
researchers are taking interest to propose a new analytical techniques and numerical methods
for the FG beams in which the numerical results are closer to the exact solutions obtained by
elasticity solutions.

Kadoli et al. [54], Sayyad and Ghugal [83], Reddy [79], Benatta [10], Li et al [62], Pendhari
et al. [77], Giunta et al. [47, 49], Thai and Vo [92], Li and Batra [61], Nguyen et al. [74],
Bourada et al. [26], Menna et al. [67], Mohanty [68], Pandey and Parashar [76] and Hadji et
al. [52], Adim et al. [8], Daouadji and Adim [33,34], Daouadji [32], Benferhat et al. [13], Adim
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and Daouadji [4] have addressed the bending response of the FG beam using various kinds
of higher order shear deformation theories (HSDTs). Zenkour [96] studied the behaviour of
laminated and sandwich beam considering the transverse normal effect using HSDT. Sayyad
and Ghugal [84] developed the analytical solutions for the bending of FG beam using different
boundary conditions. Chakraborty et al. [27], Frikha et al. [42], Kahya and Turan [55], Kim and
Paulino [58], Kant and Gupta [56] and Filippi et al. [41] analyzed the FG beams using finite
element approach. Benferhat et al. [11, 12, 14, 16, 17], Daouadji et al. [37], Hadji et al. [50]
studied the porosity effect on the bending of FG beams and plates to investigate the normal and
shear interfacial stresses.

Daouadji et al. [35], Chergui et al. [29], Rabahi et al. [78] presented the numerical and
experimental results to study the flexural behaviour of steel and RC beams strengthened by
laminates. Benhenni et al. [18–21], Benferhat [15], Bensattalah et al. [22, 23], Hadji et al. [51],
Adim et al. [7] reported the free vibration response for the FG, laminated beams and plates.
Adim et al. [5, 6], Bensattalah et al. [24], Khalifa [57] examined the buckling response of FG
and laminated composite plate using refined HSDTs. Abdelhak et al. [1, 2], Chaded et al. [28]
developed an analytical solution for sandwich FG plate composed of FG face sheets and isotropic
homogeneous core.

The beam made from FG materials are most suitable in thermal environments due to low
thermal conductivity of ceramic materials. The response of the FG beam using different models
under thermal and thermo-mechanical load is reported by a few researchers like Aboudi et
al. [3], Chin and Chen [30], Giunta et al. [48], Megharbel [66], Sankar and Tzeng [81], etc. The
effect of non-linear thermo-mechanical loads on bending behaviour of FG beams is reported by
Shen [89], Ma and Lee [63,64], Ma and Wang [65], Esfahani et al. [39], Arbind et al. [9], Nirmala
and Upadhyay [100], etc. Toudehdehghan et al. [82] studied the effect of thermal environment
on FG coated beams using clamped-clamped end condition. Zhau et al. [82] and Sator et al. [75]
used the meshless method to address the thermal effects.

The hygro-thermo-mechanical analysis for the FG plate is studied by Zidi et al. [101],
Zenkour et al. [97], Daouadji et al. [32], Zenkour and Radwan [86] and Sayyad and Ghugal [98]
using different higher order theories and mathematical approaches. But the given literature
is limited to only for FG plates; there is acute shortage of literature on FG beams subjected
to non-linear hygro-thermo-mechanical loads. Recently, a fifth order theory has been used
by Ghumare and Sayyad [43–46] for the analysis of FG beams and plates and also by Naik
and Sayyad [70–73] for the analysis of laminated composite beams and plates subjected to
mechanical and thermo-mechanical loadings.

The main focus of the present study is to investigate the bending behaviour of FG beam using
fifth order shear and normal deformation theory under the non-linear hygro-thermo-mechanical
loadings. In the present theory, a polynomial shape functions are expanded to fifth-order in terms
of the thickness coordinates. This theory includes the effect of thickness stretching. The theory
involves only six independent field variables. This theory does not require shear correction
factor. To obtain the closed-form solution, the Navier’s solution technique is used for simply
supported FG beam. Using power-law the material properties are graded. Using the principle
of virtual work and the fundamental lemma of calculus, the variationally consistent governing
equations and associated boundary conditions are evolved. To validate the present theory authors
have developed CBT, FSDT and TSDT for the non-linear hygro-thermo-mechanical load and
the dimensionless results are compared with these theories. It is found that the present FOSNDT
is very simple and accurate to predict the bending response under the non-linear hygro-thermo-
mechanical loadings.
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2. Development of the present theory
2.1. Geometry of the FG Beam
The dimensions and geometry of the FG beam used for the analytical solution are shown in
Fig. 1. The y-directional width of the FG beam is assumed as unity. The top surface of the FG
beam is made up of metal, whereas the bottom surface is made up of ceramic material.

Fig. 1. Geometry of the FG beam

2.2. Novelty and purpose of the present theory
Looking at the current scenario, the present research is an attempt towards fulfillment of the
industry demands and development in new solution technique to analyze important weight
sensitive engineering structures.

1. It is observed that the numerous literature is available for mechanical loading [4, 8, 10,
13, 26, 27, 31–34, 36, 38, 41, 42, 47, 49, 52, 54–56, 58, 61, 62, 67, 68, 74, 76, 77, 79, 80, 83,
84, 92, 94–96, 99] and even for the thermo-mechanical loading [3, 9, 30, 39, 48, 63–66, 75,
81,82,89,93,100] for the FG beams, but there is acute shortage of literature on FG beam
subjected to non-linear hygro-thermo-mechanical loading which is the main focus of the
present study.

2. The present theory falls under polynomial type which is computationally very simpler
than non-polynomial type beam theories which are mathematically complicated, tedious
and more cumbersome.

3. For the accurate structural analysis of composite beams under hygro-thermal loading,
considering the thickness coordinate up to third-order polynomial is not sufficient. There-
fore, in the present theory thickness coordinate is expanded up to fifth-order polynomial
to get the accurate displacements and stresses.

4. Transverse normal stress/strain plays an important role in the modeling of thick beams
which is neglected by many theories available in the literature. The present theory consi-
ders the effects of both transverse shear and normal deformations.

5. The displacement field of the theory enforces the realistic variation of the transverse shear
stresses (parabolic) across the thickness of the FG beam.

6. To grade the material a simple mixture rule, i.e. power-law is used.

3. The development of the present fifth order theory
3.1. The displacement field
The displacement field of the present theory is as follows:

u(x, z)= u0(x)− z
∂w0
∂x
+ F1φx(x) + F2ψx(x),

w(x, z)=w0(x) + F ′
1φz(x) + F ′

2ψz(x),
(1)
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where, u and w are the axial and transverse displacement of any point on the FG beam. u0 and w0
are the x and z-directional displacements of any point on the neutral surface of the FG beam.
The terms φx and ψx are the shear slopes associated with the transverse shear deformation,
whereas φz and ψz are the shear slopes associated with the transverse normal deformations.

Using the theory of elasticity, the strain components are obtained:

εx = ε0x + zkb
x + F1ε

1
x + F2ε

2
x,

εz = F ′′
1 φz + F ′′

2 ψz , (2)
γxz = F ′

1γ
s1
xz + F ′

2γ
s2
xz,

where

ε0x =
∂u0
∂x

, kb
x = −∂2w0

∂x2
, ε1x =

∂φx

∂x
, ε2x =

∂ψx

∂x
,

γs1
xz =

(
φx +

∂φz

∂x

)
, γs2

xz =

(
ψx +

∂ψz

∂x

)
,

F1 = (1− 4/3z3/h2), F2 = (1− 16/5z5/h4), (3)
F ′
1 = (1− 4z2/h2), F ′

2 = (1− 16z4/h4),

F ′′
1 = −8z

h2
, F ′′

2 = −64z
3

h4
.

3.2. The power-law for material gradation

The power law is used to change the volume fraction of the constituent materials continuously
along the thickness direction. The power-law is stated as

E(z) = Em + (Ec − Em)(0.5 + z/h)p, (4)

where E represents the elasticity modulus. Subscripts m and c represent the metal and ceramic
constituent’s, respectively, p represents the power law index. The value of p is equal to zero
represents the fully ceramic phase, whereas p equal to infinity represents a fully metallic phase.
The effect of variation of the Poisson’s ratio ν on the bending response of FG beam is very
small, hence the Poisson’s ratio is assumed as constant. The variation of thermal and moisture
loads are also assumed to vary according to power-law index through the thickness of a FG
beam. Fig. 2 shows the variation of volume fractions across the thickness of the FG beam.

Fig. 2. Variation of elastic modulus across the FG beam
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3.3. The constitutive law for the FG beam

The FG beam follows the linear constitutive relations at a point can be written as follows,
⎧⎨
⎩

σx

σz

τxz

⎫⎬
⎭ =

⎡
⎣Q11(z) Q13(z) 0

Q13(z) Q33(z) 0
0 0 Q55(z)

⎤
⎦

⎧⎨
⎩

εx − αxΔT − βxΔC
εz − αzΔT − βzΔC

γxz

⎫⎬
⎭ , (5)

where

Q11(z) = Q33(z) =
E(z)
1− ν2

, Q13(z) =
νE(z)
1− ν2

, Q55(z) =
E(z)
2(1 + ν)

, (6)

αx, αz and βx, βz represent the coefficients of thermal and moisture concentration coefficients,
respectively. The temperature and moisture variation profiles are assumed as follows,

ΔT (x, z)=T0 +
z

h
T1 +

F1
h

T2 +
F2
h

T3,

ΔC(x, z) =C0 +
z

h
C1 +

F1
h

C2 +
F2
h

C3,

(7)

where T0 represents constant temperature, T1 represents a linear temperature variation, T2 and
T3 represents non-linear temperature variation (see Fig. 3). The similar meaning and variations
are assumed for moisture concentration terms C0, C1, C2, C3.

Fig. 3. Temprature variation profile across the thickness of FG beam

3.4. The governing equations

The six variationally consistent governing equations are obtained using the principle of virtual
displacement which equates external and internal work:

∫ L

0

∫ h/2

−h/2
(σxδεx + σzδεz + τxzδγxz) dz dx =

∫ L

0
[q(x)δw0] dx. (8)

Substituing strains from (2) and stresses from (5) into the equation (8), one will get
∫ L

0

(
Nx

∂δu0
∂x

− M b
x

∂2δw0
∂x2

+MS1
x

∂δφx

∂x
+MS2

x

∂δψx

∂x
+

QS1
z δφz +QS2

z δψz +Q1xzδφx+

Q1xz

∂δφz

∂x
+Q2xzδψx +Q2xz

∂δψz

∂x

)
dx =

∫ L

0
[q(x)δw0] dx, (9)
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[Nx, M
b
x, M

S1
x , MS2

x ] =
∫ h/2

−h/2
σx[1, z, F1, F2] dz,

[Q1xz, Q
2
xz] =

∫ h/2

−h/2
τxz[F

′
1, F

′
2] dz, (10)

[QS1
z , QS2

z ] =
∫ h/2

−h/2
σz[F

′′
1 , F

′′
2 ] dz,

where Nx is the resultant axial force, M b
X represents the resultant moment due to bending, MS1

X ,
MS2

X are the resultant moments due to shear deformation and Q1xz, Q2xz, QS1
z , QS2

z denote the
resultant shear forces.

The governing equations mentioned in (11)–(16) are obtained by integrating (11) by parts
and setting the coefficients of δu0, δw0, δφx, δψx, δφz, δψz and equating it to zero:

δu0 : A11
∂2u0
∂x2

− B11
∂3w0
∂x3

+ C11
∂2φx

∂x2
+D11

∂2ψx

∂x2
+ F13

∂φz

∂x
+H13

∂ψz

∂x
−

(AT
11 + AT

13)
∂T0
∂x

− (BT
11 +BT

13)
∂T1
∂x

− (CT
11 + CT

13)
∂T2
∂x

− (DT
11 +DT

13)
∂T3
∂x

−

(AC
11 + AC

13)
∂C0
∂x

− (BC
11 +BC

13)
∂C1
∂x

− (CC
11 + CC

13)
∂C2
∂x

− (DC
11 +DC

13)
∂C3
∂x
= 0, (11)

δw0 : B11
∂3u0
∂x2

− AS11
∂4w0
∂x4

+ CS11
∂3φx

∂x3
+DS11

∂3ψx

∂x3
+ FS13

∂2φZ

∂x2
+

HS13
∂2ψZ

∂x2
− (BT

11)
∂2T0
∂x2

− (BT
13)

∂2T0
∂x2

− (AT
S11 + AT

S13)
∂2T1
∂x2

−

(CT
S11 + CT

S13)
∂2T2
∂x2

− (DT
S11 +DT

S13)
∂2T3
∂x2

− (BC
11 +BC

13)
∂2C0
∂x2

−

(AC
S11 + AC

S13)
∂2C1
∂x2

− (CC
S11 + CC

S13)
∂2C2
∂x2

− (DC
S11 +DC

S13)
∂2C3
∂x2

= −q, (12)

δφx : C11
∂2u0
∂x2

− CS11
∂3w0
∂x3

+ CSS111
∂2φx

∂x2
+ CSS211

∂2ψx

∂x2
+ FSS13

∂φZ

∂x
+

HSS13
∂ψZ

∂x
− FSS155φx − FSS155

dφx

dx
− HSSS55

(
ψx +

dψx

dx

)
−

(CT
11 + CT

13)
∂T0
∂x

− (CT
S11 + CT

S13)
∂T1
∂x

− (CT
SS111 + CT

SS113)
∂T2
∂x

−

(CT
SS211 − CT

SS213)
∂T3
∂x

− (CC
11 + CC

13)
∂C0
∂x

− (CC
S11 + CC

S13)
∂C1
∂x

−

(CC
SS111 + CC

SS113)
∂C2
∂x

− (CC
SS211 + CC

SS213)
∂C3
∂x
= 0, (13)

δψx : D11
∂2u0
∂x2

− DS11
∂3w0
∂x3

+ CSS211
∂2φx

∂x2
+DSS211

∂2ψx

∂x2
+ FSSS13

∂φZ

∂x
+

HSSS13
∂ψZ

∂x
− HSSS55φx − HSSS55

∂φz

∂x
− FSS255

(
ψx +

dψz

dx

)
−

(DT
S11 +DT

S13)
∂T1
∂x

− (CT
SS211 + CT

SS213)
∂T2
∂x

− (DT
11 +DT

13)
∂T0
∂x

−

(DT
SS211 +DT

SS213)
∂T3
∂x

− (DC
11 +DC

13)
∂C0
∂x

− (DC
S11 +DC

S13)
∂C1
∂x

−
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(CC
SS211 + CC

SS213)
∂C2
∂x

− (DC
SS211 +DC

SS213)
∂C3
∂x
= 0, (14)

δφz : − F13
∂u0
∂x
+ FS13

∂2w0
∂x2

− FSS13
∂φx

∂x
− FSSS13

∂ψx

∂x
− FSSS133φZ−

FSSS233ψz − FSS155
∂φx

∂x
− FSS155

∂2φz

∂x2
+HSSS55

(
∂ψx

∂x
+

∂2ψz

∂x2

)
−

(F T
13 + F T

33)T0 − (F T
S13 + F T

S33)T1 − (F T
SS113 + F T

SS133)T2−
(F T

SS213 + F T
SS233)T3 − (F C

13 + F C
33)C0 − (F C

S13 + F C
S33)C1−

(F C
SS113 + F C

SS133)C2 − (F C
SS213 + F C

SS233)C3 = 0, (15)

δψz : − H13
∂u0
∂x
+HS13

∂2w0
∂x2

− HSS13
∂φx

∂x
− HSSS13

∂ψx

∂x
+ FSSS233φZ−

HSSS233ψz +HSSS55

(
∂φx

∂x
+

∂2φz

∂x2

)
+ FSS255

(
∂ψx

∂x
+

∂2ψz

∂x2

)
−

(HT
13 +HT

33)T0 − (HT
S13 +HT

S33)T1 − (HT
SS113 +HT

SS133)T2−
(HT

SS213 +HT
SS233)T3 − (HC

13 +HC
33)C0 − (HC

S13 +HC
S33)C1−

(HC
SS113 +HC

SS133)C2 − (HC
SS213 +HC

SS233)C3 = 0. (16)

The governing equations involve mechanical, thermal and moisture constants which are menti-
oned in (17)–(19) as follows:
Mechanical constants

[Aij , Bij, Cij, Dij] = Qij(z)
∫ h/2

−h/2
[1, z, F1, F2] dz,

[Asij, Csij, Dsij, Fsij, Hsij] = Qij(z)
∫ h/2

−h/2
z[z, F1, F2, F

′′
1 , F

′′
2 ] dz,

[CSS1ij, CSS2ij] = Qij(z)
∫ h/2

−h/2
F1[F1, F2] dz,

[DSS2ij] = Qij(z)
∫ h/2

−h/2
F 22 dz, [Fij ] = Qij(z)

∫ h/2

−h/2
F ′′
2 dz,

[Hij] = Qij(z)
∫ h/2

−h/2
F ′′
2 dz,

[FSSij, HSSij] = Qij(z)
∫ h/2

−h/2
F1[F

′′
1 , F

′′
2 ] dz, (17)

[HSSSij, FSS2ij] = Qij(z)
∫ h/2

−h/2
F ′
2[F

′
1, F

′
2] dz,

[FSSSij, HSSSij] = Qij(z)
∫ h/2

−h/2
F2[F

′′
1 , F

′′
2 ] dz,

[FSS1ij] = Qij(z)
∫ h/2

−h/2
F ′
1F

′
1 dz, [FSSS1ij] = Qij(z)

∫ h/2

−h/2
F ′′
1 F

′′
1 dz,

[FSSS2ij, HSSS2ij] = Qij(z)
∫ h/2

−h/2
F ′′
2 [F

′′
1 , F

′′
2 ] dz.
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Thermal constants

[AT
ij , B

T
ij, C

T
ij , D

T
ij] = αxQij(z)

∫ h/2

−h/2
[1, z, F1, F2] dz,

[AT
sij, C

T
sij, D

T
sij, F

T
sij, H

T
sij] =

αx

h
Qij(z)

∫ h/2

−h/2
z[z, F1, F2, F

′′
1 , F

′′
2 ] dz,

[CT
SS1ij, C

T
SS2ij] =

αx

h
Qij(z)

∫ h/2

−h/2
F1[F1, F2] dz,

[DT
SS2ij] =

αx

h
Qij(z)

∫ h/2

−h/2
F 22 dz,

[F T
ij ] =

αx

h
Qij(z)

∫ h/2

−h/2
F ′′
1 dz, (18)

[HT
ij ] =

αx

h
Qij(z)

∫ h/2

−h/2
F ′′
2 dz,

[F T
SSij, H

T
SSij] =

αx

h
Qij(z)

∫ h/2

−h/2
F1[F

′′
1 , F

′′
2 ] dz.

Moisture constants

[AC
ij , B

C
ij , C

C
ij , D

C
ij ] = βxQij(z)

∫ h/2

−h/2
[1, z, F1, F2] dz,

[AC
sij, C

C
sij, D

C
sij, F

C
sij, H

C
sij] =

βx

h
Qij(z)

∫ h/2

−h/2
z[z, F1, F2, F

′′
1 , F

′′
2 ] dz,

[CC
SS1ij, C

C
SS2ij] =

βx

h
Qij(z)

∫ h/2

−h/2
F1[F1, F2] dz,

[DC
SS2ij] =

βx

h
Qij(z)

∫ h/2

−h/2
F 22 dz, [F C

ij ] =
βx

h
Qij(z)

∫ h/2

−h/2
F ′′
1 dz, (19)

[HC
ij ] =

βx

h
Qij(z)

∫ h/2

−h/2
F ′′
2 dz,

[F C
SSij, H

C
SSij] =

βx

h
Qij(z)

∫ h/2

−h/2
F1[F

′′
1 , F

′′
2 ] dz.

3.5. The boundary conditions

The boundary conditions obtained at x = 0 and x = L are in the following form:

Either Nx = 0 or u0 is prescribed. (20)
Either M b

x = 0 or ∂w0/∂x is prescribed. (21)
Either ∂M b

x/∂x = 0 or wb is prescribed. (22)
Either MS1

x = 0 or φx is prescribed. (23)
Either MS2

x = 0 or ψx is prescribed. (24)
Either Q1xz = 0 or φz is prescribed. (25)
Either Q2xz = 0 or ψz is prescribed. (26)
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3.6. The analytical solution

Using the Navier’s solution technique, the analytical solution is obtained for the simply supported
FG beam. The displacement variables are expressed in the single trigonometric series

{u0, φx, ψx}=
∞∑

m=1

{um, φxm, ψxm} cosαx,

{w0, φz, ψz}=
∞∑

m=1

{wm, φzm, ψzm} sinαx,

(27)

where um, wm, φxm, ψxm, φzm, ψzm are the unknown coefficients and α = mπ/L. The top sur-
face of the beam is transversely loaded with q(x) and load is expressed in a single trigonometric
form as

q(x) =
∞∑

m=1

qm sinαx, (28)

where

qm = q0 (sinusoidal load). (29)

Using (30), the analytical solution is obtained by substituting the trigonometric form of u0, w0,
φx, ψx, φz, ψz and q(x) from (27)–(29) into governing equations (11)–(16)

[K]{Δ} = {f}, (30)

where [K] represents the stiffness matrix, {f} represents the force vector and {Δ} represents
the unknowns coefficient vector. The elements of [K], {Δ} and {f} are as follows:

K11 = −A11α
2, K12 = B11α

3, K13 = −C11α
2,

K14 = −D11α
2, K15 = F13α, K16 = H13α,

K22 = −AS11α
4, K23 = CS11α

3, K24 = DS11α
3,

K25 = −FS13α
2, K26 = −HS13α

2, K33 = −(CSS111α
2 + FSS155),

K34 = −(CSS211α
2 +HSSS55), K35 = (FSS13 − FSS155)α,

K36 = (HSS13 − HSSS55)α, K44 = −(DSS211α
2 + FSS255),

K45 = (FSSS13 − HSSS55)α, K46 = (HSSS13 − FSS255)α,
K55 = −(FSS155α

2 + FSSS133), K56 = −(HSSS155α
2 + FSSS233),

K66 = −(FSS255α
2 +HSSS233),

symmetric elements:

K21 = K12, K31 = K13, K41 = K14, K51 = K15, K61 = K16, K32 = K23,
K42 = K24, K43 = K34, K52 = K25, K62 = K26, K53 = K35,
K63 = K36, K54 = K45, K64 = K46, K65 = K56,

{Δ}= {um, wm, φxm, ψxm, φzm, ψzm}T ,

{f}= {f1,−(f2 + qm), f3, f4, f5, f6}T ,
(31)
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where

f1 = −(AT
11 + AT

13)t0α − (BT
11 +BT

13)t1α − (CT
11 + CT

13)t2α − (DT
11 +DT

13)t3α −
(AC
11 + AC

13)C0α − (BC
11 +BC

13)C1α − (CC
11 + CC

13)C2α − (DC
11 +DC

13)C3α, (32)
f2 = −q − (BT

11 + AT
13)t0α

2 − (AT
S11 + AT

S13)t1α
2 − (CT

S11 + CT
S13)t2α

2 −
(DT

S11 +DT
S13)t3α

2 − (BC
11 + AC

13)C0α
2 − (AC

S11 + AC
S13)C1α

2 −
(CC

S11 + CC
S13)C2α

2 − (DC
S11 +DC

S13)C3α
2, (33)

f3 = −(CT
11 + CT

13)t0α − (CT
S11 + CT

S13)t1α − (CT
SS111 + CT

SS113)t2α −
(CT

SS211 + CT
SS213)t3α − (CC

11 + CC
13)C0α − (CC

S11 + CC
S13)C1α −

(CC
SS111 + CC

SS113)C2α − (CC
SS211 + CC

SS213)C3α, (34)
f4 = −(DT

11 +DT
13)t0α − (DT

S11 +DT
S13)t1α − (CT

SS211 + CT
SS213)t2α −

(DT
SS111 +DT

SS113)t3α − (DC
11 +DC

13)C0α − (DC
11 +DC

S13)C1α −
(CC

SS211 + CC
SS213)C2α − (DC

SS111 +DC
SS113)C3α, (35)

f5 = −(F T
13 + F T

33)t0 − (F T
S13 + F T

S33)t1 − (F T
SS113 + F T

SS133)t2 −
(F T

SS213 + F T
SS233)t3 − (F C

13 + F C
33)C0 − (F C

S13 + F C
S33)C1 −

(F C
SS113 + F C

SS133)C2 − (F C
SS213 + F C

SS233)C3, (36)
f6 = −(HT

13 +HT
33)t0 − (HT

S13 +HT
S33)t1 − (HT

SS113 +HT
SS133)t2 −

(HT
SS213 +HT

SS233)t3 − (HC
13 +HC

33)C0 − (HC
S13 +HC

S33)C1 −
(HC

SS113 +HC
SS133)C2 − (HC

SS213 +HC
SS233)C3. (37)

4. Illustrative examples, numerical results and discussion

To verify the accuracy of the present theory, bending response under thermo-mechanical and
hygro-thermo-mechanical loadings are presented and discussed in this section. For the analytical
solution, the FG beam made of ceramic (Alumina: Ec = 380GPa, νc = 0.3) and metal (Alumi-
num: Em = 70GPa and νm = 0.3) is considered. Displacements and stresses are presented in
the dimensionless form

w̄

(
L

2
, 0

)
=
100Emh3w

q0L4
, ū

(
0,−h

2

)
=
100Emh3u

q0L4
,

σ̄x

(
L

2
,
h

2

)
=

hσx

q0L
, τ̄xz(0, 0)=

hτxz

q0L
.

(38)

4.1. Illustrative example

To validate the present theory, the following examples are solved.

Example 1: Transverse displacements and stresses in FG beam under linear thermo-mechanical
load (T1 = 10, C1 = 0, q0 = 100).

Example 2: Transverse displacements and stresses in FG beam under non-linear thermo-
mechanical load (T1 = 10, T2 = 10, C1 = C2 = 0, q0 = 100).

Example 3: Transverse displacements and stresses in FG beam under linear hygro-thermo-
mechanical load (T1 = 10, C1 = 100, q0 = 100).

Example 4: Transverse displacements and stresses in FG beam under non-linear hygro-thermo-
mechanical load (T1 = T2 = 10, C1 = C2 = 100, q0 = 100).
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4.2. Numerical results for the thermo-mechanical load and their discussion

Table 1 shows the comparison of maximum dimensionless axial displacement ū, transverse
deflection w̄, normal stress σ̄x and transverse shear stress τ̄xz for FG beams subjected to linear
thermo-mechanical load with the power index p. The transverse and axial displacements obtained
by the present theory are marginally less for ceramic and metal phases when p = 0,∞, whereas
for p = 1, 2, 5, 10 the transverse and axial displacements are in close agreement with the other
theories. It is observed that the displacement increases with an increase in power law index. This
is due to the decrease in the stiffness of the FG beam. It is noted that neglecting the transverse
shear deformation effect, the CBT underestimates the displacements. Also, it is important
to observe that the numerical results for normal and transverse shear stresses are having a
close agreement with other refined theories. Table 2 shows maximum values of dimensionless
transverse deflection w̄ under linear thermo-mechanical loads by varying the aspect ratio and
power law index. As the aspect ratio increases, the dimensionless deflection found decreased,
whereas deflection increases with power law. Table 3 shows the comparison of non-dimensional

Table 1. Comparison of axial displacement, transverse deflection, normal stress and transverse shear
stress in FG beams subjected to linear thermal load (L/h = 10, T1 = 10, q0 = 100)

p Theory Model ū w̄ σ̄x τ̄xz

0 Present (εz �= 0) FOSNDT 0.443 1 2.821 4 7.697 3 0.476 8
Reddy [79] PSDT 0.442 5 2.818 6 7.452 9 0.477 3
Bernoulli-Euler [40] EBT 0.435 3 2.821 4 7.426 8 –

1 Present (εz �= 0) FOSNDT 0.643 1 5.525 7 10.316 2 0.521 1
Reddy [79] PSDT 0.640 2 5.200 1 10.922 7 0.518 9
Bernoulli-Euler [40] EBT 0.626 2 5.307 9 10.684 3 –

2 Present (εz �= 0) FOSNDT 0.739 2 6.508 0 12.502 7 0.546 1
Reddy [79] PSDT 0.734 3 6.496 1 12.527 8 0.548 7
Bernoulli-Euler [40] EBT 0.720 9 6.747 2 12.299 5 –

5 Present (εz �= 0) Present 0.860 9 7.737 4 14.525 0 0.529 8
Reddy [79] PSDT 0.854 2 7.738 7 14.572 0 0.521 5
Bernoulli-Euler [40] EBT 0.829 8 7.811 9 14.156 9 –

10 Present (εz �= 0) FOSNDT 1.015 9 8.479 9 17.133 3 0.424 5
Reddy [79] PSDT 0.988 0 8.482 7 17.208 9 0.414 2
Bernoulli-Euler [40] EBT 0.981 4 8.381 2 16.743 1 –

∞ Present(εz �= 0) FOSNDT 2.049 3 13.344 6 21.354 8 0.477 1
Reddy [79] PSDT 2.058 7 13.345 1 21.394 8 0.476 9
Bernoulli-Euler [40] EBT 2.047 5 13.029 3 20.994 3 –

Table 2. Non-dimensional deflections w̄ in FG beam subjected to linear thermo-mechanical load (T1 = 10)

Aspect Ratio (L/h)
p 5 10 20 40 60 80 100
0 6.638 2 2.821 4 2.341 9 2.276 9 2.269 5 2.267 5 2.226 7
1 10.837 9 5.525 7 4.660 9 4.516 3 4.495 2 4.488 5 4.488 6
2 11.843 4 6.508 0 6.100 1 6.004 2 5.992 5 5.989 2 5.987 8
5 12.854 8 7.737 4 6.889 8 6.780 2 6.765 8 6.761 6 6.759 6

10 13.896 8 8.479 9 7.619 5 7.501 4 7.485 6 7.480 8 7.478 8
Metal 19.359 4 13.344 6 12.462 7 12.328 9 12.310 8 12.304 7 12.302 6
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Table 3. Comparison of axial displacement, transverse deflection, normal stress and transverse shear
stress in FG beams subjected to non-linear thermo-mechanical load (L/h = 10, T1 = 10, T2 = 10,
q0 = 100)

p Theory Model ū w̄ σ̄x τ̄xz

0 Present (εz �= 0) FOSNDT 0.501 5 3.226 5 9.816 5 0.476 8
Reddy [79] PSDT 0.499 1 3.231 4 8.511 3 0.478 2

1 Present (εz �= 0) FOSNDT 0.713 5 5.647 5 12.594 8 0.508 6
Reddy [79] PSDT 0.706 5 5.732 4 12.054 3 0.517 8

2 Present (εz �= 0) FOSNDT 0.811 2 6.946 9 13.780 7 0.547 2
Reddy [79] PSDT 0.801 8 7.082 1 13.678 9 0.548 9

5 Present (εz �= 0) Present 0.935 3 8.112 6 15.913 4 0.520 6
Reddy [79] PSDT 0.922 0 8.338 7 15.729 1 0.525 3

10 Present (εz �= 0) FOSNDT 1.092 6 8.876 3 18.554 7 0.398 7
Reddy [79] PSDT 1.078 5 9.037 8 18.396 0 0.420 3

∞ Present(εz �= 0) FOSNDT 2.149 5 13.932 3 23.407 9 0.481 5
Reddy [79] PSDT 2.141 5 13.928 9 23.057 9 0.476 9

Table 4. Non-dimensional deflections w̄ in FG beam subjected to non-linear thermo-mechanical load
(L/h = 10, T1 = 10, T2 = 10)

Aspect Ratio (L/h)
p 5 10 20 40 60 80 100
0 9.988 7 9.988 7 2.392 3 2.283 2 2.277 3 2.268 3 2.267 1
1 13.751 7 5.647 5 4.638 2 4.503 3 4.488 3 4.484 3 4.482 8
2 15.743 6 6.945 9 5.818 8 5.665 8 5.648 4 5.643 7 5.641 9
5 17.394 6 8.112 6 6.890 1 6.717 1 6.697 3 6.690 4 6.688 1

10 18.525 9 8.878 3 7.594 5 7.410 4 7.387 8 7.381 4 7.378 8
Metal 25.797 5 13.932 3 12.341 1 12.114 8 12.082 4 12.079 7 12.076 5

Table 5. Non-dimensional deflections in FG beam for different models subjected to linear and non-linear
thermo-mechanical load (L/h = 10, T1 = 10, p = 10, q0 = 100)

L/h
T1 = 10 T1 = T2 = 10

EBT FSDT Reddy FOSNDT Reddy FOSNDT
5 14.112 8 13.802 4 14.492 5 14.313 7 13.167 0 13.497 6

10 8.381 2 8.568 9 8.906 9 8.631 1 7.970 9 7.987 8
20 7.664 8 7.711 7 8.097 1 7.848 3 7.232 8 7.234 3
40 7.575 2 7.586 9 7.969 0 7.726 4 7.119 2 7.119 1
60 7.566 2 7.571 4 7.951 4 7.710 1 7.104 2 7.104 1
80 7.564 0 7.566 9 7.946 3 7.705 2 7.099 7 7.099 6

100 7.563 2 7.565 1 7.944 1 7.703 1 7.097 9 7.097 7

axial displacement ū, transverse deflection w̄, normal stress σ̄x and transverse shear stress τ̄xz

for FG beams subjected to non-linear thermo-mechanical loads. The observations are similar
to the thermo-mechanical case except some marginal improvement in numerical values due to
the inclusion of non-linear effect. Table 4 shows transverse deflection w̄ for FG beam subjected
to non-linear thermo-mechanical loads by varying aspect ratios. Tabulated results clearly show
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that transverse displacements are found larger in the case of non-linear thermo-mechanical loads
compared to the linear load case. Table 5 shows the transverse displacements using different
models when power law index p = 10. It is observed that the present FOSNDT gives accurate
results compared to other theories.

Fig. 4 shows the through thickness variation of axial displacement ū for FG beam under
linear and non-linear thermo-mechanical loadings, respectively. It is noticed that for the fully
ceramic case (p = 0) the axial stresses are compressive in nature, whereas for fully metallic
case (p = ∞) it is tensile in nature. Fig. 5 shows the variation of transverse displacement w̄
for FG beam under linear and non-linear thermo-mechanical load using different aspect ratios.
In non-linear cases the displacements are slightly higher than in linear cases. Fig. 6 shows the
variation of bending stress for the FG beam under linear and non-linear thermo-mechanical
loads. The bending stress is zero at a neutral plane for ceramic and metal phases due to isotropic
properties of the material and when p = 1, 2, 5, 10 there is a shift of the neutral plane due to
continuous change in volume fraction across the thickness. It is important to observe that in
the case of non-linear thermo-mechanical loads (T1 = T2 = 10) for p = ∞, the bending stress
varies non-linearly. Fig. 7 compares the bending stress by CBT, TSDT and present FOSNDT
to understand the accuracy of the present theory when compared with other theories taking into

Fig. 4. Variations of non-dimensional axial displacement ū across the thickness of FG beam subjected to
linear (left) and non-linear (right) thermo-mechanical load

Fig. 5. Variations of non-dimensional transverse displacement across the thickness of FG beam subjected
to linear (left) and non-linear (right) thermo-mechanical load for various aspect ratios
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Fig. 6. Variations of non-dimensional bending stress across the thickness of FG beam subjected to linear
(left) and non-linear (right) thermo-mechanical load

Fig. 7. Comparison of non-dimensional bending stress between CBT, Reddy and present theory for FG
beam subjected to linear (left) and non-linear (right) thermo-mechanical load

Fig. 8. Variations of non-dimensional transverse shear stress across the thickness of FG beam subjected
to linear (left) and non-linear (right) thermo-mechanical load

account the effect of linear and non-linear thermo-mechanical loads. It is observed that bending
stresses are higher in the case of non-linear loading case compared to the linear loading case.
Fig. 8 shows the distribution of transverse shear stress through the thickness of FG beam. When
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p = 1, 2, 5 and 10 due to the variation of volume fractions, the maximum values of transverse
shear stress are found shifted above the neutral surface. For ceramic and metal phases, the
transverse shear stress is a maximum at a neutral surface because of isotropic properties of
materials.

4.3. Numerical results for the hygro-thermo-mechanical load and their discussion

Table 6 shows the comparison of displacements and stresses for FG beams subjected to li-
near hygro thermo-mechanical load. The comparison of thermo-mechanical and hygro-thermo-
mechanical loading cases shows that the variations in stresses and displacements are similar in
both cases, but due to the inclusion of moisture load the numerical values are greater for the
hygo-thermo-mechanical case. It shows that the moisture load cannot be ignored to know the
accurate behaviour of the FG beams. Table 7 shows the maximum non-dimensional transverse
deflection under linear hygro-thermo-mechanical loads considering different aspect ratios. As
the aspect ratio increases, the deflection decreases. Table 8 shows the comparison of maximum
non-dimensional axial displacement ū, transverse deflection w̄, normal stress σ̄x and transverse
shear stress τ̄xz for FG beams subjected to non-linear hygro-thermo-mechanical loads. In case
of axial displacement ū, it is noticed that the axial displacement values obtained by present

Table 6. Comparison of axial displacement, transverse deflection, normal stress and transverse shear
stress in FG beams subjected to linear hygro-thermo-mechanical load (L/h = 10, T1 = 10, C1 = 100,
q0 = 100)

p Theory Model ū w̄ σ̄x τ̄xz

0 Present (εz �= 0) FOSNDT 0.449 0 2.859 1 7.774 2 0.484 6
Reddy [79] PSDT 0.444 5 2.818 6 7.452 9 0.477 3

1 Present (εz �= 0) FOSNDT 0.992 1 5.634 9 10.866 4 0.519 9
Reddy [79] PSDT 1.008 0 5.291 5 11.079 9 0.518 6

2 Present (εz �= 0) FOSNDT 1.302 8 6.956 0 12.983 2 0.553 2
Reddy [79] PSDT 1.317 0 6.826 0 12.755 9 0.548 2

5 Present (εz �= 0) Present 1.575 9 8.245 5 14.945 0 0.526 6
Reddy [79] PSDT 1.582 7 8.131 2 14.836 7 0.520 9

10 Present (εz �= 0) FOSNDT 1.607 2 8.792 5 17.667 3 0.413 8
Reddy [79] PSDT 1.630 7 8.641 5 17.563 9 0.411 9

∞ Present(εz �= 0) FOSNDT 2.124 1 13.548 8 21.754 8 0.476 9
Reddy [79] PSDT 2.133 8 13.378 9 21.512 3 0.472 4

Table 7. Non-dimensional deflections w̄ in FG beam subjected to linear hygro-thermo-mechanical load
(T1 = 10, C1 = 100, q0 = 100)

Aspect Ratio (L/h)
p 5 10 20 40 60 80 100
0 6.957 1 2.859 1 2.340 5 2.277 4 2.269 6 2.267 6 2.266 7
1 12.781 7 5.634 9 4.674 3 4.517 9 4.495 6 4.488 7 4.485 7
2 12.852 0 6.956 0 6.002 8 5.892 3 5.879 1 5.875 4 5.873 9
5 14.001 4 8.245 5 6.907 2 6.782 4 6.768 5 6.761 8 6.759 9

10 15.670 7 8.792 5 7.868 6 7.729 0 7.705 5 7.703 9 7.703 1
Metal 21.303 4 13.548 8 12.491 9 12.332 5 12.311 9 12.305 8 12.303 3
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Table 8. Comparison of axial displacement, transverse deflection, normal stress and transverse shear
stress in FG beams subjected to non-linear hygro-thermo-mechanical load (L/h = 10, T1 = T2 = 10,
C1 = C2 = 10, q0 = 100)

p Theory Model ū w̄ σ̄x τ̄xz

0 Present (εz �= 0) FOSNDT 0.512 9 3.264 1 9.893 5 0.481 0
Reddy [79] PSDT 0.506 5 3.231 4 8.556 3 0.476 3

1 Present (εz �= 0) FOSNDT 1.094 4 6.226 5 13.630 7 0.519 4
Reddy [79] PSDT 1.114 5 5.890 4 12.353 0 0.517 0

2 Present (εz �= 0) FOSNDT 1.415 7 7.372 0 15.696 9 0.548 1
Reddy [79] PSDT 1.437 0 7.315 3 14.098 3 0.546 2

5 Present (εz �= 0) Present 1.712 2 8.959 5 17.868 2 0.546 5
Reddy [79] PSDT 1.727 2 8.870 2 16.220 1 0.519 5

10 Present (εz �= 0) FOSNDT 1.776 1 9.450 2 20.828 1 0.426 6
Reddy [79] PSDT 1.782 0 9.327 8 19.027 7 0.398 0

∞ Present(εz �= 0) FOSNDT 2.252 4 14.549 7 25.080 5 0.481 1
Reddy [79] PSDT 2.246 7 14.514 6 24.143 0 0.476 9

Table 9. Non dimensional deflections w̄ in FG beam subjected to non-linear hygro-thermo-mechanical
load (T1 = T2 = 10, C1 = C2 = 10, q0 = 100)

Aspect Ratio (L/h)
p 5 10 20 40 60 80 100
0 10.307 6 3.264 1 2.396 9 2.283 7 2.271 5 2.268 4 2.267 2
1 18.071 1 6.226 5 4.746 0 4.526 8 4.498 3 4.489 8 4.486 2
2 18.234 0 7.372 0 6.140 5 5.959 4 5.933 7 5.930 1 5.928 6
5 19.099 2 8.959 5 6.984 0 6.792 0 6.763 0 6.761 8 6.760 5

10 20.586 9 9.450 2 7.719 3 7.513 8 7.482 4 7.481 1 7.479 6
Metal 27.781 1 14.549 7 12.588 1 12.344 6 12.307 3 12.305 5 12.304 1

Table 10. Non dimensional deflections w̄ in FG beam for different models subjected to linear and
non-linear hygro-thermo-mechanical load (p = 10, q0 = 100)

L/h
T1 = 10, C1 = 100 T1 = T2 = 10, C1 = C2 = 100

EBT FSDT Reddy FOSNDT Reddy FOSNDT
5 15.384 9 16.135 7 15.067 8 15.672 7 20.247 2 21.204 3

10 8.540 2 8.727 9 8.641 5 8.792 5 9.327 8 9.450 2
20 7.688 6 7.731 6 7.731 4 7.868 6 7.818 8 7.950 9
40 7.577 7 7.585 4 7.592 0 7.729 0 7.603 0 7.739 3
60 7.566 9 7.572 1 7.573 7 7.710 9 7.576 9 7.713 9
80 7.564 3 7.567 3 7.568 2 7.705 5 7.569 6 7.706 8

100 7.563 4 7.565 3 7.565 9 7.703 3 7.566 6 7.704 0

FOSNDT are higher for ceramic and metal phases, whereas for other power index values it is
less than PSDT. The transverse deflection w̄, normal stresses σ̄x and transverse shear stresses
τ̄xz obtained by present FOSNDT are greater than PSDT for all the values of power law in-
dex. Other variations in displacements and stresses are observed similar to thermo mechanical
loading cases except some marginal improvement in the results due to the inclusion of hygro
load. Table 9 shows maximum deflection for FG beam subjected to non-linear hygro-thermo-
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mechanical loading for various aspect ratio and power law index. As the aspect ratio increases,
the non-dimensional deflection decreases and as the power law index increases, the deflection
increases due to increase in flexibility of the FG beams. The displacements are noticeably gre-
ater in non-linear hygro-thermo-mechanical load than in the linear load case. Table 10 shows
the results of transverse displacements for different models for power law index p = 10, it is
observed that all the displacement values are having a good agreement with other theories.

Fig. 9 shows the axial displacements ū across the FG beams subjected to linear and non-linear
hygro-thermo-mechanical loadings, respectively. In the non-linear case, the axial displacements
are larger. Fig. 10 shows the variation of transverse displacements w̄ for FG beams subjected
to linear and non-linear hygro-thermo-mechanical loads. Due to low stiffness when p =∞, the
displacements are noticeably larger. Fig. 11 shows the bending stress variation for FG beams
subjected to linear and non-linear hygro-thermo-mechanical loads. The variations are exactly
similar to the hygro-thermo-mechanical loading case. It is important to notice that in non-linear
hygro-thermo-mechanical loads when p = ∞, the bending stress varies non-linearly. Fig. 12
shows the distribution of transverse shear stress through the thickness of the FG beam for
thermo-mechanical and hygro-thermo-mechanical loading cases. For ceramic and metal phases,

Fig. 9. Variations of axial displacement ū across the thickness of simply supported FG beams subjected
to linear (left) and non-linear (right) hygro-thermo-mechanical load

Fig. 10. Variations of displacement w̄ across the thickness of FG beams subjected to linear (left) and
non-linear (right) hygro-thermo-mechanical load for various aspect ratios
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Fig. 11. Variations of bending stress σ̄x across the thickness FG beams subjected to linear (left) and
non-linear (right) hygro-thermo-mechanical loads

Fig. 12. Variations of transverse shear stress τ̄xz across the thickness of FG beams subjected to linear
(left) and non-linear (right) hygro-thermo-mechanical loads

the transverse shear stress has a maximum at the neutral surface because of isotropic material
properties. But when p = 1, 2, 5 and 10 due to the variation of volume fractions, the maximum
values of transverse shear stress are found shifted from the neutral surface in metal phase. Other
variations are noticeable, similar to the thermo-mechanical loading case.

5. Conclusions

The present study includes the effect of non-linear hygro-thermo-mechanical loading and
thickness stretching to predict the accurate bending response of the FG beams using a fifth-
order shear and normal deformation theory (FOSNDT). FOSNDT includes the fourth order
variation of transverse displacement and fifth-order variation of axial displacements. This the-
ory does not need the shear correction factor to satisfy the traction free boundary conditions of
the FG beam. Using the principle of virtual displacement, the variationally consistent gover-
ning equations and associated boundary conditions are obtained. Using the Navier’s solution
technique, the analytical solution is obtained for simply supported FG beam. Several important
observations from the present study can be formulated:

23



S. M. Ghumare et al. / Applied and Computational Mechanics 14 (2020) 5–30

1. Displacements are increasing with an increase in the power law index due to the increase
in the flexibility with an increase in the power law index.

2. The analysis of obtained results shows that the displacements and stresses are marginally
higher in non-linear hygro-thermo mechanical loading cases than in cases with linear
loading.

3. It is important to notice that in the case of non-linear hygro-thermo-mechanical loads
when p =∞, the bending stress varies non-linearly.

4. The present theory is very simple to predict the accurate bending response of FG beams
in the presence of both thermal and hygro loads.

5. The numerical results by the present FOSNDT are in excellent agreement with other
theories.

Important recommendations

From the numerical results and observations, authors recommendations are as follows:

1. For hygro-thermo-mechanical analysis Carrera recommended that thickness cocordinate
must be expanded at least up to the fifth order to get the accurate results for FG beams
and plates.

2. Since the temperature and moisture effects are changing through the thickness, it is
recommended to consider the thickness stretching effect to get the accurate results when
FG beams are subjected to hygro-thermo-mechanical load.

3. As per the authors’ knowledge, the results obtained by the present investigation with
the hygro-thermo-mechanical loading will be the benchmark for future researchers and
scientists in the area which is addressed for FG beam first time.

Scope for the future work

It will be very interesting to address the effect of hygro-thermo-mechanical load on FG beam
considering the following points:

1. Dynamic and buckling response of FG beams using FOSNDT under non-linear hygro-
thermo mechanical loadings considering the thickness stretching.

2. To analyze the FG beams for other boundary conditions using FOSNDT considering the
thickness stretching and non-linear hygro-thermo mechanical loading.

3. To study the bending the behaviour of the curved beams and shells using FOSNDT with
the thermal and moisture effect.
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