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Abstract

This paper presents a discussion on the properties of the collocation meshfree method, the Updated Lagrangian
Taylor-SPH (UL-TSPH), for dynamic problems in solid mechanics. The PDEs are written in mixed form in terms of
stress and velocity for the elastodynamics problems. Two sets of particles are used to discretize the partial differential
equations, resulting on avoiding the tensile instability inherent to classical SPH formulations. Numerical examples
ranging from propagation of a shock wave in an elastic bar to a stationary Mode-I semi-Infinite cracked plate
subjected to uniaxial tension are used to assess the performance of the proposed method.
c© 2022 University of West Bohemia.
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1. Introduction
The Finite Element Method (FEM) is the most popular mesh-based method used in computation
solid mechanics, and many references can be found in the literature. Although the FEM has
proved successful in modelling a range of problems, FEM has still a few drawbacks for modelling
large deformations problems, presence the discontinuities and dynamic fracture.

To overcome the difficulties encountered by FEM in large deformation and problems invol-
ving discontinuities, several meshfree methods have been developed in the past being used in
computational solid mechanics with a great success. In contrast to FEM, meshfree methods do
not require a mesh connectivity procedure and they can perform numerical solutions without
using a computational mesh-grid since they are based only on particles where field variables
and their derivatives are estimated. Therefore, meshfree methods can deal in a simple manner
with failure problems and large deformation without the problems encountered in mesh-based
methods where mesh refinement is usually required.

Generally, meshfree methods are formulated using either the Galerkin meshfree methods
based on the weak formulation of the PDEs or the collocation meshfree methods based on the
strong formulation of the PDEs.

Galerkin meshfree methods require a special technique to implement the essential boundary
conditions and the selection of a suitable numerical integration scheme, while the collocation
meshfree methods are based on the strong form of the PDEs which leads to efficient formulations
without numerical integration and essential boundary condition procedures.

A wide variety of meshfree methods have been proposed over the past years including the
Element Free Galerkin Method [3], Reproducing Kernel particle Method (RKPM) [14], Smo-
othed Particle Hydrodynamics (SPH) developed by Lucy [17] and Gingold and Monaghan [8]
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and the Taylor-SPH (TSPH) method developed by Herreros and Mabssout [9, 11, 18, 19]. The
SPH method has been extended to problems involving fluid-structure interaction [1,12]. In this
paper, we will use the TSPH method, which has been successfully applied to solve linear and
nonlinear problems [9, 11, 18, 19].

Generally, the SPH method suffers from two principal problems: (i) the lack of consistency
on the boundary that can lead to poor accuracy. Various corrections have been developed to
improve the precision of the SPH method and to restore the zeroth and first order completeness
of the kernel function [2, 4, 10, 13, 16, 21] and (ii) tensile instability which appears in dynamic
problems with material strength as reported by Swegle et al. [23]. To eliminate SPH tensile
instabilities, Dyka et al. [5, 6] proposed a stress point approach where the unknowns such as
density, stress and energy are estimated at some prescribed stress points placed among the SPH
particles. This approach was later extended to two dimensions by Randles et al. [22].

Taylor-SPH (TSPH) meshfree method developed by the authors over the past years [9,
11, 18, 19] has been demonstrated to exhibit a good performance when applied to dynamic
problems. The TSPH is a collocation meshfree method where the system of equations is written
as a set of first-order hyperbolic partial differential equations. The method firstly consists a
time discretization by mean of a Taylor series expansion in two steps and thereafter the space
discretization using a corrected form of the SPH method. To solve the tensile instability, two
different set of particles are used during simulation. It is worth mentioning that the classical
SPH methods are written in simple terms of displacements and therefore Dirichlet boundary
conditions for displacements and natural boundary conditions for traction must be considered.
However, when using the TSPH meshfree method, the PDEs are formulated in mixed terms of
stress and velocity, and thus only Dirichlet boundary conditions must be taken into account and
are enforced in a simple manner at each particle on the border.

In previous works, the authors have extended the TSPH to large deformation problems [11].
The governing equation are written using the updated Lagrangian formulation. It was shown
that the updated Lagrangian Taylor-SPH (UL-TSPH) produces very accurate results for solid
mechanics involving large deformations and dynamic fracture. In this paper, the UL-TSPH is
presented and it is applied to the propagation of the shock wave, to the vibration of a bar and
to the elastodynamics crack problems, showing that the proposed numerical method is able to
compute the Dynamic Intensity Factors and therefore it opens a new way to simulate dynamic
fracture of a cracked material.

The paper is organized as follows. The partial differential equations using the Updated
Lagrangian description are presented in Section 2. In Section 3, the PDEs are discretized using
the UL-TSPH method. To show the performance of the proposed method, some numerical
examples are presented in Section 4.

2. Mathematical model
The governing equations used in this work consists of (i) the momentum balance equations
and (ii) a constitutive law defining the solid behavior. Here, we have restricted our analysis to
an elastic material. In order to get an objective rate of the stress tensor, the Jaumann rate of
the Cauchy stress is used. In terms of stress and velocity and neglecting the body forces, the
governing equations are given by

∂v

∂t
=
1
ρ
∇σ, (1)

∂σ

∂t
= De : d − S (2)
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with
S = (σω − ωσ),

where ρ is the material density, σ is the Cauchy stress tensor, v is the velocity vector, d is the
rate of deformation tensor, ω is the spin tensor and De is the elastic tensor. The term S in (2)
come from the Jaumann rate of the Cauchy stress, where ω is given by the antisymmetric part
of the velocity gradient

ω =
1
2
(∇ ⊗ v − (∇ ⊗ v)T ), (3)

or

ωij =
1
2

(
∂vi

∂xj

− ∂vj

∂xi

)
, (4)

and d is given by the symmetric part of the velocity gradient

d =
1
2
(∇ ⊗ v + (∇ ⊗ v)T ), (5)

or

dij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
. (6)

Because the updated Lagrangian formulation is chosen here, the above equations are expressed
in the current configuration which will be taken as the referential configuration.

In this paper, 2D plane stress problems are considered and therefore the stress and strain rate
can be arranged in a matrix form as

σ = (σ11 σ22 σ12)
T , (7a)

d = (d11 d22 2d12)
T . (7b)

3. Numerical model

The UL-TSPH method [11] is used to discretize (1) and (2). UL-TSPH consist of applying first
the time discretization using a Taylor series expansion in two steps and thereafter the space
discretization using a corrected form of the SPH method.

3.1. Time discretization

Time discretization of (1) and (2) are carried out using Taylor series expansion up to the second
order of the unknowns v and stress σ

vn+1 = vn +Δt
1
ρ
∇ · (σ)n + Δt2

2
1
ρ
· ∇

(
∂σ

∂t

)n

+O(Δt3), (8)

σn+1 = σn +Δt(De : (d)n − (S)n) + Δt2

2
De :

(
∂d

∂t

)n

− Δt2

2

(
∂S

∂t

)n

+O(Δt3). (9)

To obtain the first order time derivatives of S, σ and d in (8)–(9), we compute first the unknowns
σ and v at an intermediate time tn+

1
2

vn+ 12 = vn +
Δt

2
1
ρ
∇ · (σ)n, (10a)

σn+ 12 = σn +
Δt

2
De : (d)n − Δt

2
(S)n. (10b)
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Therefore, the first-order time derivatives of σ, S and d at time tn are computed as follows:(
∂σ

∂t

)n

=
2
Δt

(
σn+ 12 − σn

)
, (11a)(

∂S

∂t

)n

=
2
Δt

(
Sn+ 12 − Sn

)
, (11b)(

∂d

∂t

)n

=
2
Δt

(
dn+ 12 − dn

)
. (11c)

Inserting (11) into (8) and (9), the unknowns (σ, v) at time tn+1 are computed as follows:

vn+1 = vn +Δt
1
ρ
∇ · (σ)n+ 12 , (12a)

σn+1 = σn +ΔtDe : (d)n+
1
2 −Δt(S)n+

1
2 . (12b)

The equations (10) and (12) represent the first and the second step, respectively, using UL-
Taylor-SPH meshfree method.

3.2. Spatial discretization: Corrected SPH approximation

To perform the time discretization, the spatial discretization is required to obtain the numerical
solution of the problem. A corrected form of SPH method is used to discretize (10) and (12) in
space.

Here, a summary of the basic SPH method and its corrected form is presented in this section.
SPH is based on the integral approximation of a given function f(x) and its derivatives. The
kernel approximation of function f(x) by SPH is given by

〈f(x)〉 =
∫
Ω

f(x′)W (x − x′, h) dx′, (13)

where W (x′ − x, h) is the kernel function and h is the smoothing length defining the size of the
kernel support.

The integral approximation of the gradient of a function f(x) is given by

〈∇f(x)〉 = −
∫
Ω

f(x)∇W (x − x′, h) dx′, (14)

where ∇W (x − x′, h) is the gradient of W (x − x′, h) with respect to x′.
The functions used as kernels in SPH approximations are required to fulfill some specific

conditions [15]. They must be even function and must fulfill the following specific conditions:∫
Ω

W (x − x′, h) dx′ = 1, (15a)

W (x − x′, h) = 0 for |x − x′| ≥ kh, (15b)
W (x − x′, h) ≥ 0, (15c)

lim
h→0

W (x − x′, h) = δ(x − x′). (15d)

In (15b), k is a positive parameter defining the smoothing support size of the kernel function.
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In this work, the cubic spline function (16), proposed by Monaghan and Lattanzio [20], has
been chosen as the kernel function

W (ξ, h) = C

⎧⎪⎨
⎪⎩
2
3 − ξ2 + 1

2ξ
3 0 ≤ ξ ≤ 1,

1
6(2− ξ)3 1 ≤ ξ ≤ 2,
0 ξ ≥ 2,

(16)

with ξ = |x−x′|
h
= r

h
, the scaling factor C is given by 1

h
, 15
7πh2

and 3
2πh3

in 1D, 2D and 3D,
respectively.

In the SPH method, a continuum is represented by a set of particles, thus the kernel integral
(13) is approximated by a summation over a set of discretized particles

fI =
N∑

J=1

fJWIJΩJ , (17)

where N is number of the neighboring particles of I such that ‖xI − xJ‖ ≤ 2h, fI is the value
of the function estimated at point I; WIJ = W (xI − xJ , h) represents the value of the kernel
function at position J and ΩJ =

mJ

ρJ
is the volume related to particle J ; mJ and ρJ are the mass

and density of particle J , respectively.
The particle approximation for the spatial derivative (14) is given by

∇fI =
N∑

J=1

mJ

ρJ

fJ∇WIJ , (18a)

where
∇WIJ =

xIJ

h · rIJ

∂WIJ

∂ξ
, ξ =

rIJ

h
, rIJ = |xI − xJ |. (18b)

SPH approximations (17) and (18) do not fulfill the consistency conditions for a given particle
near to the boundary of the domain. The kernel function is truncated at the boundary. Therefore,
the normality condition of the kernel function and its gradient is no longer valid. To restore
the zeroth order and first order completeness conditions, a corrected form of the SPH meshfree
method based on the normalization of the kernel function and its derivatives is used in this work.

Corrected form of the kernel approximation: In order to fulfill the C0 consistency, the
corrective kernel approximation for function f(xI) is given by [2, 4]

fI =
N∑

J=1

fJW̃IJΩJ , (19a)

where
W̃IJ =

WIJ∑N
J=1WIJΩJ

. (19b)

The kernel approximation (19) represent constant functions and then it fulfills the C0 consistency.
Corrected form of the first derivatives approximations: In order to fulfill the C1 consistency,

the corrected SPH approximation of the gradient of function f is given by [2, 4]

∇fI =
N∑

J=1

fIJ∇̃WIJΩJ , (20a)
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where

∇̃WIJ =
∇wIJ(∑N

J=1XIJ ⊗ ∇WIJΩJ

) (20b)

and
fIJ = fI − fJ .

SPH approximation (20) satisfies the zeroth and the first order derivative consistency; that is,
the approximation of the zeroth and first order polynomials is exactly approximated.

3.3. Updated Lagrangian Taylor-SPH: Spatial discretization

As noted above, the time discretization is carried out in two steps using a Taylor series expansion.
To perform this space discretization, the computational domain Ω̄ = Ω∪∂Ω is discretized in two
set of particles: {xk}NR

1 real particles and {xk}NV
1 virtual particles where NR and NV denote

real and virtual particles. The virtual particles will be interspersed among the real particles in a
similar manner it was done in stress-point integration [6,22] to stabilize the SPH method. Fig. 1
shows the distribution of real and virtual particles in 1D and 2D.

Fig. 1. Real and virtual particles arrangement: a) 1D and b) 2D problems

Using the UL-TSPH algorithm, the spatial discretization is carried out in two steps:
First step: Applying the corrected SPH spatial discretization (19) and (20) to the first-step

time discretization (10), the unknown vectors σ
n+ 12
I and v

n+ 12
I for virtual particle I at time tn+

1
2

are obtained as

〈σn+ 12 〉I = 〈σn〉I +
Δt

2
De : (d)nI +

Δt

2
(S)nI , (21a)

〈vn+ 12 〉I = 〈vn〉I +
Δt

2
1
ρ
∇ · (σ)nI , (21b)

σ
n+ 12
I = σn

I +
Δt

2

(
1
2
De :

Nr∑
J=1

mJ

ρJ
(vJ − vI)

n∇̌WIJ +
Nr∑
J=1

mJ

ρJ
Sn

JW̌IJ

)
, (21c)

v
n+ 12
I = vn

I +
Δt

2
1
ρ

(
Nr∑
J=1

mJ

ρJ
(σJ − σI)

n∇̌WIJ

)
. (21d)

Second step: Applying the corrected SPH spatial discretization (19) and (20) to the second
step time discretization (12), unknown vectors σn+1

I and vn+1
I for real particles I at time tn+1
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are obtained as follows:

〈σn+1〉I = 〈σn〉I +ΔtDe : (d)
n+ 12
I +Δt(S)

n+ 12
I , (22a)

〈vn+1〉I = 〈vn〉I +Δt
1
ρ
∇ · (σ)n+

1
2

I , (22b)

σn+1
I = σn

I +Δt

(
1
2
De :

Nv∑
J=1

mJ

ρJ
(vJ − vI)

n+ 12∇̌WIJ +
Nv∑
J=1

mJ

ρJ
S

n+ 12
J W̌IJ

)
, (22c)

vn+1
I = vn

I +Δt
1
ρ

(
Nr∑
J=1

mJ

ρJ
(σJ − σI)

n+ 12∇̌WIJ

)
. (22d)

Finally, at the end of a certain time step, the positions of the real particles are updated

xn+1
I = xn

I +Δtv
n+ 12
I , (23)

where particle I refers to real particle.
The new position of the virtual particles is updated as the centroids of the Delaunay trian-

gulation of the new real particles position.

4. Numerical examples

4.1. Propagation of a shock wave on a 1D elastic bar: Numerical stability

In this section, we analyze the influence of the smoothing length and the Courant number on the
convergence of the UL-TSPH.

4.1.1. Sensitivity of the numerical results with respect to the smoothing length

It is well known that in the SPH method, the smoothing length h plays an important role since
it has direct influence on the accuracy of the solution [18].

If h is too small, there may be not enough particles number in the smoothing support of
dimension kh to interact with a given particle, which results in very low precision. By contrast,
if h is too large, local properties perhaps smoothed out, and the precision decreases too. In order
to perform a sensitivity testing of the UL-TSPH method with respect to the smoothing length h,
the problem of the propagation of a shock wave in an elastic bar has been analyzed.

The initial and Dirichlet boundary conditions are as follows:

• Initial conditions
v(x, 0) = σ(x, 0) = 0, 0 ≤ x ≤ L. (24a)

• Boundary conditions: On x = 0:

v(0, t) =

{
10 m/s for t ≤ 2.5 ms,
0 for t > 2.5 ms.

(24b)

On x = L:
v(L, t) = 0. (24c)
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The parameters and the material properties of the bar are taking as follows: elastic modulus
E = 80 MPa, density ρ = 2 000 kg/m3 and length L = 1 m. The elastic wave speed is
c =

√
E
ρ
= 200 m/s.

There is an exact solution available for this problem. The incoming wave propagates towards
the right boundary keeping its initial amplitude of σ0 = v0

√
Eρ = 4 MPa and v0 = 10 m/s

without any distortion and diffusion. It reflects at the fixed end (L = 1m) at time t0 = L
c
= 5ms

and the stress is doubled to a value of 8 MPa, while the velocity of the wave after reflection
propagates along the bar with v0 = −10 m/s.

The bar has been discretized using 101 real particles and 100 virtual particles. The time
step used for the computation Δt = 5 × 10−5 s which corresponds to the Courant number
C = cΔt

Δx
= 1. The smoothing length which determines the number of particles used in the

computation can be written as
h = αΔx. (25)

Factor α defines the radius of the kernel function which relates the interparticle spacing to the
smoothing length. For the cubic spline kernel, the smoothing domain has radius 2h. The value of
factor α has been gradually increased and the sensitivity of the numerical solution for different h
has been studied. Factor α was given values of α = 1.2, 1.8 and 2.2, corresponding to 5, 7 and
9 neighbor real particles inside the support domain.

Fig. 2 illustrates the stress σ(L, t) for the three values of α. It can be observed that for α = 1.2,
the numerical solution converges well to the exact solution with an error about 2.5 × 10−3%.
When α is increased (α = 1.8; 2.2) the numerical oscillations appear; the error increases to 25%
and the solution diverges. Using the L2 norm, the error of the numerical method as function of
factor α is given in Table 1.

Fig. 2. Stress at the fixed end. Sensitivity of numerical solution with respect to the smoothing length

Table 1. Error L2 for different values of factor α

Factor Radius of compact support Number of particles inside Error L2 (%)
r = 2h (m) the compact domain

1.2 0.024 4 2.5× 10−5
1.8 0.036 6 16.82
2.2 0.044 8 25.70
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This example was calculated with a non-uniform particle distribution along the bar. Fig. 3
presents the stress history at point x = 0.44m. As expected, the solution is stable but it exhibits
small oscillations at discontinuities of the wave.

Fig. 3. Stress at x = 0.44 m for a non-uniform particle distribution

These oscillations are present where the distance between two consecutive particles is not
constant and the local Courant number is not equal to 1. For complex geometries where a
non-uniform particle distribution is required, a local maximum time step satisfying the CFL
condition can be used. That allows to avoid the use of the smallest time step imposed by the
smallest distance between two consecutive particles for the whole domain.

4.1.2. Sensitivity of the numerical results with respect to the Courant number
In order to accomplish a sensitivity analysis of the UL-TSPH with respect to the Courant
number, a similar study as above has been carried using different values of C. The factor α is
kept constant equal to 1.2 (α = 1.2). The value of time step Δt has been gradually increased
and the accuracy and stability of the numerical solution for different Courant number C have
been tested.

Fig. 4 shows the stress σ(L, t) for different Courant number after reflection of the wave
using the proposed method. It can be observed that when the C= 1, the accuracy of the solution

Fig. 4. Stress at the fixed end of the bar for different Courant number using UL-TSPH
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gets its maximum, the error is about 2.5 × 10−3%. As can we see, the numerical results loses
its accuracy when the Courant number is decreased and the solution becoming oscillatory. For
C > 1, the numerical solution becomes unstable. The error using the L2 norm is given in Table 2
for different Courant number.

Table 2. Error estimation for different values of the Courant number

δt (s) Courant number Error L2 (%)
5× 10−5 1.0 2.5× 10−5
2.5× 10−5 0.5 17.44
5× 10−6 0.1 27.12

Fig. 5. Velocity at x = 0.5 m

Fig. 5 presents the velocity at the middle of the bar using UL-TSPH with α = 1.2 and C = 1.
As it can be observed, the numerical solution is free of dispersion and diffusion and the result
is in complete agreement with the exact solution.

Fig. 6 gives time histories of kinetic energy, elastic strain energy and total energy obtained
using the UL-TSPH method with C = 1. The proposed algorithm is shown to possess excellent
energy conservation property.

Fig. 6. Evolution of kinetic energy, elastic strain energy and total energy with C = 1
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4.2. Vibration of a bar with fixed ends

To show the performance of the proposed method, we consider a vibrating elastic bar fixed at
both ends as shown in Fig. 7 and the initial longitudinal velocity v(x) = v0 sin

(
πx
L

)
is applied

to the bar. The parameters and material properties are taking as follows: v0 = 0.1 m/s, length
L = 1 m, Elastic modulus E = 50 Pa and density ρ = 25 kg/m3.

Fig. 7. Geometry of bar vibration

We have used 201 real particles for the simulation. To demonstrate the accuracy of the
proposed algorithm, the results are compared with the analytical solution given in terms of
displacement and stress as

u(x, t) =
v0L

πc
sin

(
πct

L

)
sin

(πx

L

)
, (26a)

σ(x, t) = E
v0
c
sin

(
πct

L

)
cos

(πx

L

)
, (26b)

where c =
√

E/ρ =
√
2 m/s represents the elastic wave speed in the bar.

The Fig. 8 presents the stress and displacement along the x axis using the analytical solution
and the UL-TSPH method at time t = 0.353 8 s. The results are free of diffusion and dispersion
and show an excellent agreement between the numerical and the exact solutions.

Fig. 9 shows the contour of stress along the bar at different time. The results are stable and
free of oscillations.

In order to check the convergence of the method, this example has been calculated for
three particles spacing: 0.02 m; 0.01 m; 5 × 10−3 m. The time step is kept constant equal to
3.53× 10−3 s. Table 3 presents the L2 error for each case, showing clearly the convergence of
the proposed method with a small number of particles.

Table 3. L2 error for different number of particles

Number of particles CFL L2 error (%)
51 0.25 7.52
101 0.50 4.45
201 1.00 0.96

4.3. Stationary Mode-I semi-infinite crack

In this example, the dynamic stress intensity factors (DSIFs) for an infinite plate with a semi-
infinite lateral crack is evaluated using UL-TSPH meshfree method. The plate loaded by uniform
tensile stress perpendicular to the crack-face with the amplitude σ0 = 500 MPa as shown in
Fig. 10.
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Fig. 8. Comparison between analytical and numerical solutions: (a) displacement, (b) stress

The applied boundary conditions are as follows:

(i) Γ1 is fixed, v1 = v2 = 0,

(ii) on Γ2 ∪ Γ3, σxy = v1 = 0,

(iii) finally, stress at Γ4 is σyy = σ(t).

The plate dimensions are taken as follows: length L = 10 m, vertical half-height of the plate
H = 2 m and crack length a = 5 m. The material properties are taken as: Young’s modulus
E = 210 GPa, Poisson ratio ν = 0.3 and density ρ = 8 000 kg.

The analytical solution is given by [7]

Kdy(0, t) =

{
0 if t < tc,

2σ0
1−ν

√
cd(t−tc)(1−2ν)

π
if t ≥ tc,

(27a)

where tc is the time needed by the stress wave to reach the crack-tip and given by

tc = H/cd, (27b)

where cd is the dilatational wave speed.
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Fig. 9. Distribution of stress σxx at different times
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Fig. 10. Geometry and Heaviside step loading

The normalized DSIFs is given by

K̃dy = Kdy(t)/σ0
√

H (28)

with
Kdy(t) =

√
2πrσyy(t), (29)

where r represents the distance from the crack tip along the line θ = 0◦.
Fig. 11 presents the normalized DSIFs as a function of a normalized time obtained by using

the UL-TSPH method. As can be seen, the numerical results converge well to the exact solution
with 101× 41 SPH particles.

Fig. 11. Normalized mode-I DSIFs versus normalized time for different number of particles

5. Conclusion
A collocation meshfree method Updated Lagrangian-Taylor-SPH for large deformation in dyna-
mic problems has been presented. The governing equations are written in mixed terms of stress
and velocity. The time discretization is carried out using Taylor series expansion and the space
discretization based on corrected form of SPH method.
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From the examples presented in Section 4, the following can be deduced:

• The UL-TSPH presents good shock wave propagation properties minimizing numerical
diffusion and dispersion.

• It avoids numerical instabilities in a natural manner.

• It is an efficient tool to assess the Dynamic Stress Intensity Factors. Therefore, it opens a
new way to simulate dynamic fracture of a cracked material.

• The method is efficient, robust, easy to implement and only few particles are needed to
get accurate results.
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