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Abstract

The aim of this paper is to investigate the interaction of a finite crack with shear waves in an infinite magnetoelastic
medium. Fourier integral transformation is applied to convert the boundary value problem for a homogeneous,
isotropic elastic material to the Fredholm integral equation of second kind. The integral equation is solved by the
perturbation method and the effect of magnetic field interaction on the crack is discussed. The stress intensity factor
at the crack tip is determined numerically and plotted for low frequencies. Moreover, shear stress outside the crack,
crack opening displacement, and crack energy are evaluated and shown by means of graphs.
c© 2021 University of West Bohemia. All rights reserved.
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1. Introduction

In modern material science, fracture mechanics is an important branch used to refine the per-
formance of mechanical components. Moreover, it covers the study of several laws controlling
crack growth. The Griffith theory utters that a crack propagates when the reduction of potential
energy due to crack growth crosses over the increase of surface energy due to the formation of
a new free surface. This theory is significant for elastic materials. Stress intensity factor (SIF) is
one of the most fundamental quantities of crack-related problems. The SIF describes the stress
state at the tip of the crack and is used to study failure norm due to fracture. Researchers Ro-
bertson [17] and Mal [9–11] have discussed interaction of elastic waves with Griffith cracks in
homogeneous infinite elastic medium. Srivastava et al. [18–21] have solved the Griffith/penny
shaped crack problems basically located at the interface of two bonded dissimilar elastic half-
spaces. Interaction of shear waves with a Griffith crack situated in an infinitely long elastic
strip has been studied by Srivastava [22]. Mandal and Mandal [12] have studied the interface
crack problem at orthotropic media. Diffraction of P-waves by an edge crack problem within an
infinite strip have been discussed by Munshi and Mandal [14] and Aritri et al. [15].

Several decades back a new field of study known as magnetoelasticity emerged, which in-
vestigates the relationship between strain and electromagnetic field. Nowadays, magnetoelastic
materials are used in high-tech sectors like microwaves, lasers, optics because of their ability to
convert one type of energy to another (e.g., mechanical, electrical). In the course of time, mag-
netoelastic waves are the focal point of research to many research scholars in the field of solid
mechanics. A two dimensional diffraction problem of magnetoelastic shear waves by a rigid
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strip has been studied by Chattopadhyay and Maugin [5]. Chattopadhyay [3] studied the shear
wave propagation problem in a magnetoelastic self-reinforced medium. SH-wave propagation
in magnetoelastic orthotropic composite medium was observed by Gupta [8] for multiple layers.
Chattopadhyay [6] has given an interesting analysis about crack propagation due to magneto-
elastic shear waves in a self-reinforced medium. Chattopadhyay and Bandyopadhyay [2] have
also studied the propagation of a crack due to shear waves in a monoclinic type of medium.
Furthermore, considering a non-homogeneous medium of monoclinic type, Chattopadhyay et
al. [4] have shown the propagation of a crack due to shear waves. Panja and Mandal [16] have
discussed the interaction of magnetoelastic shear waves with a Griffith crack within a strip. In
the strip problem [16], the nature of SIF is not verified when strip width is infinite, but in the
present article, we have examined the magnetoelastic effect in SIF in an infinite medium by
an analytical approach. The advantage of the analytical method is that we can plot physical
quantities explicitly while in the numerical procedure, discrete data is used to plot SIF.

Even though quite many problems regarding the interaction of crack due to shear waves in
an infinite elastic medium have been solved, the problem of interaction of a finite crack with
shear waves in an infinite magnetoelastic medium is still unsolved. Therefore, the aim of the
present paper is to examine the interaction of a finite crack with shear waves in an infinite
magnetoelastic medium by using the perturbation method. The problem has been deduced
to the Fredholm integral equation of second kind by means of the Fourier transformation,
solution of the integral equation has been derived for low frequencies by the asymptotic series
expansion method. To show the effect of magnetoelasticity, SIF has been plotted graphically.
Also, variations of other physical parameters like displacement on the crack surface, scattered
field, and crack energy have been presented by means of graphs.

2. Problem formulation

Let us assume a Griffith crack of finite width located at |x1| ≤ l, −∞ ≤ y1 ≤ ∞, z1 = 0
in the infinite medium. We normalize all lengths by l and taking x1

l
= x, y1

l
= y, z1

l
= z,

the new location of the crack becomes |x| ≤ 1, −∞ ≤ y ≤ ∞, z = 0 symbolized in the
Cartesian co-ordinate frame (x, y, z), Fig. 1. We consider a time harmonic incidental shear
wave q0e

−ιωt propagating along the positive z-axis. The term e−ιωt representing oscillation is
common to all field variables and is being suppressed throughout the analysis. The only non-
dissipating dimensionless displacement component in the direction of the y-axis is considered to
be u2 = u2(x, z) as shear waves propagating in the z-direction. ∂x, ∂y and ∂z denote the partial
derivatives with respect to x, y and z variables, respectively. Moreover, partial derivatives with

Fig. 1. Configuration of the problem
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respect to time t is presented by ∂t. The governing equations of shear wave propagation in the
presence of small elastic disturbances for a absolutely conducting isotropic elastic medium are

∂xτxy + ∂zτyz + (J × B)y + k2u2 = 0, (1)

where k2 = ρω2 and (J × B)y is the electromagnetic force (J is the electric current density
and B is the magnetic induction vector). The non-zero stress components are

τxy = μ∂xu2 and τyz = μ∂zu2, (2)

where coefficient μ is the elastic constant for isotropic medium. The popular Maxwell’s equations
conducting the electromagnetic field are

∇ · B = 0, ∇ × E = −∂tB, ∇ × H = J , B = μeH , J = σ (E + ∂tu × B) , (3)

where E is the induced electric field, J is the current density vector and the magnetic field
H describes both primary and induced magnetic fields. Symbols μe and σ are the induced
permeability and the conduction coefficient, respectively. The linear Maxwell’s stress tensor(
τ 0ij

)Mx due to the magnetic field is given by
(
τ 0ij

)Mx = μe(Hibj + Hjbi − Hkbkδij). Let us
consider H = (H1, H2, H3) and bi = (b1, b2, b3), where bi is the alter in the magnetic field. We
have discarded the displacement current. With the help of (3), we write

∇2H = μeσ [∂tH − ∇ × (∂tu × H)] . (4)

Equation (4) in terms of its components can be written as

∂tH1 =
1

μeσ
∇2H1,

∂tH3 =
1

μeσ
∇2H3, (5)

∂tH2 =
1

μeσ
∇2H2 + ∂x (H1∂tu2) + ∂z (H3∂tu2) .

In absolutely conducting medium (i.e., σ → ∞), equations (5) become

∂tH1 = ∂tH3 = 0 (6)

and
∂tH2 = ∂x (H1∂tu2) + ∂z (H3∂tu2) . (7)

It is obvious from (6) that H1 and H3 have no perturbation. However, equation (7) shows
a small perturbation in H2, say b. Therefore, we have H1 = H ′

1, H2 = H ′
2 + b and H3 = H ′

3,
where (H ′

1, H
′
2, H

′
3) are components of the initial magnetic field H ′. We can write H ′ =

(H ′ cos θ, 0, H ′ sin θ), where H ′ = |H ′| and θ is the angle at which the wave passes the
magnetic field. Thus, we have

H = (H ′ cos θ, b, H ′ sin θ). (8)

We shall take b = 0 as the initial value. Substituting (8) in (7), we acquire

∂tb = ∂x (H
′ cos θ∂tu2) + ∂z (H

′ sin θ∂tu2) . (9)

47



S. K. Panja et al. / Applied and Computational Mechanics 15 (2021) 45–56

Integrating (9) with respect to t, we have

b = H ′ cos θ∂xu2 +H ′ sin θ∂zu2. (10)

Keeping in mind ∇
(

H2

2

)
= (H · ∇)H − (∇ × H)× H and taking (3), we get

J × B = μe

[
(H · ∇)H − ∇

(
H2

2

)]
. (11)

Substituting the y-component of J × B in (1), we get the equation of motion in the form

P∂xxu2 +Q∂zzu2 +R∂xzu2 + k2u2 = 0, where k2 = ρω2, (12)

and

P = μ+ μeH
′2 cos2 θ,

Q = μ+ μeH
′2 sin2 θ, (13)

R = μeH
′2 sin 2θ.

Equation (12) is to be solved with respect to the boundary conditions

τyz(x, 0) = −q0, |x| ≤ 1 (14)

and
u2(x, 0) = 0, |x| > 1, (15)

where q0 is a known constant. The solution of (12) can be taken as

u2(x, z) =
∫ ∞

−∞
A(u)e−αze−βzeιux du, z > 0, (16)

where α = ιuR
2Q and β = u

√
1
Q

(
P − k2

u2

)
−

(
R
2Q

)2
. The non-vanishing stress component is

written as
τyz(x, z) = −μ

∫ ∞

−∞
(α + β)A(u)e−αze−βzeιux du, (17)

where A(u) is a unknown function, which is to be determined from the boundary conditions.

3. Derivation of the integral equation

Boundary conditions (14) and (15) lead to the following dual integral equation∫ ∞

−∞
(α + β)A(u)eιux du =

q0
μ

, |x| ≤ 1 (18)

and ∫ ∞

−∞
A(u)eιux du = 0, |x| > 1. (19)

Equation (18) can be written as
∫ ∞

−∞
u [1 +H1(u)]A(u)e

ιux du =
q0
γμ

, |x| ≤ 1, (20)

48



S. K. Panja et al. / Applied and Computational Mechanics 15 (2021) 45–56

where

H1(u) =
H(u)

γ
− 1, H(u) =

ιR +
√
4Q

(
P − k2

u2

)
− R2

2Q
,

γ =
ιR +

√
4QP − R2

2Q
, H1(u)→ 0 as u → ∞. (21)

Let us assume the trial solution of (19) and (20) in the form

A(u) =
q0
γμ

∫ 1

0
rf(r)J0(ur) dr (22)

so that (19) is trivially satisfied and (20) converts to
∫ 1

0
rf(r)

∫ ∞

0
u [1 +H1(u)]J0(ur) cos(ux) du dr = 1, (23)

where J0 is the Bessel function of first kind of order zero. Using the Abel’s transform in (23) and
making simplifications, we find out the following Fredholm integral equation of second kind

f(r) +
∫ 1

0
sf(s)κ(s, r) ds = 1, (24)

where
κ(s, r) =

∫ ∞

0
uH1(u)J0(us)J0(ur) du. (25)

It is notable that the kernel κ(s, r) depicted by semi infinite integrals has a slow rate of conver-
gence. Following the procedure of simple contour integration [11], the infinite integral in (25)
can be reduced into an integral with finite limits to make the numerical analysis easier. This
integral is given by

κ(s, r) = − ι

2

∫ k√
P

0
u

√
R2 + 4Qk2

u2
− 4PQ

Qγ
J0(us)H(1)0 (ur) du, r > s. (26)

4. Quantities of physical interest

4.1. Stress intensity factor

Using (17) and (22), we obtain stress components outside the crack in the following form

τyz(x, 0) = q0
xf(1)√
x2 − 1

+O(1), |x| > 1. (27)

Defining dimensionless stress intensity factor by

K = lim
x→1+

√
x − 1 |τyz(x, 0)|

q0
,

it can be deduced that
K =

1√
2
|f(1)| . (28)
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4.2. Crack opening displacement

Another quantity of physical interest is the magnitude of the distance between two edges of the
crack, which is given by

D(x) = |u2(x, 0+)− u2(x, 0−)| = q0
μ

∣∣∣∣
∫ 1

x

rf(r)√
r2 − x2

dr

∣∣∣∣ . (29)

For the static case, the value of the distance between two edges of the crack at the centre position
of the crack can be written as

D0 =
q0
μ

.

Normalizing D(x) with respect to the static displacement between two edges of the crack at the
centre position of the crack, we get

D =
D(x)
D0

=

∣∣∣∣
√
1− x2f(1)−

∫ 1

x

√
r2 − x2f ′(r) dr

∣∣∣∣ , |x| < 1. (30)

4.3. Crack energy

Crack energy can be calculated as

W ∗ = 2q0

∫ 1

0
u2(x, 0) dx = 2q20μ

−1
∫ 1

0
dx

∫ 1

x

r√
r2 − x2

f(r) dr =

2q20μ
−1

∫ 1

0
rf(r) dr. (31)

The work done by a constant pressure q0 in opening up a straight Griffith crack is given by

W0 =
q20
μ

so that

W =
W ∗

W0
= 2

∫ 1

0
rf(r) dr. (32)

4.4. Scattered field

The shear stress τyz(x, z) outside the crack for x > 1 and y > 1 is calculated from (17) and (22)
and has the following form

τyz(x, z) = −q0

∫ ∞

0

∫ 1

0
(α + β)rf(r)J0(ur)e−αze−βz cos(ux) du dr. (33)

5. Solution of the integral equation

The iterative solution of the integral equation is derived by the perturbation method with
the help of Srivastava et al. [20]. The iterative solution is valid for small values of k. The
argument of Bessel functions J0(y) and H

(1)
0 (y) is expanded in ascending powers of y as

J0(y) =
∑∞

n=0 a2ny2n, H
(1)
0 (y) =

(
1 + 2ι

π
log y

2

)
J0(y) + ι

∑∞
n=0 b2ny

2n, where a0 = 1 and the
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values of a2n and b2n are given by Abramowitz and Stegun [1]. Using the above expression in
(26), κ(s, r) can be written as

κ(s, r) =
(
k2 log k

)
κ1(s, r) +

(
k2

)
κ2(s, r) +(

k2 log k
)2

κ3(s, r) +
(
k4 log k

)
κ4(s, r) +O

(
k4

)
, (34)

where

κ1(s, r) =
M0

π
,

κ2(s, r) =
N0
π
+M0

(
− ι

2
+

b0
2
+
1
π
log

r

2
√

P

)
,

κ3(s, r) = 0,

κ4(s, r) =
a2
Pπ

(
s2 + r2

)
M2, (35)

M2n =
∫ 1

0
η2n(u) du,

N2n =
∫ 1

0
η2n(u) log(u) du,

η2n(u) = u2n
√

R2u2 + 4PQ(1− u2)
PQγ

.

Note that f(s) can also be expanded in the form

f(s) = f0(s)+
(
k2 log k

)
f1(s)+

(
k2

)
f2(s)+

(
k2 log k

)2
f3(s)+

(
k4 log k

)
f4(s)+O

(
k4

)
(36)

and the following terms can be derived

f0(s) = 1,

f1(s) = −M0

2π
,

f2(s) = −N0
2π
+

M0

4

(
ι − b0 +

2
π
log 2

√
P

)
+

M0

4π

(
1− s2

)
, (37)

f3(s) =

(
M0

2π

)2
,

f4(s) =
M0

π

[
N0
2π
+

M0

4

(
b0 − ι − 2

π
log, 2

√
P

)]
− a2M2

4Pπ

(
1 + 2s2

)
−

(
M0

4π

)2 (
3− 2s2

)
.

Now, we can easily form f(s) with the help of the aforementioned expression and using (36).
We compare our results with the results of Panja and Mandal [16] by taking h → ∞. The

SIF is also derived for a small frequency, i.e., for k = 0, and in this case, the problem becomes
static in nature. Details are shown in the Appendix.

6. Numerical calculation and discussions

We represent our numerical results graphically for various physical quantities of crack due to
shear wave propagation in an infinite magnetoelastic isotropic medium. For the case of isotropic
elastic medium, we take the following data [5, 8, 13, 22]:
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ρ = 2.7 g/cm3, μ = E
2(1+η) , where η = 0.339, E = 7.05× 1011 dyne/cm2,

ε = μeH′2

μ
= 0.0, 0.15, 0.30; θ = 10◦.

In Fig. 2, the dimensionless SIF K is plotted against frequency k. The graphs demonstrate
the effect of SIF in the presence and absence of magnetoelasticity. For ε = 0.0, the curve
presents SIF without magnetoelasticity and for ε = 0.15, 0.30, the curve shows the nature of
SIF in a magnetoelastic isotropic medium. It is noticeable that SIF K decreases after some ascent
with increase in frequency k for each instance. The decreasing nature of SIF with the increase
in frequency k are similar to the results presented by Panja and Mandal [16]. In the present
work, the solution procedure is valid for low frequencies, therefore, the decreasing rate of SIF
is slightly slower in an infinite medium than in a strip. Although within k ≤ 2.5, the SIF curves
obtained in this paper are in agreement with the results examined in [16]. The current paper also
confirms that SIF decreases with an increase in strip width ( [16]) as SIF in an infinite medium
starts from 0.7, compared to the case of a finite width strip, where SIF starts from higher values
than 0.7 for the same material. In the magnetoelastic medium, the decrement rate of SIF is less
than isotropic elastic media.
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Fig. 2. SIF K against dimensionless frequency k
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Fig. 3. Displacement D against crack width x

Fig. 3 shows the plot of crack opening displacement (COD) D versus crack width x in the
absence of magnetoelasticity, i.e., ε = 0 for different values of frequency. It is notable that
the graph is symmetric about x = 0, the COD achieves its highest value at point x = 0 and
reaches a zero value at the tips of the cracks. The COD increases gradually for higher values of
frequency k. The change of graphs is insignificant for the magnetoelastic effect.

In Fig. 4, we have plotted the graph of crack energy W versus frequency k. The nature
of this graph is quite similar to the graph of SIF versus frequency k (Fig. 2). Only one thing
is noticeable, namely, the crack energy W has a rather lower decrement rate with increasing
frequency than the SIF.

Fig. 5 is the surface plot of shear stress just outside the crack for k = 0.3 in the absence
of magnetoelasticity. Fig. 6 shows the nature of scattered field in the magnetoelastic medium
for k = 0.3. It has been noticed that the dimensionless scattered field behaves like a wave and
looses sharpness with an increase in the z-direction.
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Fig. 6. Scattered field outside the crack in a magne-
toelastic medium

7. Conclusion

An analytical method for studying the effect of magnetoelasticity on the stress intensity factor
(SIF) of a finite crack in an infinite elastic medium was introduced. This analytical method to
solve the Fredholm integral equation of second kind is very straightforward and easy to compute
compared to the numerical procedure, which is very laborious and time-consuming. We derived
some physical quantities such as SIF, crack opening displacement, crack energy, and scattered
field, which were plotted graphically. The following lists the outcomes of this study:

• Crack growth is more influential in a magnetoelastic medium than in a non-magnetoelastic
medium for low frequencies. Crack energy carries out the same effect for the magnetic
field.

• Fracture loses its toughness for higher values of frequency.

• In the neighborhood of the crack, the non-dimensionless stress component is very disrup-
tive in nature and loses its divisiveness far away from the crack.
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This paper is useful for small cracks. An extension of the concept for large deformations is very
difficult. Nevertheless, this research outcome may be very significant for the study of fracture
toughness, crack tip opening displacement and crack growth controlling development features in
the field of fabrication processes in fracture mechanics. Further extended models, for example,
for two or three linear cracks in a composite material, using different mediums, and interfaced
crack problems in the presence of magnetoelasticity can be studied with the help of the present
work.
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Appendix

Making the strip width infinite, i.e., h → ∞, the integral equation (41) in the paper Panja and
Mandal [16] becomes

g(t) +
∫ 1

0
ug(u)L1(u, t) du = 1,

which is similar to the integral equation (24) in the present paper as the kernel

L2(u, t) = ik21

∫ 1

0

√
1− y2J0(k1yt)J0(k1yu) csc(k1yh)e−k1yh dy −

ιk21

∫ ∞

0

√
1 + y2I0(k1yt)I0(k1yu)

e−k1yh

sinh(k1yh)
dy

in the published paper [16] vanishes for h → ∞. The nature of the SIF in the present article
approaches the result obtained by Panja and Mandal [16] for a crack in a strip when the strip
width becomes very large.

For the frequency k = 0.0, the current dynamic problem becomes static in nature and kernel
κ(s, r) disappears, which implies f(r) = 1 and SIF K = 1√

2
= 0.71, i.e., exactly the same as

presented by the graph shown above.
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In Fig. 7, the values of SIF are compared between iterative and numerical solutions. Curve 1
represents the SIF derived numerically by the mehod of Fox and Goodwin [7], used in the
paper [16], whereas curve 2 presents the SIF values obtained analytically by the perturbation
method. Because the two curves have a very similar nature for values of frequency k < 2.5, we
can say that the iterative solution given by (36) projects reasonably accurate result of SIF in the
range 0 < k < 2.5.
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Fig. 7. Comparison between numerical and iterative solution of SIF
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