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Abstract

Since the rotor blade system of an horizontal axis wind turbine is responsible for converting wind energy into
mechanical, which turns into electrical and predicting its dynamic behavior is of vital importance. In that sense,
this paper deals with performing a modal analysis of a blade belonging to the DTU 10-MW reference wind turbine
by using a modified Myklestad’s method. The blade model was built on two different keystones, as follows: first,
considering uncoupled bending in out-of-plane (flapwise) and in-plane (edgewise) directions and considering a
coupled bending-torsion motion also in both directions. In order to accomplish these objectives, a Python code
was implemented. The computed eigenfrequencies were compared to the results obtained for the blade by using
the finite element method. Besides, the mode shapes were plotted and the centrifugal stiffening was also taken into
account. Results suggest the feasibility of the modified Myklestad’s method for modal analysis purposes, since
good agreement with reference data was achieved and considering that the Myklestad’s method has a considerably
less complex implementation than the finite element method.
c© 2022 University of West Bohemia.
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1. Introduction

As highlighted by [4], the global ambition for increasing renewable share in electric energy
production has led to a high demand for wind turbines. This trend is due to the technological
solutions that allowed for better generation equipment (wind turbines), for more economically
feasible wind farms installations and for the world’s commitment on increasing sustainable
sources shares in the energy market. According to [12], as the energy demand continuously
grows, wind turbine’s engineering has evolved over the years to provide more efficient solutions
with increased power generation, which implies that wind turbine components have become
larger. The large scale of such dynamic mechanical structures is a challenge for engineers that
must guarantee their long-life safe operation with the lowest maintenance cost possible as the
turbine is submitted to stochastic loads induced by environmental aspects (e.g., turbulences).
Because of the tower and the blades slenderness, special attention must be paid to their dynamic
behavior and control in order to avoid major aeroelastic instabilities and, thus, failures. Hence,
it is important to predict the dynamics of these components in the early design phases. Despite
the aeroelastic effects on the wind turbine operation and the key role of the tower in the turbine
structural dynamics, this paper focuses on a pure dynamic investigation of a wind turbine blade.
When performing dynamic studies of any structure, one of the first steps is to determine the most
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dominant eigenfrequencies, which are flexural eigenfrequencies when considering wind turbine
blades. It turns out that these components are known to have coupled bending-torsion motion due
to their structural characteristics, and one should be aware that neglecting such fact is most likely
to mislead the results. In this context, [2] arises several techniques to solve this kind of issue,
including the Myklestad’s method. Regardless the massive use of the finite element method
(FEM) for this purpose, [3, 8] applied a modified Myklestad-Prohl transfer matrix method to
perform a modal analysis on a helicopter blade. More recently, [14] used Myklestad approach to
predict both eigenfrequencies and mode shapes of a wing and [9] performed a modal numerical
analysis of a helicopter blade by using the Holzer-Myklestad method. The purpose of this work
is to evaluate the flexural eigenfrequencies and mode shapes of the DTU 10 MW reference wind
turbine (RWT) blade, concepted and investigated by [1], in both the flapwise (out-of-plane) and
edgewise (in-plane) directions, which can be distinguished as shown in Fig. 1. While the results
presented by [1] were obtained by DTU Wind Energy proprietary codes, based on the finite
element method, we propose a more computationally affordable approach using an in-house
Python code, based on Myklestad’s derived theories.

Fig. 1. Blade flexural vibration modes directions

2. Theoretical background

The Myklestad’s method for beams is suitable for the solution of flexural systems eigenfrequen-
cies and their respective mode shapes, and it was first presented in [5]. Through this method,
a continuous beam is modeled as a discrete system, in which lumped masses are connected by
massless sections that account for the structural stiffness. At first, Myklestad’s theory considered
static beams with uncoupled bending motion, and one of its main real-world applications was on
airplane wings. Later, [6] proposed minor modifications in the former equations to expand the
theory application to rotating beams such as propellers and turbine blades, which are subjected
to the rotation inertial effect known as centrifugal stiffening. In [10], a polynomial frequency
equation method was developed to determine the natural frequencies of a cantilever beam
mounted on a rotating disc, based on Myklestad’s expressions. This work brought modified
Myklestad’s equations that allowed beams with coupled bending-torsion vibration modes to be
modeled. Thus, structures like wind turbine blades that exhibit coupled bending-torsion motion,
caused by structural pretwist and asymmetric cross-sections, are more precisely represented.
The Myklestad’s method formulations for uncoupled bending motion, detailed in [13], were
applied to the DTU 10 MW RWT blade in [11], which brought results for the blade natural
frequencies.

2.1. Modified Myklestad’s method for coupled bending-torsion motion (CBT model)

This method is applied to discrete cantilever beams represented as lumped masses connected by
massless beam sections, that account for bending/torsion stiffness. Its full description is given
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Fig. 2. Blade schematics: (a) typical blade section with its bending stiffnesses, (b) stations locations,
(c) rotating asymmetric beam in its undeformed position (adapted from [10])

in [10]. Fig. 2 shows a discrete beam mounted on the periphery of a rotating disc, whose radius
is R. The disc constant angular velocity is Ω. The beam has n stations located at positions Rλ,
considering the origin O at the center of the disc. Every station has its mass mλ and its inertia Jλ,
while dλ represents the distance between the elastic axis and the station centroid. Each station
is apart from each another by a distance L.

Fig. 3 presents a free body diagram of a section taken from the discrete beam. Sλ is the shear
force acting on the λ station, Mλ is the bending moment and Tλ is the torque, which are given
as

Sλ = ω2
λ∑

i=0

mi(yi + diθi)− αλ

[
Ω2

λ∑
i=0

miRi

]
, (1)

Mλ = ω2
λ−1∑
i=0

mi(yi + diθi)(Ri − Rλ)− Ω2
λ−1∑
i=0

miRi(yi + diθi − yλ − dλθλ) (2)

and

Tλ = ω2
λ∑

i=0

(midiyi + Jiθi)− αλΩ
2

λ∑
i=0

miRidi, (3)

Fig. 3. Free body diagram of an asymmetric beam section in its deflected position (adapted from [13])
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respectively. Note that the term between the brackets on the right-hand side of (1) is the
contribution from centrifugal force fλ, since the rotor speed Ω is considered (as depicted in
Fig. 3).

Additionally, Fig. 3 shows the elastic axis linear deflection yλ, its slope αλ and its torsion
angle θλ. The massless beam element connecting λ and λ+1 stations accounts for bending and
torsion stiffness: dFλ = (L3/3EI)λ is the deflection at station λ, relative to station λ + 1, due
to a unit force applied at station λ; dMλ = (L2/2EI)λ is the deflection at station λ, relative
to station λ, due to a unit moment applied at station λ + 1; vFλ = (L2/2EI)λ is the slope at
station λ, relative to station λ + 1, due to a unit force applied at station λ; vMλ = (L/EI)λ
is the slope at station λ, relative to station λ + 1, due to a unit moment applied at station λ;
vTλ = (L/GIp)λ is the torsional deflection at station λ, relative to station λ + 1, due to a unit
torque applied at station λ.

It is necessary to express how the parameters from station λ + 1 are related to those from
station λ. The slope αλ+1 can be written as a function of station λ parameters

αλ+1 = αλ − vFλSλ − vMλMλ. (4)

Similarly, one may find the following for the linear deflection

yλ+1 = yλ − Lαλ+1Sλ − dFλSλ − dMλMλ, (5)

and for the torsion angle
θλ+1 = θλ − vTλTλ. (6)

Essentially, this means that every parameter whose index is greater than zero is a function of the
values set for station λ = 0.

Since all geometrical parameters (displacement, bending slope and torsion angle) are linearly
coupled, the solution for the system eigenfrequencies must consider the linear system⎡

⎣ A1y0 A2α0 A3θ0 yn

B1y0 B2α0 B3θ0 αn

C1y0 C2α0 C3θ0 θn

⎤
⎦ . (7)

The solving process for the system eigenfrequencies is iterative. Hence, a range of frequen-
cies must be established for a trial and error procedure. For every frequency ω, equations (1)–(6)
are solved in the presented order, with λ ranging from 0 to n. The calculations begin by setting
boundary conditions for the free-end of the beam, which are S0 = M0 = T0 = 0. Meanwhile,
y0, α0 and θ0 are left to be determined. Initially, y0 value is set to 1, and α0 = θ0 = 0. This
leads to yn, αn and θn to be constants. Then, computations start over with α0 left as an unknown
quantity, while y0 = θ0 = 0, which leads to yn, αn and θn to be linear functions of α0. Lastly, θ0
is left as an unknown quantity, while y0 = α0 = 0, which results in yn, αn and θn being linear
functions of θ0. Then, equation (7) is reorganized as follows⎡

⎣ 1 −A2α0 −A3θ0 A1
0 −B2α0 −B3θ0 B1
0 −C2α0 −C3θ0 C1

⎤
⎦ . (8)

Equation (8) is then solved for α0 and θ0, which can be replaced in (7) for the solution of yn, by
considering y0 = 1. The resulting value for yn(ω)must be zero, in order to satisfy the boundary
conditions for the clamped-end of the beam, for ω to be valid as a system eigenfrequency.
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2.2. Modified Myklestad’s method for uncoupled bending motion (UB model)

This approach is similar to the CBT model, but since the UB model does not take torsion motion
into account, some modifications are made to the presented equations, which make the solution
of the problem simpler. Equations (3) and (6) are not considered. Equations (4) and (5) remain
unchanged. All terms regarding distance d and torsion angle θ are removed from (1) and (2),
which are then presented as

Sλ = ω2
λ∑

i=0

miyi − αλΩ
2

λ∑
i=0

miRi (9)

and

Mλ = ω2
λ−1∑
i=0

miyi(Ri − Rλ)− Ω2
λ−1∑
i=0

miRi(yi − yλ), (10)

respectively. In this case, the solution for the system eigenfrequencies considers only two
variables (y0 and α0), as in [

A4y0 A5α0 yn

B4y0 B5α0 αn

]
. (11)

The trial and error procedure for the frequency range is performed for the UB model, as
well. However, only two sets of computations are necessary: the first one with y0 = 1 and
α0 = 0 and the second one with y0 = 1 and α0 left as an unknown quantity. As the boundary
condition demands, αn must be zero. Hence, α0 is easily obtained as α0 = −(B4/B5) and
substituted into (11) for yn. Here, once again, the valid system eigenfrequencies are the roots of
the polynomial yn(ω). More details regarding these methods can be found in [6, 10, 13].

3. Methodology

The DTU 10 MW RWT blade is about 90 meters long and weighs approximately 41 tons [1].
The aforementioned formulations were coded and validated as per numerical example, given
in [10]. The code was then applied to the DTU 10 MW RWT blade, whose structural parameters
are available in [1] for 51 cross sections along the blade length, as follows: radial position r [m],
mass per unit length mL [kg/m], flapwise bending stiffness EIflap [Nm2], edgewise bending
stiffness EIedge [Nm2], torsional stiffness GIp [Nm2], radius of gyration about flapwise axis
Rflap

gyr [m], and radius of gyration about edgewise axis Redge
gyr [m]. From these parameters, one

can obtain the radius of gyration about the z axis as follows

Rz
gyr =

√(
Rflap

gyr

)2
+

(
Redge

gyr

)2
. (12)

The center of the hub was set as the origin of the reference frame, as shown in Fig. 4.
The blade flapwise and edgewise eigenfrequencies were assessed by means of the CBT

and UB formulations presented in Sections 2.1 and 2.2, respectively, with different levels of
discretization: n = 50, 250 and 1 000 stations, where n is the number of stations.

The processing time was measured for both formulations, which ran in a system powered
by Intel c© i5-7200U processor (2.5 GHz) and 8 GB RAM. For the CBT results, the blade
mode shapes are presented and the effects of centrifugal stiffening on the eigenfrequencies are
evaluated within a range of rotor speeds that include the RWT operational limits (from 6.0 to
9.6 rpm). In this work and for the reader’s convenience, it should be pointed out that some
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Fig. 4. DTU 10 MW RWT blade: (a) top view (XZ-plane), (b) front view (YZ-plane) (adapted from [7])

key assumptions were made resulting from the application of the Myklestad’s method. These
assumption are listed as follows:

(i) All formulations are derived assuming a unidimensional modeling, i.e., the blade is a
discretized line with area properties attached to each station.

(ii) Apart from cross-sections locations, cords and thicknesses, no CAD files were evaluated.

(iii) The elastic axis of the blade is considered colinear, and its deflection occurs either in the
XZ- or YZ-plane.

(iv) The structural twist angle between the blade’s cross-sections was not taken into account,
so the sections principal axis was treated as aligned to the reference frame.

(v) The cross-section mass is uniformly distributed, so the center of mass is coincident with
the cross-section centroid.

(vi) The distance between the elastic axis and the station centroid d was considered equal to
the corresponding cross section Rz

gyr, which is given by (12).

4. Results and discussions

The aim of this section is to present the eigenfrequencies obtained by both the UB and CBT
models, as well as the mode shapes extracted from the CBT model (n = 1 000) and the effects
of the centrifugal stiffening on the eigenfrequencies of the blade, also evaluated for the CBT
model (n = 1 000).

4.1. Blade eigenfrequencies

Table 1 provides a comparison between the UB and CBT performances with the reference values
(BAK) given in [1] for the flapwise direction. By contrast, Table 2 is dedicated to the comparison
of edgewise direction results.

At first glance, it becomes apparent that the CBT model performed better than the UB model
in terms of results accuracy, once the frequencies estimated from the CBT model converged to
values closer to the reference ones provided in [1]. In general, flapwise modes demonstrated
to be less sensitive than edgewise modes to the assumptions on which the models were based
on. The processing time for the CBT models were about three times greater than for the UB
models, which can be attributed to the larger number of variables and equations complexity of
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Table 1. Comparison between flexural eigenfrequencies of the DTU 10 MW RWT blade obtained by the
UB and CBT models – flapwise direction (out-of-plane)

n mode eigenfrequency [Hz] deviation [%] processing time [s]
BAK UB CBT UB/BAK CBT/BAK UB CBT

1 0.61 0.59 0.59 −3.28 −3.28

50 2 1.74 1.70 1.68 −2.30 −3.45 1.83 4.56
3 3.57 3.52 3.42 −1.40 −4.20
4 6.11 6.00 5.72 −1.80 −6.32
1 0.61 0.61 0.61 0.00 0.00

250 2 1.74 1.76 1.73 1.15 −0.57 8.59 22.50
3 3.57 3.65 3.54 2.24 −0.84
4 6.11 6.24 5.94 2.13 −2.78
1 0.61 0.62 0.62 1.64 1.64

1 000 2 1.74 1.77 1.74 1.72 0.00 37.33 99.27
3 3.57 3.68 3.57 3.08 0.00
4 6.11 6.31 6.01 3.27 −1.64

Table 2. Comparison between flexural eigenfrequencies of the DTU 10 MW RWT blade obtained from
the UB and CBT models – edgewise direction (in-plane)

n mode eigenfrequency [Hz] deviation [%] processing time [s]
BAK UB CBT UB/BAK CBT/BAK UB CBT

1 0.93 0.95 0.94 2.15 1.08
50 2 2.76 2.85 2.74 3.26 −0.72 1.83 4.56

3 6.66 6.11 5.65 −8.26 −15.17
1 0.93 0.97 0.96 4.30 3.23

250 2 2.76 2.92 2.81 5.80 1.81 8.59 22.50
3 6.66 6.26 5.79 −6.01 −13.06
1 0.93 0.97 0.96 4.30 3.23

1 000 2 2.76 2.94 2.83 6.52 2.54 37.33 99.27
3 6.66 6.31 5.83 −5.26 −12.46

the coupled bending-torsion formulations. Since [1] presented no processing information (such
as computational setup and processing time), it was not possible to compare the computational
performance of the UB and CBT models with the results obtained by the FEM algorithm. For
the flapwise modes, the UB model converged to overestimated values of the eigenfrequencies.
The first mode was relatively well predicted with an absolute deviation of only 0.01 Hz (or
1.64%), but as for the higher modes, larger errors were verified, as observed for the fourth
eigenfrequency, which exhibited a 3.27% deviation from the reference value. On the other hand,
the CBT model predicted exactly the second and third flapwise eigenfrequencies, while the
first mode was overestimated by the same amount of UB’s prediction and the fourth mode was
underestimated by −0.10 Hz (or −1.64%).
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As for the edgewise modes, greater deviations were found. Surprisingly, both methods
achieved better agreement with [1] when coarser discretizations were applied and increased
the deviation when greater numbers of stations were considered. The only exception is the
third mode, whose deviation drops with finer discretizations, but still exhibits significant outlier
results. Given this anomalous behavior, the authors’ hypothesis is that this gap has to do with the
simplifying assumptions made in the methodology, since other results revealed good agreement,
especially those obtained by using the CBT approach. Disregarding the third mode, the UB
model predicted edgewise natural frequencies with a maximum deviation of 6.52%, while the
CBT model presented a maximum deviation of 3.23%.

4.2. Blade mode shapes

The blade flapwise mode shapes occur by the movement of the elastic axis along the YZ-
plane that is the direction normal to the rotation plane. Figs. 5–8 depict the flapwise mode
shapes computed for the RWT blade by the CBT model considering the finest discretization
(n = 1 000). Figs. 5(a)–8(a) show the Z-displacement (in the YZ-plane) of the leading edge
(LE) and trailing edge (TE) along the blade span, normalized by the tip displacement. It is
noticeable that the two curves diverge at some points due to the bending-torsion coupling effect.
Figs. 5(b)–8(b) represent the edges movement in the XZ-plane, to improve the torsion effect
visualization. All the plotted mode shapes are delimited by an undeformed blade contour (black
thinner line). It is possible to visualize the torsion angle effect, especially for the third and fourth
modes. All the flapwise modes are also presented in perspective in Fig. 9.

Fig. 5. FLAPWISE – First mode: (a) leading and trailing edges deflections (YZ-plane), (b) top view
(XZ-plane)

Fig. 6. FLAPWISE – Second mode: (a) leading and trailing edges deflections (YZ-plane), (b) top view
(XZ-plane)
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Fig. 7. FLAPWISE – Third mode: (a) leading and trailing edges deflections (YZ-plane), (b) top view
(XZ-plane)

Fig. 8. FLAPWISE – Fourth mode: (a) leading and trailing edges deflections (YZ-plane), (b) top view
(XZ-plane)

Fig. 9. FLAPWISE modes (perspective): (a) first mode, (b) second mode, (c) third mode, (d) fourth mode

59



L. M. Pereira et al. / Applied and Computational Mechanics 16 (2022) 51–63

The blade edgewise mode shapes occur by the movement of the elastic axis along the XZ-
plane, i.e., the rotation plane. Figs. 10–12 exhibit the edgewise mode shapes also computed
by the CBT model with n = 1 000. Once again, Figs. 10(a)–12(a) present the normalized Z-
displacement (in the YZ-plane) of the leading edge (LE) and trailing edge (TE) along the blade
span. In this case, the results show a more evident torsion effect, as seen by the differences
between the LE and TE displacements. Figs. 10(b)–12(b) represent the edges movement in the
XZ-plane for the three edgewise modes considered. It is worth to mention that due to the larger
bending stiffness in the edgewise direction (EIedge > EIflap), the actual bending deflections
(non-normalized) expected in the flapwise modes are larger than in the case of the edgewise
ones.

Fig. 10. EDGEWISE – First mode: (a) leading and trailing edges deflections (YZ-plane), (b) top view
(XZ-plane)

Fig. 11. EDGEWISE – Second mode: (a) leading and trailing edges deflections (YZ-plane), (b) top view
(XZ-plane)

Fig. 12. EDGEWISE – Third mode: (a) leading and trailing edges deflections (YZ-plane), (b) top view
(XZ-plane)
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Fig. 13. EDGEWISE modes (perspective): (a) first mode, (b) second mode, (c) third mode

A better visualization of the edgewise modes can be seen in perspective, as shown in Fig. 13.

4.3. Centrifugal stiffening

Due to the operation of the wind turbine, each blade behaves as a rotary wing. For this reason,
the effect of the centrifugal stiffening should be considered in order to estimate the actual eigen-
frequencies and mode shapes during the rotor’s rotation. Thus, based on the finest discretization,
the centrifugal stiffening was taken into account within the CBT model. Both Table 3 and Fig. 14
present the eigenfrequencies trend with respect to the rotor speed.

Table 3. Evaluation of the centrifugal stiffening on the blade eigenfrequencies – CBT model (n = 1000)

eigenfrequencies [Hz]
rotor speed flapwise modes edgewise modes
[rpm] [Hz] 1 2 3 4 1 2 3
0.0 0.00 0.62 1.74 3.57 6.01 0.96 2.83 5.83
6.0 0.10 0.63 1.76 3.58 6.02 0.97 2.84 5.84
9.6 0.16 0.65 1.78 3.61 6.04 0.98 2.85 5.85
60.0 1.00 1.41 2.90 4.86 7.36 1.55 3.59 6.61
96.0 1.60 2.05 4.04 6.33 9.05 2.12 4.50 7.66

Fig. 14. Centrifugal stiffening effect (Campbell Diagram)
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As the limit for operational rotor speed is 9.6 rpm (or 0.16 Hz), the eigenfrequencies exhibit
very low sensitivity to the increase in rotor speed in this range, as can be observed in Fig. 14.
Aeroelastic and gravity effects were not taken into account in this work.

5. Concluding remarks

The purpose of this work was to evaluate the flapwise and edgewise flexural eigenfrequencies
and mode shapes of the DTU 10 MW reference wind turbine (RWT) blade. It was shown that
the modified Myklestad’s method is suitable for performing modal analysis. The UB model
considered uncoupled bending along flapwise and edgewise directions of the blade and the
CBT model took the coupling bending-torsion motion into account. All eigenfrequencies were
compared in a tabular fashion with the reference data provided for the reference wind turbine.
Reasonable agreement was found, even in cases of coarser discretization. All the respective
mode shapes obtained by the CBT model were plotted, revealing the torsion effect. Finally,
the centrifugal stiffening effect on the eigenfrequencies was evaluated in the case of increasing
rotor speed. Based only on the operational speed range, no significant impact was revealed. The
results obtained are encouraging in the sense that the Myklestad’s method is able to provide
reliable baselines if compared with FEM results [1]. Moreover, the models were built under
several assumptions. Therefore, despite FEM playing more reliable and robust role from the
view point of current industrial applications, the authors consider the investigated method to
be an affordable alternative tool for preliminary numerical modal analyses, due to its simpler
computational implementation in comparison to FEM.
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