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Abstract

Traditional engineering models for addressing fatigue issues are based on empirical relations between the necessary
number of cycles for fatigue failures Nf and either, the nominal stress σan or the local strain εa amplitudes. The
aim of the present paper is to highlight the advantages of the local strain-based approach εN for fatigue assessment
of notched components over the more traditional stress-based approach σN . Since a closed form solution for the
ratio between fatigue life predictions among the two methods does not exist, we have considered a hypothetical
case study that included variables such as the applied stress, the stress concentration factor and the structural
material, and numerically calculated the expected fatigue life according to each approach. In order to highlight the
differences related with the stress-strain analysis, the applied nominal stresses (uniaxial) were limited to the elastic
region where both methods use approximately the same fatigue strength curve. Additionally a unique and equal
function for accounting for the mean stress effects was incorporated in both approaches. Fatigue life predictions are
expressed in universal graphs of normalized stress versus the N ratiof , the latter parameter defined as the quotient
between the Nf predictions according to the σN and εN approaches, considering the average values for a group
of sixty structural steels at each load level. The results confirm that fatigue life predictions under the traditional
stress based approach are conservative when compared to the strain based approach for all the possible scenarios
described by the variables involved.
c© 2022 University of West Bohemia.
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1. Introduction

Fatigue of metals under cyclic or vibratory loads is a well-known issue on modern machinery,
despite huge research efforts spent over it since the 19th century. The cumulative character
of the fatigue mechanisms is irreversible [21] and can lead to the nucleation of small fatigue
cracks which can grow later and cause the total collapse of components or structures. Fatigue life
assessment models can be broadly divided in two groups: those concerned with the predictions of
the fatigue crack nucleation and those based on a fatigue damage parameter which is calculated
on each cycle [18]. In the first group, a comparison between the stress/strain components and
their respective strength curves is made. Additionally, variable amplitude load histories are
addressed through a damage accumulation rule. The present paper focuses on these group of
models.

Since the intrinsic characteristics of the fatigue cracks nucleation process are different from
the fatigue crack growth process, different approaches have been developed in each stage [11].
In the engineering community, the most popular models in the nucleation phase are those
based on nominal stresses (the σN approach) or local strains analysis (the εN approach). In
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the crack propagation phase, the favorite model is based on linear elastic fracture mechanics
LEFM (the da/dN vs. ΔK approach) [9]. These methods were occasionally combined in the
past. For example, models for fatigue crack growth were developed and tested from the strain-
based approach [7]. A unified model, which is a combination of the strain-based and fracture
mechanics-based approaches [15], was also proposed at that time. This unified model has been
recently applied to welded structures [12]. Obviously, there are many examples of fatigue life
assessment using the stress, strain and LEFM models individually. For example, in the case of
notched specimens submitted to laboratory tests using a standardized helicopter load spectrum,
all the aforementioned approaches have predicted fatigue lives with reasonable accuracy [10].

The objective of the present research is to graphically compare the fatigue life predictions
according to the stress and strain based approaches. In this way, it is intended to highlight the
advantages of the strain-based approach over the more traditional stress-based approach for
fatigue life assessment.

2. Fatigue strength curves

Modern closed loop servo hydraulic machines allow the fatigue strength curves, for a given
material, to be obtained under uniaxial load or strain control using standardized specimens. In
the first case, the primary cause for the observed fatigue failures after Nf cycles (or the fatigue
driving force) is believed to be the imposed completely reversed stress amplitude σa. When
plotted in bi-logarithmic scales and in the finite life region, the relation between variables σa

and Nf exhibits a linear behavior. A regression analysis of these experimental data returns the
so-called materials properties σ′

f and b. The fatigue strength curve is therefore expressed as

Sa = σ′
f (2Nf)

b. (1)

Note that a clear distinction between the stresses applied during the tests σa and those that
represent the fatigue strength curve Sa, i.e., that depend on the material, has been made. In any
case it should be thinking of them as local values and not as nominal ones. The parameter σ′

f

is the failure stress in one reversal or the curve intercept in Nf = 0.5 cycles, while b is the
slope of the same curve. For an AISI 4340 steel, e.g., reported values are σ′

f = 1 722 MPa
and b = −0.095 8 [5]. Some materials exhibit a rise in slope b of the curve described by (1),
mainly above 107 cycles, bordering on b = 0 in some cases, which has been interpreted as
a fatigue limit Se. More recent studies suggest that in the so-called giga-cycle fatigue regime
(Nf >≈ 108 cycles) the fatigue strength continues to decrease [17], in spite of the fact that the
nucleation mechanism changes. Under very particular circumstances of dynamic loading, the
fatigue design for a particular life Nf simply consists in comparing the nominal stresses acting
on the component and scaled by a safety factor XS , with the fatigue resistance expressed in
the form of (1). These circumstances could be, for example, a situation of completely reversed
uniaxial stresses of constant amplitude and no stress concentration. Of course, machine elements
and structures are more frequently designed for situations other than these simple cases. Some
modifications for including effects such as stress concentrations, means stresses etc. are then
mandatories. Many of these modifications were addressed in a previous paper [6].

Since fatigue crack nucleation is essentially a plasticity dominated process, a more realistic
treatment of the problem could be done using strains instead of stresses. This is the essence of
the strain-based approach for fatigue design. The fatigue strength curves using the εN method
are experimentally measured using standardized specimens and under uniaxial amplitude strain
control εa. The number of fatigue cycles Nf for failure remains as the dependent variable. As
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usual, a linear least-squares fit, separately performed to the elastic and plastic components of
the total amplitude strains, derives into the so-called Coffin-Manson equation and its correlate
material parameters, namely ε′f and c:

εa =
σ′

f

E
(2Nf)

b + ε′f (2Nf)
c. (2)

Once again, it is didactically interesting to separate the applied strains εa (for measuring the
curve) from the material’s dependent strength values εa. The tests for obtaining (2) are operati-
onally more complicated than those performed under the traditional load control. However, the
material properties obtained can better characterize the fatigue strength in the low-cycle fatigue
LCF regime. It is also worth remembering that, in this regime, stresses can be considered as
an ill-conditioned parameter for damage characterization, mainly for low hardening materials
(e.g., see the non-linear term in the second line of the system of equations (8)). The equation
(2) remains valid for multiaxial proportional loading as long as the effective strain and stress
quantities are used instead [8].

3. Stress analysis and mean stress effects under the σN approach

Stress analysis under the σN approach is totally developed in the elastic regime. The nominal
stress amplitude σan is either calculated by elementary analytic formulas or by numerical
techniques in more complex geometries. The mean stress has a detrimental effect on fatigue
strength but the functions to take it into account are normally included in the stress analysis.
The most popular of them include some monotonic or cyclic material property. One that is also
widely used but does not rely in any material property was introduced by Smith et. al. [20]
in 1970. The main idea behind this proposal is that the fatigue driving force encompasses two
parameters, the maximum stress σmax and the strain amplitude εa, both of them being local ones.
The geometric mean of these quantities represent a certain life function which would be valid
for any mean stress. Putting this idea in a slightly different way we have

(σmax εa)σN ≡ g(Nf). (3)

Since the product in (3) is proportional to the strain energy density, the so-called SWT (the
initials of the authors) parameter can be viewed as an energetic approach. Furthermore, if the
g(Nf) function is valid for any mean load, it will be valid for σm = 0 as well. In the uniaxial
situation εa = σa/E and an equivalent, completely reverse stress amplitude σar (or fatigue
driving force corresponding to σm = 0 in accordance with the SWT approach), can be defined
as follows

σmax εa = (σm + σa)
σa

E
=

σ2ar

E
,

σ2ar = σ2a + σa σm.
(4)

Of course, at the onset of fatigue failure it is expected that σar = Sa or

g(Nf) =
σ2ar

E
=
(σ′

f )
2 (2Nf,σN )2b

E
. (5)

The equation (5) results from the combinations of (1) and (4). The success of this method
can be evaluated, for example, if the scatter of a large set of experimental fatigue life data
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for various combinations of amplitude and mean stress Nf (σa, σm), for a given material, is
notably reduced or, perhaps, eliminated, when plotted against the g(Nf) function. Conversely,
for designing purposes, the fatigue life for any combination of the local values σa and σm can
be found by substituting these values in (5) and solving for Nf .

Considering that the stress analysis under the σN approach is purely elastic, the treatment
for notched bodies simply consists in multiplying the nominal stresses by the elastic stress
concentration factor Kt in order to obtain the local stress amplitudes. But since σar is a local
value we have

σarn =
σar

Kt
⇒ σ2an + σan σmn =

(σ′
f )
2 (2Nf,σN)2b

K2t
. (6)

Differently from other linear mean stress equations widely used in fatigue analysis (e.g.,
Goodman or Morrow), under the SWT approach both, the nominal amplitude and the nominal
mean stresses are multiplied by the same SCF, as can be seen in (6). Multiply the nominal
mean stress by a Kt may result in undesirable σmax/Sy ≥ 1 relations and this issue will be
addressed later in Section 5. A different Ktm which varies accordingly to the nominal maximum
stress σmax,n is sometimes recommended for multiplying only the nominal mean stresses in
brittle materials [4]. This suggestion, however, will not be followed in the present research since
all the steels used in our simulation can be classified as ductile materials.

Solutions for SCF can be derived using analytic, numeric, or experimental tools. They are
customarily presented in a non-dimensional form being, therefore, size independent. Stress
concentration factors depend, however, on the notch geometry and type of loading. Departing
from the point of the peak stress at the notch root surface, the stress gradient predicted from
linear elastic solutions in a direction normal to the notch edge is higher than along the notch edge
and these differences intensify for large Kt [19]. Since fatigue cracks nucleate mainly at the
notch surface where constraint is less severe, notches with larger areas are more sensitive to the
peak stresses defined by the Kt. This size effect is addressed with the help of a semi-empirical
fatigue stress concentration factor Kf ≤ Kt, defined as the ratio between the endurance limit in
plain and notched specimens. Either in classical [14,16] or modern [1,3] formulations for notch
sensitivity both, the material and notch geometry are invoked. But since notch geometry was
not included among the variables in the present simulation, it was decided to use the Kt in its
traditional form.

The predicted life, according to the stress-based approach Nf,σN , can now be calculated by
(6) for a given combination of nominal stress amplitude, mean stress and SCF.

4. Mean stress effects and elastic-plastic stress strain analysis under the εN approach

The strain-life curves (see (2)) are also sensitive to mean loads. These effects are, however,
introduced into the strain analyis in the εN approach. The same mean load function, i.e., the
SWT parameter will be used in order to include the influence of this variable in the present
research. The logic behind the introduction of the PSWT is similar to that previously used for
stress-life curves. First note that under zero mean stress σm = 0→ σmax = σar and (3) reduces
to

σmax εa =σar εar,

(σmax εa)εN
≡ h(Nf) =

(σ′
f )
2

E
(2Nf,εN)

2b + ε′f σ′
f (2Nf,εN)

b+c.
(7)
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The second line in (7) results from the introduction of (1) and (2) under the consideration
that, for fatigue failures to happen, applied loads must be enough to reach the measured strength
values, i.e., σar = Sa and εar = εa. Note that for small plastic strains, the rightmost term of
the second line vanishes and (7) reduces to (5). Life calculations, according to the strain-based
approach to obtain Nf,εN , using the same combination of nominal stress amplitude, nominal
mean stress and SCF used in the stress-based approach, can now proceed as long as the local
values of σmax and εa of (7) are known. It is exactly at this point that major differences between
the two approaches emerge. While in the σN approach the local values are simply calculated
by the use of the SCF, in the ε N approach a more refined, elastic-plastic analysis is performed.

New definitions are needed before proceeding. Since the monotonic (or the cyclic) stress-
strain curve becomes non-linear once the plastic deformation begins at the notch root, the
local stress Kσ and strain Kε concentration factors must exibit opposite trends. According to
the Neuber [13] proposal, the geometric mean between these concentration factors equals the
classical Kt. In addition, since the material behavior under cyclic loading must follow the path
described by its constitutive εa = f(σa) relation in σa vs. εa coordinates, the desired local values
for σa and εa must satisfy simultaneously the following system of two non-linear equations

εa σa =
(Kt σan)2

E
,

εa =
σa

E
+

( σa

H ′

) 1
n′

.

(8)

The parameters with prime as superscripts in (8) indicate cyclic properties while E is the
modulus of elasticity. It is numerically efficient, for solving (8), to first eliminate the εa between
the two equations and calculate by iteration the σa for a given σan and Kt. The result is then
susbtituted back in any of the two original equations to obtain εa. The system in (8) can also be
solved for maximum local values (εmax and σmax) simply replacing the subscripts a for max.
Since the same material’s cyclic properties are used in the new system, it is implied that the
material follows the cyclic stress strain curve since the first cycle of loading

εmax σmax =
(Kt σmax,n)2

E
,

εmax =
σmax
E
+

(σmax
H ′

) 1
n′

.

(9)

Once the εa and σmax values are calculated, they are entered into (7) to finally calculate the
fatigue life Nf,εN by the εN approach.

In order to clarify even more these ideas, a numerical example follows. Let a nominal stress
history of constant amplitude σan = 143MPa (R = −1/2) be applied in a notched component
(Kt = 3) of a material with E = 197 GPa, H ′ = 1 189 MPa and n′ = 0.15. Fig. 1a shows
schematically the points of intersection between each pair of (8) and (9) in a common locus ε σ.
The calculated local strain and stress values were εa = 2.5 · 10−3 and σmax = 447 MPa. The
figure also shows the solutions based on the stress-based approach, whose numerical values are
σa = Kt σan = 429 MPa and σmax = Kt σmax,n = 2Kt σa/(1 − R) = 572 MPa. Of course,
these solutions are based on the Hooke’s law and do not have any relation with the Neuber’s rule.
The points σ = Ktσn also satisfy simultaneously the systems in (8) and (9) and this explains
their graphical coincidence in Fig. 1a. This can be easily verified if the Ramberg-Osgood is
replaced by the Hooke’s law in any of the aforementioned systems of equations.
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Fig. 1. (a) The constitutive curve for a AISI 1144 (199HB) steel (both cyclic according to the Ramberg-
Osgood equation and linear elastic according to the Hooke’s law) and (b) the hysteresis loops at the notch
root using the strain-based approach solutions

Despite not necessary for life calculations, a plot of the true local stress strain paths (hysteresis
loops) at the notch root, along with the initial monotonic response (here considered as equal to
the cyclic stress strain curve, as stated before), is useful for visualization purposes (see Fig. 1b).

The (stabilized) hysteresis loops shown in Fig. 1b are mathematically described in the
Δε–Δσ locus by a Ramberg-Osgood type relation

Δε =
Δσ

E
+ 2

(
Δσ

2H ′

)1/n′

. (10)

The equation (10) describes curves departing from the loops tips. In ε–σ coordinates the
loading and unloading branches of the hysteresis loops, respectively, are given by

ε = εmin +Δε(σ − σmin),

ε = εmax −Δε(σmax − σ).
(11)

5. Methodology for comparing the fatigue life predictions by the σN and εN approaches
Fatigue life predictions in the context of the εN approach can only be obtained after solving
numerically three equations. First, equations (8) and (9) must be solved for amplitudes and for
maximum values, respectively. The results are entered in (7) which also requires a numerical
iterative process to finally calculate the desired fatigue life Nf,εN . For this reason, a closed form
equation relating the fatigue life predictions according to the two methods, is not possible. In
order to perform a numerical comparison, a hypothetical design or assessment case consisting
of a notched structural member under uniaxial loading (Fig. 2) has been considered. Information
relative to loading parameters, stress concentration factor and material are mandatory for this
simulation.
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Fig. 2. Scheme of the generic notch used as a case study

In relation to the load, a vector of constant nominal stress amplitudes σan normalized with
respect to the material’s yield strength Sy in such a way that 1/10 = 0.1 ≤ σan/Sy ≤ 0.2 = 1/5
was applied to the member in Fig. 2. In order to avoid local yielding at the notch root, the local
maximum notch stress to material’s yield strength relation was limited to 0.8 or σmax/Sy =
Kt σmax,n/Sy = 4/5. Consequently, a complete definition of the applied cyclic stresses is
subordinate to the knowledge of the maximum SCF to be used. In our simulation the stress
concentration factors vary in the range 1.5 ≤ Kt ≤ 3. For constant stress amplitude cycles, the
following relation holds between nominal quantities and also the load ratio R = σmin,n/σmax,n

σmax,n =
2σan

1− R
. (12)

The load ratio R necessary for keeping the maximum value of the local applied stress cycles
below 80% of the yield strength, i.e., the parameter we were looking for, becomes a dependent
variable of the maximum SCF. Substituting the upper limit of the load relation σan/Sy = 1/5
in (12) and manipulating gives

σmax =Kt σmax,n = Kt
2σan

(1− R)
= Kt

2Sy

5(1− R)
,

σmax
Sy
=

2Kt

5(1− R)
=
4
5

⇒ R = 1− Kt

2
,

(13)

which for Kt = 3 gives R = −1/2. In relation to the material, we have gathered the monotonic
and cyclic properties of 60 ductile structural steels [2]. These properties were used as input
parameters in specially developed codes that implement the two methodologies described in the
present paper. For each material, level of normalized load and SCF, the average value of the
ratio between the σN and εN life predictions, defined as the N ratiof , as well as other important
quantities, were calculated and stored in appropriate data types.

6. Results and discussion

Fig. 3 shows the average N ratiof versus the normalized stresses for a group of 60 steels. The
traditional and almost totally empirical stress based approach, returns conservative results (as
compared to those provided by the strain based method) across the whole stress spectrum. The
predicted life ratio is lower as the Kt increases. We should remember that only theoretical
elastic values are present at the notch root (Section 5) so these results cannot be attributed to
the obvious advantages of the strain-based approach over the stress-based approach for dealing
with elastic-plastic values. We can use, however, Fig. 1a for a first explanation of the results.
A Ramberg-Osgood type equation (second line in (8), orange line in Fig. 1a), here used for
representing the material’s cyclic curve, does not constitute a physical law, but a convenient
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Fig. 3. Mean values of the ratio between life predictions from the σN approach to the εN approach for a
group of 60 ductile structural steels for various normalized stress levels and stress concentration factors

mathematical way for fitting experimental values of stresses and strains amplitudes obtained,
for example, in a low-cycle fatigue test. The Ramberg-Osgood relationship asymptotically
approximates (i) a purely elastic behavior εa = σa/E at lower stresses and (ii) a predominantly
elastic-plastic behavior εa = (σa/H

′)1/n′ at high stresses. Of course, since the upper bound of
the load vector used in the present simulation was σmax/Sy ≤ 4/5, the constitutive equation and
the Hooke’s law are very close but do not perfectly match. But since the fatigue driving forces
σmax εa for the εN and for the σN approaches are based on the Ramberg-Osgood curve and on
the Hooke’s law, respectively, the main reason for the differences between the predictions are
due to the imperfect match between these curves in the elastic region, enhanced by the strongly
non linear character of the σmax εa versus Nf relationship.

Since either the numerical or analytic solutions can be graphically visualized in (σmax εa) vs.
Nf coordinates, it is noteworthy to go deeper into this aspect. The fatigue strength curves g(Nf)
and h(Nf ) have been previously defined in (5) and (7), respectively. The loading points, in the
other hand, are functions of the normalized load and stress concentration factor, i.e., σmax εa =
f(σan/Sy, Kt, R). For a given material and specific values of these two parameters, a plot of
the loading points along with the fatigue strength curves, can help explain the general trends
observed in Fig. 3. This is done in Fig. 4 for two representative combinations of load and SCFs
(see Table 1). Note that not only is the curve g(Nf) always to the left of h(Nf) but also the
elastic-plastic analysis, although approximate, performed through (8) gives consistently lower
values of the local driving force σmax εa than those obtained by (6). Of course, both factors
contribute to the longer fatigue lifes calculated under the εN approach and explain the trends
on N ratiof showed in Fig. 3.

Table 1. Parameters used for the loading points P1, . . . , P4 showed in Fig. 4

Kt σan/Sy (σmax εa)σN = σ2ar/E (σmax εa)εN

2 0.11 P1 P2

3 0.17 P3 P4
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Fig. 4. Fatigue strength curves for the AISI 1144 (199 HB) steel according to (5) and (7). The loading
points for (a) Kt = 2, σan/Sy ≈ 0.12 and (b) Kt = 3, σan/Sy ≈ 0.21 (first and second row in Table 1,
respectively) are also shown in the figure

Fig. 5 shows the predicted hysteresis loops according to the εN approach for four normalized
load levels, material and stress concentration factor. The first and the third load levels are the
same used before in Table 1. The material considered for the graph in Fig. 5 was again the

Fig. 5. Predicted hysteresis loops at the notch root (Kt = 3) for different load levels. The extreme
values at each load level were estimated by the solution of (8) and using the material’s properties for the
AISI 1144 (199 HB) steel
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AISI 1144 (199 HB) with a Kt = 3. The normalized load levels used, along with the center
point in each hysteresis loop, i.e., the mean stress and strain calculated under the εN method,
are shown in the figure. After a initial increase, a slight tendency to decrease in the calculated
local mean stress can be observed. On the other hand, the thicker the loops, the greater the
plastic strain energy accumulated in the material. But since the fatigue driving force under the
εN approach is also related to the strain energy density (see (7)), Fig. 5 alone cannot explain
the differences between the loading points in Fig. 4.

The aforementioned behavior and also that observed in Fig. 3, can be clarified if the trends in
the estimated local mean stresses as the normalized load grows for a given stress concentration
factor and material, are plotted as in Fig. 6a. The calculated mean stresses are normalized with
relation to its value in the lower bound of the normalized load, i.e., to σm(σan/Sy = 0.1). The
curves for case (a) in Fig. 6 use the same combination of material and Kt that in previous
figures, i.e., AISI 1144 (199 HB) and Kt = 3. The case (b) in the same figure reflects the
local σm trends considering the arithmetic mean for the whole set of materials. The curve in
blue (σN method) remains the same in both parts of Fig. 6 because the dependence on the Sy

is eliminated as a result of the normalization process. In both cases, the mean stress, calculated
under the σN approach, doubles its value because this component is simply related to the
applied loads through σm = (1 +R)/(1− R)Kt σan. The physically expected trend is the one
predicted by the εN approach, i.e., the trend to decrease the calculated mean stresses as the
local yielding advances. In favor of the σN approach, it should not be forgotten that only peak
stresses, i.e., purely Kt σn stresses were considered, and in the absence of details related with
the notch geometry, no attempt was made to include engineering methods for dealing with the
notch sensitivity.

Fig. 6. (a) The calculated local mean stress (normalized in relation to the its first value) at different load
levels for the AISI 1144 (199 HB) and using Kt = 3 and (b) for the whole set of materials used in the
present simulation
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7. Conclusions

A simple comparison of (1) and (2) suggests that fatigue life predictions made under the σN
and εN approaches, for predominantly elastic stresses, should tend to be effectively the same.
This can be true for unnotched components and as long as the static component is zero. The
simulation performed in the present work demonstrated that the fatigue life predictions by the
stress-based approach, for notched parts and also in the presence of mean stresses, which were
here addressed by the SWT parameter, are always conservative when compared to the strain-
based approach. The strain based approach attempts to model the physics of the fatigue crack
nucleation and its subsequent propagation on the order of various grains, perhaps until a size of
around 1.0 mm is reached by the growing crack, and the results of the present research confirm
this statement.
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