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Abstract

In this paper, general beam vibration problems with several attachments under arbitrarily distributed harmonic
loading are solved. A multiple-stepped beam is modelled by the Euler-Bernoulli beam theory and an extension
of an efficient numerical method called Numerical Assembly Technique (NAT) is used to calculate the steady-
state harmonic response of the beam to an arbitrarily distributed force or moment loading. All classical boundary
conditions are considered and several types of concentrated elements (springs, dampers, lumped masses and rotatory
inertias) are included. Analytical solutions for point forces and moments and polynomially distributed loads are
presented. The Fourier extension method is used to approximate generally distributed loads, which is very efficient
for non-periodic loadings, since the method is not suffering from the Gibbs phenomenon compared to a Fourier
series expansion. The Numerical Assembly Technique is extended to include distributed external loadings and a
modified formulation of the solution functions is used to enhance the stability of the method at higher frequencies.
The method can take distributed loads into account without the need for a modal expansion of the load, which
increases the computational efficiency. A numerical example shows the efficiency and accuracy of the proposed
method in comparison to the Finite Element Method.
c© 2020 University of West Bohemia. All rights reserved.
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1. Introduction

In engineering applications, real structures can be frequently modelled by an assembly of beams
with attached concentrated elements like lumped masses, springs and dampers, e.g. lever arms,
shafts, aeronautical structures, robotic arms etc. The vibration characteristics of a beam system
are of major interest to engineers, since even small dynamic loadings can lead to catastrophic
failure of machines or structures [28].

A vast amount of literature is available, concerning the transverse vibrations of beams
with and without concentrated elements. The majority analyzes the free vibrations of beams to
find the eigenfrequencies and associated mode shapes, e.g. [4–6,8–11,15,17–19,23–27,31–35,
41–47,49–51,53], while the forced vibrations of beams, especially vibrations due to distributed
loads, are less investigated, e.g. [1, 7, 12, 16, 20, 29, 30, 48, 52].

Several analytical and semi-analytical methods are available to analyze the free vibrations
of beams. The Numerical Assembly Technique (NAT) [9–11,18,19,31–35,42,43,47,49–51,53]
uses the analytical solutions of the homogeneous governing equation within one uniform beam
segment and enforces the boundary and interface conditions. In this method, the complete beam
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has to be divided into several segments if concentrated elements or changes in the material
parameters or cross-section appear. Therefore, the size of the system matrix rises with the
complexity of the beam vibration problem, but the implementation is straight forward and the
system matrix has a banded structure.

In the Transfer Matrix Method (TMM) [5,6,44–46], the beam state (displacement, rotation,
bending moment and shear force) on one end of a uniform beam segment is transferred to the
other end by a transfer matrix. Therefore, the system matrix for two-dimensional beam vibration
problems has a constant size of 2 × 2 independent of the number of concentrated elements or
changes in the material parameters or cross-section, since unknowns in the intermediate beam
segments are eliminated.

The Dynamic Stiffness Method (DSM) [4, 23] applies a dynamic stiffness matrix, which
connects the forces and moments within a beam segment with its displacements and rotations.
The complete system matrix is built by an assembly of the exact dynamic stiffness matrices
of each beam segment, similar to the assembly process in the Finite Element Method (FEM).
Therefore, the method is very general and leads to analytical results for the free vibration
problem of beams.

In the Green function method (GFM) [24–27, 41], the analytical responses of an uniform
beam segment to concentrated loads (Green functions) are used to include concentrated elements
in the model. The remaining unknowns are the displacements and rotations of the beam at the
positions of the concentrated elements. Therefore, the size of the system matrix also increases
with the complexity of the beam vibration problem, but slower compared to NAT.

A very similar method is the Generalized Function Approach (GFA) [8, 15, 17], which uses
generalized functions (Dirac delta functions, Heaviside step functions) to treat the discontinuities
in the response of the beam due to concentrated elements and changes in the material parameters
and cross-section. Compared to GFM, the GFA leads to a 2 × 2 system matrix for the two-
dimensional beam vibration problem independent of the number of concentrated elements and
changes in the material parameters or cross-section. Therefore, the method is computationally
more efficient.

All these methods lead to a frequency-dependent system matrix and the eigenfrequencies
and associated mode shapes are found by setting the determinant of the system matrix to zero.
This results in a transcendental equation, which has to be solved numerically.

Generally, all mentioned methods can be used to analyze forced vibrations of beams by
applying the modal superposition method (MSM) [40]. There, the response of the beam to
an arbitrary external load is built by an infinite series of the orthogonal mode shapes, which
is truncated at a certain term. Due to the truncation, only approximated results are obtained
and generally, the procedure is computationally demanding. GFA and MSM have been applied
in [15] to find the forced response of an Euler-Bernoulli beam with an arbitrary number of
Kelvin-Voigt viscoelastic attachments and in [17] for plane beam structures with mass-spring
subsystems and rotational joints.

If the structure is excited by point forces or moments, the external loadings can be included
in the interface conditions between two beam segments. This approach has been used in [36]
to calculate the forced response of a beam with multiple supports applying TMM. Similar, the
response of a beam with several concentrated attachments excited by a harmonic point force
is determined by NAT in [30, 48, 52]. An additional splitting of the beam is necessary in this
approach to include the external loadings, which leads to a larger system matrix and therefore, a
higher computational time. Furthermore, only concentrated loads can be treated and an extension
to distributed loads is not feasible.
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A very common approach to find the forced vibration response of a beam is the calculation of
the so-called Green’s function. The Green’s function is the response of the beam to an arbitrarily
positioned unit point load. Due to the linearity of the beam vibration problem, the response
to a distributed load can be found by integrating the Green’s function multiplied by the load
distribution [22]. This approach has been presented in [1, 12, 20, 29] (GFM) and [7, 16] (GFA)
for different beam vibration problems with and without attachments. One of the main challenges
of this approach is the integration of the Green’s function, which can be time consuming and is
not always possible in an analytical way.

In this paper, the Numerical Assembly Technique is extended to allow for the analysis of
general beam vibration problems with any number of concentrated attachments (translational
and rotational springs, translational and rotational dampers, lumped masses and rotatory inertia)
excited by an arbitrarily distributed harmonic loading. Therefore, the analytical solutions of in-
finitely extended Euler-Bernoulli beams excited by point forces and moments and polynomially
distributed forces and moments are derived in closed-form. If the external loading is arbitrarily
distributed, an approximation of the load by the Fourier extension method is applied, which leads
to a representation of the load as partial sum of complex exponential functions. The response of
an infinitely extended Euler-Bernoulli beam to such a partial sum is also analytically calculated
in closed-form. While a classical Fourier series expansion would suffer from the Gibbs phe-
nomenon if the approximated function is non-periodic, the Fourier extension method [2, 3, 37]
overcomes this limitation. Therefore, the convergency rate of the Fourier extension method is,
in general, very high and an efficient implementation of the method is also available [37].

Compared to the standard NAT, a different solution of the homogeneous governing equation
is applied, which leads to a better conditioning of the system matrix, especially for higher
frequencies and long and thin beams. This enhances the stability and accuracy of the method.
Furthermore, an additional splitting of the beam into sub-segments, if an external load appears,
is not necessary in the proposed extension of NAT, which leads to a smaller system matrix and
higher computational efficiency.

The proposed method is quasi-analytical in the sense that the governing equations are
fulfilled exactly and only minor errors are introduced in the enforcement of the boundary and
interface conditions due to double-precision floating point arithmetic when solving the resulting
system of linear equations. A small approximation error also occurs if the external loading is
not concentrated or polynomially distributed, but the results can be made arbitrarily accurate by
increasing the order of the Fourier extension when approximating the generally distributed load.

2. Problem description and beam theory

In this section, a general two-dimensional beam vibration problem with several concentrated
elements and external loading is described and the Euler-Bernoulli theory for the transverse
vibration of straight and uniform beams is outlined.

2.1. General beam vibration problem with concentrated elements and external loading

In Fig. 1, a general beam vibration problem with concentrated elements and external loading is
shown. The beam with total length L is divided by (N) stations into M = (N − 1) segments.
The first (1) and last station (N) are located at the beam boundaries (x = 0 and x = L) and
additional stations (i) have to be included if concentrated elements (translational springs k

(i)
t

or dampers d
(i)
t , rotational springs k

(i)
r or dampers d

(i)
r , lumped masses m(i) or rotatory inertia

Θ(i)) are present or a change in the beam material or geometric properties appears. The location
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Fig. 1. General beam vibration problem with concentrated elements and external loading

of an intermediate station (i) is given by x = Xi and a local coordinate system (O�, x�, y�, z�)
for each segment � is defined (x� = (x − Xi) (i = �)).

Each beam segment � is uniform with the length L� = (Xi+1−Xi) (i = �), constant Young’s
modulus E�, density ρ�, cross-section area A� and second moment of area about the y-axis I�.
For brevity, it is assumed that all types of concentrated elements and a change in material and
geometric properties appear simultaneously at each station. Simply setting certain parameters
of the concentrated elements to zero or keeping the material or geometric properties unchanged,
allows for every possible configuration at the stations.

The beam is loaded by point forces FP (t) at the positions XF , point moments MP (t) at
the positions XM , distributed forces q(x, t) and distributed moments m(x, t). Since steady-
state harmonic vibrations of the beam are investigated, the external loads are assumed to vary
harmonically with angular frequency ω and, therefore, are given by

q(x, t) = q̄(x) e jωt, FP (t) = F̄P e
jωt, m(x, t) = m̄(x) e jωt, MP (t) = M̄P e

jωt (1)

with t the time, j =
√
−1 the imaginary unit and q̄(x), m̄(x), F̄P and M̄P the complex amplitudes

of the external loads. If external loads with different angular frequencies are acting on the beam,
the superposition principle can be applied, since the beam vibration problem is linear. For
periodic excitation, the Fourier series representation can be used to transform the loading into
its harmonic components.

2.2. Euler-Bernoulli beam theory

Each segment of the beam is modeled by the well known Euler-Bernoulli beam theory with the
harmonic governing equation [21]

d4w̄�(x)
dx4

− λ4� w̄�(x) =
1

E� I�

(
q̄(x) +

dm̄(x)
dx

+ F̄P δ(x − XF ) + M̄P
d
dx

δ(x − XM)

)
, (2)

where

λ4� =
ρ� A� ω2

E� I�
and w�(x, t) = w̄�(x) e

jωt (3)
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with w̄�(x) the complex amplitude of the displacement in z-direction and δ(•) the Dirac delta
function. In Eq. (2), harmonic vibrations at angular frequency ω are assumed and the time-
dependent term e jωt is dropped.

2.3. Boundary and interface conditions at the stations

The harmonic governing equation of the beam segment �, given in Eq. (2), requires certain
boundary and interface conditions to yield a unique solution. Apart from the displacement
amplitude w̄�(x), the field variables

ϕ̄�(x) = −dw̄�(x)
dx

, (4)

M̄�(x) = −E� I�
d2w̄�(x)
dx2

, (5)

Q̄�(x) = −E� I�
d3w̄�(x)
dx3

+ m̄(x) (6)

with ϕ̄�(x), M̄�(x) and Q̄�(x) the complex amplitudes of the beam rotation, the bending moment
about the y-axis and the shear force in z-direction, are introduced in the boundary and interface
conditions. According to [40], the classical boundary conditions on the left end (station (1)) can
be defined by

w̄1(0) = ŵ(1) or Q̄1(0) = −F̄
(1)

P (7)

ϕ̄1(0) = ϕ̂(1) or M̄1(0) = −M̄
(1)
P (8)

and on the right end (station (N)) by

w̄M(L) = ŵ(N) or Q̄M(L) = F̄
(N)

P (9)

ϕ̄M(L) = ϕ̂(N) or M̄M (L) = M̄
(N)
P , (10)

where ŵ(1) and ŵ(N) are prescribed displacements, ϕ̂(1) and ϕ̂(N) prescribed rotations, F̄
(1)

P and
F̄
(N)

P prescribed forces, M̄
(1)
P and M̄

(N)
P prescribed moments at the left and right boundary.

If concentrated elements are present at the boundaries, the displacement and shear force
and/or rotation and bending moment are coupled, which leads to

Q̄1(0) + w̄1(0)
(
m(1) ω2 − k

(1)
t − jω d

(1)
t

)
= −F̄

(1)
P , (11)

M̄1(0) + ϕ̄1(0)
(
Θ(1) ω2 − k(1)r − jω d (1)r

)
= −M̄

(1)
P , (12)

at the station (1) and results in

Q̄M(L)− w̄M(L)
(
m(N) ω2 − k

(N)
t − jω d

(N)
t

)
= F̄

(N)
P , (13)

M̄M(L)− ϕ̄M(L)
(
Θ(N) ω2 − k(N)r − jω d (N)r

)
= M̄

(N)
P (14)

at station (N). At an intermediate station (i) the continuities of displacement and rotation

w̄�(X
+
i )− w̄�−1(X

−
i ) = 0, (15)

ϕ̄�(X
+
i )− ϕ̄�−1(X

−
i ) = 0, (16)
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with (i = �) have to be fulfilled. In Eqs. (15) and (16) the locations X−
i and X+i are infinitesimal

to the left and right of the station (i). The equilibrium of forces in z-direction and moments
about the y-axis at an intermediate station (i) results in

Q̄�(X
+
i )− Q̄�−1(X

−
i ) + F̄

(i)
P + w̄�(X

+
i )

(
m(i) ω2 − k

(i)
t − jω d

(i)
t

)
= 0, (17)

M̄�(X
+
i )− M̄�−1(X

−
i ) + M̄

(i)
P + ϕ̄�(X

+
i )

(
Θ(i) ω2 − k(i)r − jω d (i)r

)
= 0 (18)

with F̄
(i)

P and M̄
(i)
P point forces and moments, which are located at the station (i).

The harmonic governing equation of an uniform Euler-Bernoulli beam given in Eq. (2),
the boundary conditions in Eqs. (7)–(14) and the interface conditions in Eqs. (15)–(18) form a
well-posed problem, which can be uniquely solved by analytical or numerical methods.

3. Homogeneous solution of the harmonic governing equation

The general homogeneous solution of the harmonic governing equation (2) is obtained by setting
the external loads to zero (q̄(x) = 0, m̄(x) = 0, F̄P = 0 and M̄P = 0). Assuming a solution of
the form w̄h�(x�) = c� e j k x� leads to the characteristic equation(

k4 − λ4�
)
c� = 0 (19)

with the four roots k1 = λ�, k2 = −λ�, k3 = −j λ� and k4 = j λ�. Therefore, the general solution
of the homogeneous governing equation in local coordinates x� is given by

w̄h�(x�) = c1� e
j λ� x� + c2� e

−jλ� x� + c3� e
λ� x� + c4� e

−λ� x� (20)

with c1�, c2�, c3� and c4� arbitrary constants. The lower index •h indicates the homogeneous
solution of the differential equation. Generally, the solution in Eq. (20) is rewritten in terms
of sin(•), cos(•), sinh(•) and cosh(•). In this paper, a slightly different approach is used by
rewriting Eq. (20) as

w̄h�(x�) = c̄1� cos(λ� x�) + c̄2� sin(λ� x�) + c̄3� e
λ� (x�−L�) + c̄4� e

−λ� x� (21)

with c̄1�, c̄2�, c̄3� and c̄4� different arbitrary constants. Using the solution given in Eq. (21)
guaranties that the amplitude of each function term remains smaller or equal to 1 within the
segment span (0 ≤ x� ≤ L�), which is advantageous for the numerical stability of NAT.

A complete description of the state within a beam segment � is given, if not only the
displacement, but also the rotation, bending moment and shear force are known. If the state
variables and arbitrary constants are gathered in the column vectors

x̄h�(x�) =
[
w̄h�(x�), ϕ̄h�(x�), M̄h�(x�), Q̄h�(x�)

]T and c̄� = [c̄1�, c̄2�, c̄3�, c̄4�]
T ,

the state within a beam segment � can be defined by a compact matrix equation as

x̄h�(x�) = B�(x�) c̄� (22)

with the state variable matrix

B�(x�) =

⎡
⎢⎢⎢⎣

C S E+ E−

λ�S −λ�C −λ� E+ λ� E−

B� λ2�C B� λ2�S −B� λ2� E+ −B� λ2� E−

−B� λ3�S B� λ3�C −B� λ3� E+ B� λ3� E−

⎤
⎥⎥⎥⎦ , (23)

where the upper index •T denotes the transpose of a vector or matrix and B� = E� I�,
C = cos(λ� x�), S = sin(λ� x�), E+ = eλ� (x�−L�), E− = e−λ� x� . The relations in Eqs. (4)–(6)
have been used to derive Eqs. (22) and (23).
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4. Particular solutions of the harmonic governing equation
The total displacement w̄�(x�) of a beam segment � is given by the sum of the homogenous
solution w̄h�(x�), derived in Section 3, and a particular solution w̄p�(x�), which fulfils the right
hand side of the harmonic governing equation (2). In this section, the particular solution functions
for different types of excitation are derived, using the Fourier transform [14], the residue theorem
and Jordan’s lemma [38] and the Green’s function method [22].

4.1. Point forces and moments
The particular solution function w̄p�(x) for a beam segment � under point force excitation can
be derived by applying the Fourier transform to Eq. (2), which finally leads to the integral

w̄p�(x) =
F̄P

2π E� I�

∫ ∞

−∞

1
k4 − λ4�

e j k (x−XF ) dk, (24)

which can be evaluated by the residue theorem stated in [38]. This leads to the displacement
due to an external point force excitation

w̄p�(x) = −
F̄P

(
e−λ� |x−XF | + j e−jλ� |x−XF |)

4 λ3� E� I�
(25)

and the rotation, bending moment and shear force, computed through Eqs. (4)–(6), are gathered
in a column vector x̄p�(x�) =

[
w̄p�(x�), ϕ̄p�(x�), M̄p�(x�), Q̄p�(x�)

]
, where x = (x� + Xi)

(i = �) is used.
The results for a point moment excitation can be derived in a similar way and are given by

w̄p�(x) =
M̄P sgn (x − XM)
4 λ2� E� I�

(
e−λ� |x−XM | − e−jλ� |x−XM |) (26)

with sgn (•) the signum function.

4.2. Polynomially distributed forces and moments

The particular solution functions for distributed loads are derived using the Green’s function
method, which uses the response due to a unit point source (Green’s function) and an integration
over the distributed load region [22]. In Fig. 2, the limits and coordinate system used for
distributed forces are shown. In this section, the distributed loads q̄(x) and m̄(x) are represented
by polynomials, which are defined in local coordinates (xq and xm) by

Fig. 2. Limits and coordinate systems of distributed loads
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q̄(xq) =
Nq∑
k=0

cqk x k
q with XAq ≤ xq ≤ XBq (27)

and

m̄(xm) =
Nm∑
k=0

cmk x k
m with XAm ≤ xm ≤ XBm, (28)

where Nq and Nm are the order of the polynomials, 0 ≤ XAq < XBq ≤ L� and 0 ≤ XAm <
XBm ≤ L� the limits of the polynomially distributed force and moment and cqk and cmk the
coefficients of the polynomials.

Using Eq. (25) with F̄p = 1 and the Green’s function method leads to the particular solution
for a distributed force, which is given by the integral

w̄p�(x�) =
∫ XBq

XAq

−q̄(xq)
(
e−λ� |x�−xq| + j e−jλ� |x�−xq|

)
dxq

4λ3� E� I�

. (29)

The evaluation of the integral appearing in Eq. (29) is shown in Appendix A. The entries of
the state variable vector x̄p�(x�) =

[
w̄p�(x�), ϕ̄p�(x�), M̄p�(x�), Q̄p�(x�)

]T for the polynomially
distributed force can be defined by Eq. (53) and for the polynomially distributed moment by
Eq. (55). Therefore, the particular solution functions for polynomially distributed loads are given
in an exact, analytical and closed form.

4.3. Generally distributed forces and moments

In general, the distributed loads q̄(xq) or m̄(xm)may not be represented by polynomials, but by
any arbitrary function. Plugging an arbitrary q̄(xq) into Eqs. (29) leads to the particular solutions
in an integral form. The evaluation of the resulting integrals can be time consuming, because
an analytical integration is not always feasible and numerical integration schemes have to be
applied.

In this paper, a different approach is used, by approximating the generally distributed load by
the Fourier extension (continuation) method [2,3,37]. The approximation of periodic functions
is efficiently and accurately possible by a classical Fourier series, but the so-called Gibbs
phenomenon prevents a fast convergence for non-periodic functions [37]. The Fourier extension
method overcomes this shortcoming, while retaining most of the advantages of the classical
Fourier series, which allows for an analytical closed-form particular solution for a generally
distributed loading.

The limits and coordinate systems used for the generally distributed loads are identical to the
polynomially distributed ones and are shown in Fig. 2. Using the transformations of variables
to normalized local coordinates

x̄q =

(
xq −

XBq +XAq

2

)
2

XBq − XAq
(30)

and

x̄� =

(
x� −

XBq +XAq

2

)
2

XBq − XAq

(31)

simplifies the integral in Eq. (29) to

w̄p�(x̄�) = − 1

4 λ̄3� E� I�

(
XBq − XAq

2

)4 ∫ 1

−1
q̄(x̄q)

(
e−λ̄� |x̄�−x̄q| + j e−j λ̄� |x̄�−x̄q|

)
dx̄q. (32)
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In Eq. (32) the normalized angular wavenumber λ̄� is given by

λ̄� = λ�
XBq − XAq

2
. (33)

In the Fourier extension (continuation) method, a non-periodic function, which is defined on
the interval [−1, 1], is approximated by a Fourier series that is periodic on an extended interval
[−T, T ] (T > 1) [3, 37]. Therefore, the generally distributed force and moment, given in
normalized local coordinates x̄q or x̄m, are approximated by the Fourier series

q̄(x̄q) ≈
1√
2 T

n∑
k=−n

dqk e
j k π

T
x̄q (34)

and

m̄(x̄m) ≈
1√
2 T

n∑
k=−n

dmk e
j k π

T
x̄m (35)

with T > 1 and n corresponding to the order of the approximation. Several different approaches
exist to calculate the complex coefficients dqk and dmk, but the numerical discrete Fourier
extension with equispaced sampling points [3] seems to be the most suited one for the problem
at hand, since efficient and stable numerical algorithms are available [37]. The reader is referred
to [37] for a detailed description of the numerical algorithm used in this paper and to [2] and [3]
for an in-depth analysis of the convergence rate and stability of the Fourier extension method
depending on the properties of the approximated function.

Plugging Eq. (34) into Eqs. (32) leads to

w̄p�(x̄�) = − (XBq − XAq)4

64
√
2 T λ̄3� E� I�

n∑
k=−n

∫ 1

−1
dqk e

j k π
T

x̄q

(
e−λ̄� |x̄�−x̄q| + j e−j λ̄� |x̄�−x̄q|

)
dx̄q (36)

for the displacement due to a generally distributed force. The evaluation of the integral in
Eq. (36) is shown in Appendix B.

The entries of the state variable vector x̄p�(x�) =
[
w̄p�(x�), ϕ̄p�(x�), M̄p�(x�), Q̄p�(x�)

]T
for a generally distributed force can be computed by Eqs. (57) and for a generally distributed
moment by Eqs. (58). The particular solution functions for generally distributed loads are given
in an analytical and closed form and the overall accuracy only depends on the approximation
accuracy of the loading function by the Fourier extension method.

5. Numerical Assembly Technique

In the Numerical Assembly Technique (NAT), the homogenous solution x̄h�(x�), derived in
Section 3, and the particular solutions x̄p�(x�), given in Section 4, are used to fulfil the boundary
and interface conditions, stated in Section 2.3, and therefore, the harmonic governing equation
(2) is exactly satisfied.

Plugging the total solutions x̄�(x�) = x̄h�(x�) + x̄p�(x�) of each beam segment � into
the boundary and interface conditions leads to a system of linear equations A c̄ = b with
c̄ = [c̄1, · · · , c̄�, · · · , c̄M ]T the arbitrary constants of the homogenous solutions. The system
matrix A depends only on the type of boundary conditions and concentrated elements at the
stations, while the right-hand side vector b is additionally affected by the prescribed boundary
values and external loading.
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If no concentrated elements are present at the boundaries, the four different classical types
of boundary conditions (7)–(10) can be written in matrix form using the total solutions x̄1(0)
and x̄M(LM):

• Prescribed displacement in z-direction and rotation about the y-axis:

[1B1(0)
2B1(0)

]
︸ ︷︷ ︸

A(1)

c̄1=

[
ŵ(1) − w̄p1(0)

ϕ̂(1) − ϕ̄p1(0)

]
︸ ︷︷ ︸

b(1)

,

[1BM(LM )
2BM(LM)

]
︸ ︷︷ ︸

A(N)

c̄M =

[
ŵ(N) − w̄pM(LM )

ϕ̂(N) − ϕ̄pM(LM)

]
︸ ︷︷ ︸

b(N)

. (37)

• Prescribed bending moment about the y-axis and shear force in z-direction:

[3B1(0)
4B1(0)

]
︸ ︷︷ ︸

A(1)

c̄1=

[
−M̄

(1)
P − M̄p1(0)

−F̄
(1)

P − Q̄p1(0)

]
︸ ︷︷ ︸

b(1)

,

[3BM(LM)
4BM (LM)

]
︸ ︷︷ ︸

A(N)

c̄M=

[
M̄
(N)
P − M̄pM(LM)

F̄
(N)

P − Q̄pM(LM )

]
︸ ︷︷ ︸

b(N)

. (38)

• Prescribed displacement in z-direction and bending moment about the y-axis:

[1B1(0)
3B1(0)

]
︸ ︷︷ ︸

A(1)

c̄1=

[
ŵ(1) − w̄p1(0)

−M̄
(1)
P − M̄p1(0)

]
︸ ︷︷ ︸

b(1)

,

[1BM(LM)
3BM (LM)

]
︸ ︷︷ ︸

A(N)

c̄M=

[
ŵ(N) − w̄pM(LM)

M̄
(N)
P − M̄pM(LM)

]
︸ ︷︷ ︸

b(N)

. (39)

• Prescribed rotation about the y-axis and shear force in z-direction:

[2B1(0)
4B1(0)

]
︸ ︷︷ ︸

A(1)

c̄1 ==

[
ϕ̂(1) − ϕ̄p1(0)

−F̄
(1)

P − Q̄p1(0)

]
︸ ︷︷ ︸

b(1)

,

[2BM(LM)
4BM (LM)

]
︸ ︷︷ ︸

A(N)

c̄M=

[
ϕ̂(N) − ϕ̄pM(LM)

F̄
(N)

P − Q̄pM(LM)

]
︸ ︷︷ ︸

b(N)

. (40)

In Eqs. (37)–(40), the 2 × 4 matrices A(1) and A(N) and the 2 × 1 right-hand side vectors
b(1) and b(N) are associated with the left (station (1)) and right boundary (station (N)). The left
upper index in •B� indicates the •th row in the state variable matrix B�.

If concentrated elements are present at station (1) and (N), Eqs. (11) and (12) and Eqs. (13)
and (14) have to be satisfied. Using the total solution x̄1(0) of the first beam segment in Eqs. (11)
and (12) leads to[

3B1(0) + 2B1(0) g
(1)
r

4B1(0) + 1B1(0) g
(1)
t

]
︸ ︷︷ ︸

A(1)

c̄1 =

[
−M̄p1(0)− ϕ̄p1(0) g

(1)
r − M̄

(1)
P

−Q̄p1(0)− w̄p1(0) g
(1)
t − F̄

(1)
P

]
︸ ︷︷ ︸

b(1)

(41)

for the left station (1) and applying the solution x̄M(LM) of the last beam segment in Eqs. (13)
and (14) results in[

3BM(LM )− 2BM(LM) g
(N)
r

4BM(LM)− 1BM(LM ) g
(N)
t

]
︸ ︷︷ ︸

A(N)

c̄M =

[
−M̄pM (LM) + ϕ̄pM(LM) g

(N)
r + M̄

(N)
P

−Q̄pM(LM ) + w̄pM(LM) g
(N)
t + F̄

(N)
P

]
︸ ︷︷ ︸

b(N)

(42)
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for the right station (N). In Eqs. (41) and (42), the parameters of the translational concentra-
ted elements at station (•) are gathered in g

(•)
t =

(
m(•) ω2 − k

(•)
t − jω d

(•)
t

)
and the rotational

concentrated elements at station (•) are gathered in g
(•)
r =

(
Θ(•) ω2−k

(•)
r − jω d

(•)
r

)
. All combi-

nations of boundary conditions on the left and right end side are possible. If only translational or
rotational elements are present at the boundaries, the corresponding row entries in Eqs. (37)–(42)
have to be interchanged.

Similar, the interface conditions at station (i), stated in Eqs. (15)–(18), can be written in
matrix form by⎡

⎢⎢⎢⎣
−1B�−1(L�−1) 1B�(0)

−2B�−1(L�−1) 2B�(0)

−3B�−1(L�−1) 3B�(0) + 2B�(0) g
(i)
r

−4B�−1(L�−1) 4B�(0) + 1B�(0) g
(i)
t

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A(i)

[
c̄�−1

c̄�

]
=

⎡
⎢⎢⎢⎣

w̄p�−1(L�−1)− w̄p�(0)

ϕ̄p�−1(L�−1)− ϕ̄p�(0)

M̄p�−1(L�−1)− M̄p�(0)− ϕ̄p�(0) g
(i)
r − M̄

(i)
P

Q̄p�−1(L�−1)− Q̄p�(0)− w̄p�(0) g
(i)
t − F̄

(i)
P

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
b(i)

,

(43)

where i = (2, . . . , N − 1) (� = i), A(i) is a 4 × 8 matrix and b(i) is a 4× 1 vector associated
with the intermediate station (i).

The 4M × 4M system matrix A and the 4M × 1 right-hand side vector b are an assembly
of all sub-matrices A(i) and sub-vectors b(i), where i = (1, . . . , N). The solution of the system
of linear equations A c̄ = b leads to the unknown constants c̄ and therefore, the displacement
in z-direction, the rotation about the y-axis, the bending moment about the y-axis and the shear
force in z-direction are uniquely defined for the whole beam.

6. Numerical results and discussion

In this section, a beam vibration problem with general support-conditions and loadings is
analyzed. The computational efficiency and accuracy of NAT for steady-state harmonic beam
vibration problems are demonstrated. NAT is implemented in MATLAB R© R2019a and the
reference solutions are calculated with the commercial FEM software package Abaqus FEA R©

2017. The planar and cubic beam element B23, which has the Euler-Bernoulli beam theory
implemented, is applied in all FEM calculations and a mesh size of 0.001m is used to guarantee
accurate reference solutions. The system of linear equations in NAT are solved by the Matlab
built-in function linsolve, which uses a LU-factorization with partial pivoting. All computations
are performed on an Intel R© CoreTM i7 system (6 × 3.7GHz, 32GB RAM), which uses a
Windows 10 operating system.

A four-step beam made of aluminum
(
ρ� = 2700 kgm−3, E� = 7 · 1010Nm−2, � =

(1, . . . , 5)
)

with the circular cross-section parameters r1 = r5 = 0.025m, r2 = r4 = 0.037 5m,
r3 = 0.05m, A1 = A5 = 0.001 96m2, A2 = A4 = 0.004 42m2, A3 = 0.007 85m2, I1 = I5 =
3.068 ·10−7m4, I2 = I4 = 1.553 ·10−6m4 and I3 = 4.909 ·10−6m4 is analyzed. The parameters
of the concentrated elements at the six stations are listed in Table 1. The total beam length is
1.25m and the total mass of the beam is 12.89 kg.
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Table 1. Concentrated elements of the four-step beam

Station m Θ kt kr dt dr

1 − − 7 · 107 4 · 106 104 103
2 − − 7 · 107 − 104 −
3 0.6 0.05 − 4 · 106 − 103

4 0.6 0.05 − − − −
5 − − − − − −
6 − − 7 · 107 4 · 106 104 103

The four-step beam is shown in Fig. 3, with the locations of the six stations, the concentrated
force F̄P = 500N at x = 0.2m, the concentrated moment M̄P = 100Nm at x = 0.525m, the
polynomially distributed force q̄1(x2) = 400 (100 x22 − 20 x2 + 4) (total load 266.66N) and the
generally distributed force q̄2(x4) = 2 000 exp (sin2(50 x4)) (total load≈ 687N). Since springs
and dampers are present at the first and last station, no classical boundary conditions have to be
prescribed.

Fig. 3. Spring-damper-supported four-step beam carrying concentrated masses under general load con-
ditions

The generally distributed force q̄2(x4) is approximated by the Fourier extension method
with n = 32 for the calculations with NAT. Even though, the amplitudes of the excitations are
all purely real-valued, the response amplitudes are complex-valued due to the damping in the
system, which introduces a phase shift. The real part of the displacement amplitudes for an
excitation frequency f = 2 100Hz calculated with NAT and FEM is shown in Fig. 4a and the
imaginary part in Fig. 5a. It is apparent that the results of NAT and FEM are practically identical,
which can also be seen by the relative errors plotted in Figs. 4b and 5b.

The frequency response function for the four-step beam at x = 1.00m from 10Hz to
5 000Hz, computed with NAT and FEM at 501 steps, is illustrated in Fig. 6. The amplitude
(Fig. 6a) and phase (Fig. 6b) calculated with NAT and FEM are perfectly coincident over the
whole frequency range, which shows the accuracy of NAT for the most general steady-state
harmonic beam vibration problem stated in Section 2.1.

Only the first eigenfrequency can be clearly identified by the peak in Fig. 6a, since the higher
modes are strongly damped. The general phase shift

arg {w̄} = arctan
(
Im (w̄)
Re (w̄)

)
(44)

of the displacement amplitude to the excitation varies between −180◦ and 180◦ due to the local
dampers in the stations.
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Fig. 4. Displacement of the spring-damper-supported four-step beam carrying concentrated masses under
general load conditions at excitation frequency 2 100Hz (real part)
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(b) Relative error of the imaginary part of the displacement

Fig. 5. Displacement of the spring-damper-supported four-step beam carrying concentrated masses under
general load conditions at excitation frequency 2 100Hz (imaginary part)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10−7

10−6

10−5

10−4

10−3

10
f [Hz]

|w̄ |
[m

]

FEM
NAT

(a) Amplitude

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−180
−120
−60

0
60

120
180

10
f [Hz]

{w̄
}[◦

]

FEM
NAT

(b) Phase

Fig. 6. Frequency response function of the spring-damper-supported four-step beam carrying concentrated
masses under general load conditions at the location x = 1.00m
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The total time to compute the frequency response function at 501 frequency steps with NAT
and evaluate the displacement, rotation, bending moment and shear force at 125 equally spaced
response points is less than 1.3 s, where 0.8 s are required for the post-processing steps. The
computation efficiency of NAT is hardly effected by the additional damping, even though the
system matrix becomes complex-valued.

7. Conclusion

The numerical example shows the overall excellent agreement of the results calculated with NAT
and FEM. The results of NAT are expected to be highly accurate, since NAT is quasi-analytical
in the sense that analytical homogeneous solutions and analytical particular solutions for point
and polynomially distributed excitations are used. The only errors introduced in the solution
process are the approximation errors of the generally distributed loads by the Fourier extension
method and the small numerical error due to the double-precision floating point arithmetic when
solving the system of linear equations.

The total computational time of NAT in the example is very low, which shows the high effi-
ciency of the method for steady-state harmonic beam vibration problems. The computation time
is mainly effected by the type of excitation, since the evaluation of the upper incomplete gamma
function (polynomially distributed load) is rather time consuming compared to trigonometric
functions (all other load types). Additionally, the total number of segments has a major impact
on the computation time, since the size of the system matrix becomes larger with an increasing
number of segments. A main advantage of the proposed extension of NAT is the fact that new
stations have to be only included if concentrated elements or changes in the cross-section or
material parameters appear. This is in contrary to similar methods, which require additional
stations when external loading is present.

The system matrix in NAT is purely real-valued as long as no damping is introduced into the
system and becomes complex-valued otherwise. Although, the system matrix becomes complex-
valued, the computational efficiency of NAT is hardly effected by the presents of damping. It is
also possible to add material damping, like a Kelvin-Voigt or Maxwell material model [13], by
simply replacing the Young’s modulus E� by a complex dynamic modulus E∗

� .
It needs to be noted that distributed moments is not included in the numerical results due to

a lack of reference solutions, since no implementation of distributed moments are available in
the commercial FEM software packages. There is no difference in the solution process between
distributed forces and moments and therefore, accurate results are also expected for distributed
moment excitation.

In general, the proposed method can be extended to any linear structural vibration problem
as long as the governing equations are reducible to a system of ordinary differential equations.
Therefore, NAT is also applicable for, e.g., the more accurate Rayleigh beam theory or the
Timoshenko beam theory and coupled three-dimensional beam vibration problems.
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Appendix A. Evaluation of the integrals for polynomially distributed loads

In this section, the integrals appearing in the particular solutions for polynomially distributed loads are
evaluated. Since the solution steps for the integrals of the polynomially distributed force (29) and moment
are practically identical, the procedure is only outlined for the polynomially distributed force.

Applying a change of variables to normalized local coordinates with respect to the limits of the
distributed force

x̄q =

(
xq −

XBq +XAq

2

)
2

XBq − XAq
(45)

and

x̄� =

(
x� −

XBq +XAq

2

)
2

XBq − XAq
(46)

simplifies Eq. (29) to

w̄p�(x̄�) = − 1

4λ̄3� E� I�

(
XBq − XAq

2

)4 Nq∑
k=0

∫ 1

−1
c̄qk x̄ k

q

(
e−λ̄� |x̄�−x̄q| + j e−j λ̄� |x̄�−x̄q|

)
dx̄q (47)

with
λ̄� = λ�

XBq − XAq

2
(48)

a normalized angular wavenumber and c̄qk different polynomial coefficients, which can be computed by
a simple matrix multiplication.

Since an absolute value function |•| appears in the integrand of Eq. (47), three different cases (x̄� ≥ 1,
x̄� ≤ −1, −1 < x̄� < 1) have to be considered for the evaluation of the integral.

In case of x̄� ≥ 1, the absolute value |x̄� − x̄q| can be replaced by (x̄� − x̄q), since x̄� ≥ x̄q. Using
the substitutions t = −λ̄� x̄q and u = −j λ̄� x̄q and splitting and rearranging the integral in Eq. (47) lead
to

I1(x̄�) =
e−λ̄� x̄�(
−λ̄�

)k+1

(∫ −λ̄�

0
t k e−t dt −

∫ λ̄�

0
t k e−t dt

)
+

j e−j λ̄� x̄�(
−j λ̄�

)k+1

(∫ −j λ̄�

0
u k e−u du −

∫ j λ̄�

0
u k e−u du

)
. (49)

The four integrals in Eq. (49) can be evaluated by using the definition of the lower incomplete gamma
function [39]

γ(a, z) =
∫ z

0
ta−1 e−t dt with Re {a} > 0, (50)

which finally results in

I1(x̄�) =
(−1)k e−λ̄� x̄�

(
Γ(k + 1,−λ̄�)− Γ(k + 1, λ̄�)

)
λ̄k+1

�

+

jk e−j λ̄� x̄�
(
Γ(k + 1,−j λ̄�)− Γ(k + 1, j λ̄�)

)
λ̄k+1

�

, (51)

where the relation between the lower and upper incomplete gamma function [39]

γ(a, z) + Γ(a, z) = Γ(a) with a 
= 0,−1,−2, . . . (52)

with Γ(a, z) the upper incomplete gamma function and Γ(a) the gamma function has been applied.
The evaluation of the integrals for the other two cases is very similar and not outlined.
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The final result for the beam displacement in z-direction, defined in normalized local coordinates x̄�,
is given by

w̄p�(x̄�) =
Nq∑
k=0

−(XBq − XAq)
4

64 λ̄k+4
� E� I�

c̄qk⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)k e−λ̄� x̄�
(
Γ(k + 1,−λ̄�)− Γ(k + 1, λ̄�)

)
+

jk e−j λ̄� x̄�
(
Γ(k + 1,−j λ̄�)− Γ(k + 1, j λ̄�)

) x̄� ≥ 1,

eλ̄� x̄�
(
Γ(k + 1,−λ̄�)− Γ(k + 1, λ̄�)

)
+

(−j)k e j λ̄� x̄�
(
Γ(k + 1,−j λ̄�)− Γ(k + 1, j λ̄�)

) x̄� ≤ −1,

eλ̄� x̄�
(
Γ(k + 1, λ̄� x̄�)− Γ(k + 1, λ̄�)

)
+

(−j)k e j λ̄� x̄�
(
Γ(k + 1, j λ̄� x̄�)− Γ(k + 1, j λ̄�)

)
+

(−1)k e−λ̄� x̄�
(
Γ(k + 1,−λ̄� x̄�)− Γ(k + 1, λ̄�)

)
+

jk e−j λ̄� x̄�
(
Γ(k + 1,−j λ̄� x̄�)− Γ(k + 1, j λ̄�)

)
|x̄�| < 1,

(53)

where the upper incomplete gamma function can be computed by [39]

Γ(n+ 1, z) = n! e−z
n∑

k=0

z k

k!
for n ∈ N0. (54)

The displacement in z-direction due to a polynomially distributed moment is established in a similar
procedure and defined by

w̄p�(x̄�) =
Nm∑
k=0

(XBm − XAm)
3

32 λ̄k+3
� E� I�

c̄mk⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)k e−λ̄� x̄�
(
Γ(k + 1,−λ̄�)− Γ(k + 1, λ̄�)

)
+

jk+1 e−j λ̄� x̄�
(
Γ(k + 1,−j λ̄�)− Γ(k + 1, j λ̄�)

) x̄� ≥ 1,

− eλ̄� x̄�
(
Γ(k + 1,−λ̄�)− Γ(k + 1, λ̄�)

)
+

(−j)k+1 e j λ̄� x̄�
(
Γ(k + 1,−j λ̄�)− Γ(k + 1, j λ̄�)

) x̄� ≤ −1,

− eλ̄� x̄�
(
Γ(k + 1, λ̄� x̄�)− Γ(k + 1, λ̄�)

)
+

(−j)k+1 e j λ̄� x̄�
(
Γ(k + 1, j λ̄� x̄�)− Γ(k + 1, j λ̄�)

)
+

(−1)k e−λ̄� x̄�
(
Γ(k + 1,−λ̄� x̄�)− Γ(k + 1, λ̄�)

)
+

+ jk+1 e−j λ̄� x̄�
(
Γ(k + 1,−j λ̄� x̄�)− Γ(k + 1, j λ̄�)

)
|x̄�| < 1.

(55)

The result in Eqs. (53) and (55) can simply be transformed to local coordinates x� by Eq. (46). For the
complete description of the state within the beam segment �, the rotation, bending moment and shear
force can be computed by Eqs. (4)–(6).

Appendix B. Evaluation of the integrals for generally distributed loads

The integrals appearing in the particular solution for generally distributed loads are solved in this section.
The evaluation of the integrals for generally distributed forces (36) and moments is very similar and
therefore, the procedure is only outlined in detail for Eq. (36).
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The absolute value function | • | in Eq. (36) requires a distinction of three different cases x̄� ≥ 1,
x̄� ≤ −1 and −1 < x̄� < 1 for the evaluation of the integrals.

In the first case, the absolute value |x̄� − x̄q| can be replaced by (x̄� − x̄q), since x̄� ≥ x̄q, and the
solution of the integral is given by

I1(x̄�) =
∫ 1

−1
e j

k π
T

x̄q

(
e−λ̄� (x̄�−x̄q) + j e−j λ̄� (x̄�−x̄q)

)
dx̄q =

e−λ̄� x̄�
2T

k π − j λ̄� T
sin

(
k π

T
− j λ̄�

)
+ e−j λ̄� x̄�

2 jT

k π + λ̄� T
sin

(
k π

T
+ λ̄�

)
, (56)

where Euler’s formula for trigonometric functions has been applied to simplify the result. The other two
cases are evaluated in a similar way. The displacement in z-direction of the beam segment � due to a
generally distributed force in normalized local coordinates x̄� is finally given by

w̄p�(x̄�) = −
√
2T (XBq − XAq)4

64 λ̄3� E� I�
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k=−n

d̄qk

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−λ̄� x̄� sin( k π
T
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+
j e−j λ̄� x̄� sin(k π

T
+λ̄�)

k π+λ̄� T
x̄� ≥ 1,

eλ̄� x̄� sin( k π
T
+j λ̄�)

k π+j λ̄� T
+
j e j λ̄� x̄� sin( k π

T
−λ̄�)

k π−λ̄� T
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e−λ̄�(−λ̄� T cos(k π
T
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T
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k2 π2+λ̄2� T 2

+
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T
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T
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k2 π2−λ̄2� T 2
−

2 λ̄3� T 3

k4 π4−λ̄4� T 4
e j

k π
T
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|x̄�| < 1.

(57)

The variable transformation given in Eq. (31) can be used to transform Eq. (57) to local coordinates x�.
For a full description of the state in the beam segment �, the beam rotation, the bending moment and the
shear force have to be calculated by Eqs. (4)–(6).

For completeness, the displacement in z-direction of the beam segment � due to a generally distributed
moment is stated

w̄p�(x̄�) =

√
2T (XBm − XAm)3

32 λ̄2� E� I�

n∑
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d̄mk
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− e−j λ̄� x̄� sin( k π
T
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T
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T
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T
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T
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+
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T
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2 j k π λ̄2� T 2
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e j
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(58)
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