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Curvilinear element of the discontinuous Galerkin method
designed to capture the labyrinth seal geometry exactly
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Abstract

The present study applies the discontinuous Galerkin finite element method to a numerical simulation of a compres-
sible fluid flow through a labyrinth seal. This paper is proposes a curvilinear hexahedral element, which is deformed
in such a way that it matches the rotated walls of the labyrinth seal exactly. A numerical study is performed on the
staggered labyrinth seal with two teeth on the rotor and one tooth on the stator. For numerical simulation, three
computational meshes with different refinement are considered. All of the numerical simulations are performed
for both stationary rotor and for rotor rotating at 50 Hz. The obtained numerical results are compared with results
computed by the commercial CFD software Ansys Fluent.
c© 2022 University of West Bohemia.
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1. Introduction
The design of steam turbines with the basic subsystems has not changed substantially for over
a century. The research and development in this area has been focused mainly on improving
safety and efficiency and on enhancing the overall performance by working with higher and
higher pressure ratios. These improvements have been made partly thanks to computer simu-
lations and CFD simulations in particular. The turbine performance is heavily influenced by the
design of seals. The amount of steam leaking around the edge of the blades instead of passing
through them is critical to performance and thermodynamic efficiency. An overview of sealing
in turbomachinery can be found for instance in [5].

Labyrinth seals are a common type of sealing in turbomachinery. Such a seal creates a
complicated path for the fluid to take in order to reduce leakage. A labyrinth seal consists of a
number of cavities wherein eddies are formed. The primary purpose of these eddies is to dissipate
energy thereby increasing the resistance of the flow. Labyrinth seals are ideal for sealing the tip
of turbine blades because of a high pressure ratios between the stages and high rotational speed
of the rotor. Other types of seals might not withstand such conditions. Although labyrinth seals
do not prevent leakage completely because of the clearance between the stator and rotor, for the
same reason they are durable and reliable and resist high temperatures and pressure ratios.

There are a number of geometries of labyrinth seals, including straight-through, staggered,
stepped and combinations. Each type of labyrinth seal has multiple parameters that can be
adjusted, such as clearance size and height, width, pitch and angle of inclination of the tooth.
These parameters have a drastic effect on the efficiency, lifespan and stability of the turbine.
For instance, large clearance leads to loses in power output and may cause instabilities. On the
other hand, clearance which is too small may, under some conditions, result in rubbing and
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cause damage. For this reason, flow in labyrinth seals and its influence on the turbine has been
extensively studied.

The oldest method for estimating the leakage through a labyrinth seal was developed by
Martin [10] in 1908. He came up with an expression for quantifying the leakage of an ideal
straight seal. His finding was generalised by many authors, see literature survey [14]. Another
analytical approach for modelling labyrinth seals was developed by Iwatsubo [8] and improved
by Childs and Scharrer [4]. This empirical model is called the bulk-flow model and is based on
a control volume approach. It involves solving the continuity and circumferential momentum
equations for each cavity. It is used to analyse instabilities that may arise due to flow inside
labyrinth seals.

Plenty of experimental and numerical studies that are concerned with fine-tuning of labyrinth
geometries have been published throughout the years. Stocker [16], for example, designed
several step seals in an attempt to increase turbulence in cavities and performed numerous
experiments to evaluate their efficiency for gas turbines with high pressure ratios. Wittig et
al. [19] conducted one of the earliest studies which explored possibilities of CFD computing
for the labyrinth seal simulation. In particular, they performed CFD simulations for various
pressure ratios and geometrical parameters of both straight-through and stepped seals with a
finite-difference based compressible solver with k-ε turbulent model and validated the solver
with their experimental setup. To name more recent examples, Hur et al. [7], Kang et al. [9] and
Zhang et al. [21] all investigated the dependence of the clearance size and other tooth parameters
on the leakage characteristics in stepped labyrinth seal both numerically and experimentally. All
of the three studies considered only a 2D flow in a cross section of a radially symmetric labyrinth
seal, with they computed using commercial CFD solvers based on finite volume approach. There
are also studies, which model the flow in the labyrinth seal as fully three dimensional, see for
example [11] or [20] and references therein.

The majority of numerical studies on fluid flow in labyrinth seals make use of traditional
discretization methods, such as finite volume method, and, in most cases, they use commercial
CFD software. The aim of this study is to apply a less traditional high-order method that, also
thanks to the use of curvilinear elements, gives similar results as the traditional methods when
using much coarser mesh. In particular, the discontinuous Galerkin (DG) finite element method
is used for the numerical simulation of a fluid flow in labyrinth seals. The advantage of the
DG method is its stability, robustness, low artificial damping and the ability to achieve a high-
order of spatial accuracy, see e.g. [3, 13, 18]. The key part of this study is the transformation
of the reference element onto the physical element in such a way, that it matches the geometry
of the labyrinth seal exactly. Because of this, considerably fewer elements can be used in
the circumferential direction without a significant loss of accuracy. The motivation for the
development of this particular curvilinear element are applications where the rotor is undergoing
a precession. These problems can be solved in two different ways. The first option is to prescribe
a motion to the rotor, in which case, the governing equations are solved using the arbitrary
Lagrangian-Eulerian method [2, 12]. The second option is to change the perspective from
a stationary frame of reference to the non-inertial rotating reference frame that follows the
precession of the rotor. The presented curvilinear element is especially suitable for the latter
approach, where the labyrinth seal is not rotationally symmetric. This paper presents a use of
the curvilinear element only for rotationally symmetric labyrinth seals for simplicity of the
numerical study.

In this paper, six simulations on a chosen labyrinth seal geometry with three different meshes
and two rotor speeds is performed. The results are compared with the results obtained by the
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commercial CFD software Ansys Fluent. A smaller element size in the circumferential direction
is used for Ansys Fluent, since its solver uses a traditional finite-volume approach without
curvilinear elements. Due to numerical difficulties with the k-ε and k-ω turbulence models in
combination with the discontinuous Galerkin method, Spalart–Allmaras turbulence model was
used instead. Although this turbulence model in not suitable for this particular problem, the
authors believe that the Spalart–Allmaras turbulence model is sufficient for demonstrating the
idea of the presented numerical approach with curvilinear elements. The same turbulence model
was also used in the case of Ansys Fluent so that the comparison between the two solvers is
valid.

2. Mathematical model

The system of Favre-averaged Navier-Stokes equations is considered as the underlying mathe-
matical model. The system can be written in dimensionless formulation as follows

∂�̄

∂t
+

∂(�̄ũi)
∂xi

= 0,

∂

∂t
(�̄ũj) +

∂

∂xi

(�̄ũiũj + p̄δij) =
∂

∂xi

(τ̃ij + tij), j = 1, 2, 3, (1)

∂

∂t
(�̄ẽ) +

∂

∂xi

(�̄ẽũi + p̄ũi) =
∂

∂xi

[(τ̃ij + tij)ũj − q̃i − qti] ,

where i = 1, 2, 3 is the summation index, �̄ and p̄ are dimensionless time-averaged values
of density and pressure, ũi and ẽ are dimensionless mass-averaged velocity components and
energy. The mass-averaged heat flux q̃i and viscous stress tensor τ̃ij and the turbulent heat flux
qti and the Reynolds stress tensor tij are given by the following relations

q̃i = − κ

κ − 1
μ

Pr
∂

∂xi

(
p̄

�̄

)
, τ̃ij =

2μ
Re

S̄ij , (2)

qti = − κ

κ − 1
μt

Prt

∂

∂xi

(
p̄

�̄

)
, tij =

2μt

Re
S̄ij ,

with

S̄ij =
1
2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
− 1
3
δij

∂ũk

∂xk
. (3)

Here, Re is the Reynolds number, Pr is the Prandtl number, Prt is the turbulent Prandtl number,
which is chosen as Prt = 0.89, and μ and μt are regular and turbulent dynamic viscosities. The
equation of state for ideal gas is considered as

p̄ = (κ − 1)
(

�̄ẽ − 1
2
�̄ũiũi

)
. (4)

To include the influence of turbulent fluctuations on the mean flow the one-equation turbulence
model of Spalart and Allmaras [15] is used. Note that this model neglects turbulent kinetic
energy, therefore this quantity was set to zero in the above equations. The equation governing
the transportation, dissipation and generation of viscosity-like quantity ν̃ is in the dimensionless
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form given by
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and completed by the following relations
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1

Re
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κ2D2
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) 1
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, 10

)
, fv1 =

χ3
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, χ =

ν̃

ν
, fv2 = 1−

χ

1 + χfv1

and constants cb1 = 0.135 5, cb2 = 0.622, σ = 2
3 , κ = 0.41, cw1 =

cb1
κ2
+ 1+cb2

σ
, cw2 = 0.3,

cw3 = 2.0, cv1 = 7.1. Here ν = μ/�̄ is the kinematic viscosity, D is the distance to the nearest
wall and Ω̄ is the vorticity magnitude.

The system of Favre-averaged Navier-Stokes equations (1) and the transport equation (5)
constituted one coupled system, which can be written in the following compact vector form

∂w

∂t
+

∂

∂xi
fi(w,∇w) = p(w,∇w), (6)

where w is the vector of conservative variables, p is the production term and fi is the total flux,
which consist of the inviscid (Euler) flux fE

i and the viscous flux fV
i as follows

fi(w,∇w) = fE
i (w) + fV

i (w,∇w). (7)

In three dimensions the vectors read
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.

3. Spatial discretization

The discontinuous Galerkin (DG) method [3, 13, 18] is a very stable and robust solution for
a compressible fluid flow modelling. In the field of CFD, it is the main competitor for the
finite volume method – still the most commonly used method in the industry. The DG method
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naturally offers an arbitrary order of accuracy by choosing basis polynomial of appropriate order.
In this section, spatial discretization of the system of compressible Navier-Stokes equations (6)
is performed using the DG method.

Let T = {Ω1,Ω2, . . . ,ΩK} be the partition of the computational domain Ω ⊂ R3, that is⋃
k Ωk = Ω and

⋂
k Ωk = ∅ . The solution of the system (6) is considered to be an element of

the space of vector functions Sh = [Sh]6, where

Sh = {w ∈ L2(Ω) : w|Ωk
∈ P q(Ωk) ∀Ωk ∈ T }, (8)

and P q(Ωk) is the space of polynomial of degree up to q on Ωk. Note that discontinuities on the
boundary of elements are allowed. Taking the dot product of the system of equations (6) with a
test function v ∈ Sh, integrating it over an element Ωk ∈ T , applying the divergence theorem
and substituting the physical flux f by a numerical flux F in the surface integral, the following
integral identity is obtained∫

Ωk

∂w

∂t
· v dΩ−

∫
Ωk

fi(w,∇w) · ∂v

∂xi
dΩ +

∮
∂Ωk

F(w±,∇w±, n) · v− dΓ =∫
Ωk

p(w,∇w) · v dΩ. (9)

Here n is the unit outward normal to the boundary ∂Ωk. The left- and right-hand side limit
values of a function say ψ are denoted by ψ− and ψ+, respectively. In the case of the DG
method, discontinuities are allowed on the boundary of each element Ωk. Therefore, only the
limit values of any test function v and the solution w are defined on ∂Ωk. For this reason, the
inviscid and viscous normal physical flux is approximated by an inviscid and viscous numerical
flux on ∂Ωk, respectively, that is

fE
i (u)ni ≈ FE

in (u
±, n),

fV
i (u,∇u)ni ≈ FV

in (u
±,∇u±, n).

The Lax-Friedrichs flux [17] is chosen as the inviscid numerical flux FE. In order to approximate
the normal viscous flux, the interior penalty method is used [6]. Analogically to the physical
flux, we define the total numerical flux as Fin = FE

in −FV
in . In order to account for the boundary

conditions, we define the numerical flux F as

F(u±,∇u±, n) =

{
Fin(u±,∇u±, n) if x ∈ Ω,

Fb(u−,∇u−, n) if x ∈ ∂Ω,
(10)

where Fb is the boundary flux which is given by the boundary conditions.
Each component wm (m = 1, 2, . . . , 6) of the solution vector w can be expanded as a linear

combination of local basis functions ϕ
(k)
1 , ϕ

(k)
2 , . . . , ϕ

(k)
Nk

on each element Ωk as follows

wm(x, t)
∣∣∣
Ωk

=
Nk∑
s=1

W (k)
ms (t)ϕ

(k)
s (x). (11)

Here Nk denotes the number of basis functions supported on Ωk. The total number of basis
functions is N =

∑
k Nk. W

(k)
m1 , W

(k)
m2 , . . . , W

(k)
mNk

are coefficients of w on Ωk corresponding to
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the m-th equation. Plugging the expansion (11) into (9), substituting the basis functions for the
test function v and splitting the surface integral, the following semi-discrete scheme is obtained

Nk∑
s=1

∂W
(k)
ms

∂t

∫
Ωk

ϕ(k)r ϕ(k)s dΩ−
∫
Ωk

fmi(w,∇w)
∂ϕ
(k)
r

∂xi
dΩ+

Lk∑
l=1

∫
Γkl

Fm(w
±,∇w±, n)ϕ(k)−r dΓ =

∫
Ωk

pm(w,∇w)ϕ(k)r dΩ, (12)

where Γk1,Γk2, . . . ,ΓkLk
are faces of the elementΩk and Lk denotes the number of faces of Ωk.

4. Element transformation

This section is focused on the evaluation of integrals in the semi-discrete scheme (12), which
will be performed on the reference element. Let

xi = x
(k)
i (ε), i = 1, 2, 3, (13)

be the transformation from the reference element Ω0 with coordinates ε = [ε1, ε2, ε3] onto the
physical element Ωk with coordinates x = [x1, x2, x3]. Note that the transformation depends on
the location of the physical element, therefore it is different for each element. All integrals are
evaluated on the reference element. In general, a volume integral is transformed as follows∫

Ωk

ψ(x) dΩ =
∫
Ω0

ψ̂(ε) Jk dΩ0, (14)

here Jk is the determinant of the Jacobian ∂x
(k)
i /∂εj of the transformation (13) and ψ̂ refers

to the function ψ transformed onto the reference element. For convenience, the basis functions
are defined on the reference element, and so they can be integrated on the reference elements
directly. We denote the basis function defined on the reference element by ϕ̂1, ϕ̂2, . . . , ϕ̂N . The
physical flux, on the other hand, is defined on the physical element. Since the physical flux is a
contravariant tensor, it transforms as follows

f̂mj(ŵ,∇ŵ) = fmi(w,∇w)
∂ε
(k)
j

∂xi
, (15)

where ∂ε
(k)
j /∂xi is the inverse Jacobian. The normal numerical flux F and the production term

p are also defined on the physical element. However, they are 0-order tensors, which means that
their transformation is trivial.

The remaining integral that needs to be dealt with is the surface integral. Analogically to the
reference element, a reference face Γ0 is defined. Moreover, let

si = s
(kl)
i (ζ), i = 1, 2 (16)

be the transformation from the reference face Γ0 with coordinates ζ = [ζ1, ζ2] onto the physical
face Γkl with coordinates s = [s1, s2]. In general, surface integrals are transformed as follows∫

Γkl

ψ(s) dΓ =
∫
Γ0

ψ(ζ) Jkl dΓ0, (17)
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where Jkl is the determinant of the Jacobian of the transformation (16). Putting all that together,
the semi-discrete scheme (12) becomes

Nk∑
s=1

∂W
(k)
ms

∂t

∫
Ω0

ϕ̂r ϕ̂s Jk dΩ0−

∫
Ω0

fmi(w,∇w)
∂ε
(k)
j

∂xi

∂ϕ̂r

∂εj
Jk dΩ0+

Lk∑
l=1

∫
Γ0

Fm(w
±,∇w±, n) ϕ̂−

r Jkl dΓ0 =
∫
Ω0

pm(w,∇w) ϕ̂r Jk dΩ0 (18)

with summation indices i and j. The vector of conservative variables w is a linear combination
of the basis function, which are defined on the reference element. This means, that only ŵ and
∇ŵ are known directly, given the coefficient of the linear combination. However, w and ∇w
appear in (18). Since w is a 0th-order tensor, its transformation is trivial. The gradient ∇w is a
covariant tensor and so the partial derivatives transform as follows

∂w

∂xi
=

∂ŵ

∂εj

∂εj

∂xi
. (19)

5. Temporal discretization

The semi-discrete scheme (12) or (18) can be written as the following system of ordinary
differential equations

M
dW (t)
dt

= R(W (t)), (20)

here W is the vector of the unknown coefficients W
(k)
ms of the linear combination (11). The mass

matrix M and the right-hand side vector R are obtained by evaluating both the volume and
surface integrals in (18) by the Gaussian quadrature rule of sufficient order.

In this study, only problems of finding the steady state are solved. Therefore, a first order
of accuracy is sufficient for the time integration. In particular, the backward Euler method is
used for time integration of the nonlinear system of ordinary differential equations (20) and
the resulting nonlinear system of algebraic equations is linearized with the aid of the Jacobian
∂R/∂W to obtain the following system of linear algebraic equations[

1
Δtn

M − ∂R

∂W
(Wn)

]
ΔWn = R(Wn). (21)

The solution in the next time level is Wn+1 = Wn + ΔWn. The linearization can also be
though of as performing one iteration of the Newton–Raphson method. The Jacobian ∂R/∂W
is evaluated numerically, since it is tedious to derive it analytically. The entry (i, j) of the
Jacobian can be approximated by the difference quotient

∂R

∂W

∣∣∣∣
ij

≈ Ri(W + hej)− Ri(W )
h

, (22)

where ej is a vector with 1 in the j-th entry and zero elsewhere and h is a sufficiently small
number, e.g., h = 10−8. The system of linear equations (21) is solved iteratively using the
GMRES method with the ILU(0) preconditioner.
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6. Curvilinear element

The target of this section is to define a transformation that matches the geometry of the seal
exactly. This transformation should map each hexahedral element into a ring sector as shown in
Fig. 1. To this end, the transformation is divided into two steps. The first step is the mapping Φ
that maps the reference element onto elements in an auxiliary mesh, which is essentially the
unfolded final mesh. Any cross section in the x̂ŷ plane of the auxiliary mesh corresponds to
a cross section in the final mesh. The axis θ corresponds to the angle in the final mesh. The
transformation Φ has following form

x̂ = a0 + a1ε+ a2ξ + a3η + a4εξ + a5εη + a6ξη + a7εξη,

ŷ = b0 + b1ε+ b2ξ + b3η + b4εξ + b5εη + b6ξη + b7εξη, (23)
θ = c0 + c1ε+ c2ξ + c3η + c4εξ + c5εη + c6ξη + c7εξη,

where ε ∈ [0, 1], ξ ∈ [0, 1], η ∈ [0, 1]. By plugging the coordinates of each of the eight vertices
of the reference element into (23), each equation becomes a linear system of eight equations
and eight unknowns. By solving for ai, bi and ci (i = 1, 2, . . . , 7), we obtain Φ explicitly. The
second step is the mapping Ψ given by

x = x̂,

y = ŷ cos(θ), (24)
z = ŷ sin(θ),

which folds the auxiliary mesh into a circle. The overall transformation χ is the composition of
the two transformations χ = Ψ ◦ Φ.

Fig. 1. Transformation of the reference element into a physical element

7. Seal geometry and computational meshes

As the test geometry, a staggered labyrinth seal depicted in Fig. 2 was chosen. There are two
cavities in the labyrinth seal, which are created by three teeth each with the clearance of 0.4mm.
Two of the teeth are placed on the rotor and one tooth on the stator.
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Fig. 2. Geometry of the test seal. Inlet (green), outlet (red), stator (blue) and rotor (black) are on the left,
right, top and bottom, respectively. Units are millimetres

The total of four different meshes were considered. Three of the meshes were used for the
present solver and one for Ansys Fluent. The meshes used for the present solver are labelled by
numbers 1, 2 and 3 and have 1 008, 2 268 and 4 032 elements in the cross section, respectively.
All three of the meshes are divided into 12 sections around the circumference of the seal. The
total number of elements is obtained by multiplying the number of elements in the cross section
by the number of circumferential divisions. The mesh that is used for simulations by Ansys
Fluent is divided into 72 sections around the circumference of the seal and has 4 032 elements
in the cross section. The total number of elements therefore is 290 304. This mesh has the exact
same cross section as mesh 3 but the total number of elements is higher due to the higher number
of circumferential divisions. The number of elements and number of divisions for each of the
meshes is summarized in Table 1.

Table 1. Number of elements for each of the four meshes. Meshes 1, 2 and 3 are used for the present
solver and the remaining mesh is used to compute the solution using Ansys Fluent. The total number of
elements is the number of divisions multiplied by the number of elements in a cross section

mesh circumfer. number of elements
labels divisions cross section total
1 12 1 008 12 096
2 12 2 268 27 216
3 12 4 032 48 384

Fluent 72 4 032 290 304

The reason why it is sufficient to use 12 divisions around the circumference of the seal is that
the present solver uses special transformation onto circumferentially-curved elements, which
capture the curvature of the seal. Ansys Fluent on the other hand does not implement curved
elements, after all it uses the finite volume method, therefore, it requires more elements along
the circumference of the seal. Moore [11] conducted a numerical study to find the right number
of circumferential divisions and concluded that the mesh independence is achieved for about
61 divisions. To be on the safe side, 72 circumferential divisions were used in this paper, which
corresponds to 5◦ for each division.

8. Numerical results
In this section, numerical results obtained using the discontinuous Galerkin method with three
different meshes is compared with results obtained by the commercial CFD software Ansys
Fluent. Linear basis functions were used in the case the discontinuous Galerkin method, which
corresponds to the second order of accuracy. A compressible turbulent fluid flow is considered
in all of the cases. In the simulation, air close to standard conditions was used as the fluid. The

13



O. Bublı́k et al. / Applied and Computational Mechanics 16 (2022) 5–22

boundary conditions are given by the pressure ratio pin
0 /p

out = 1.267. The fluid parameters along
with the boundary conditions are summarized in Table 2.

Table 2. Fluid parameters and boundary conditions

name symbol value units
fluid

heat capacity cp 1 005 J kg−1K−1

heat capacity ratio κ 1.40 –
dynamic viscosity η 1.879 · 10−5 Pa s
thermal conductivity λ 2.620 · 10−2 W m−1K−1

inlet
total pressure pin

0 126.7 kPa
temperature T in

0 293 K
outlet

static pressure pout 100 kPa

Three different meshes were used to obtain result by the present solver, see Section 7. Two
simulations were performed with each computational mesh – one simulation with stationary
rotor and one simulation with rotor rotating at the frequency of 50Hz. The results obtained
by the present solver are compared with the results obtained by Ansys Fluent. A mesh with
the same number of elements in the cross section as the finest mesh for the present solver is
used for Ansys Fluent. The only difference is that the mesh used for Ansys fluent has more
circumferential division and therefore a higher total number of elements.

In order to visualise the pressure profile along the labyrinth seal, a line through the seal
was chosen as shown in Fig. 3 in a cross section. Static pressure along this line is plotted in
Fig. 4 for both the stationary rotor (left) and rotating rotor (right). The blue, red and yellow
lines corresponds to pressure obtained by the DG solver for three different meshes and the black
dashed line corresponds to pressure obtained by Ansys Fluent.

Fig. 3. Pressure line

Fig. 4. Pressure along the line shown in Fig. 3 for stationary rotor (left) and rotating rotor (right)
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Six lines labelled by letters A–F were chosen in a cross section of the labyrinth seal as shown
in Fig. 5 to visualise the velocity in the cavities and in the clearances. Figs. 6–8 show velocity
along these lines for stationary rotor and Figs. 9–11 show velocity for rotating rotor. Figs. 6
and 9 shows the x-component of velocity in the clearances A and F. Figs. 7 and 10 and Figs. 8
and 11 show appropriate components of velocity in the first and second cavity, respectively.
Here, x-component of velocity is shown along the vertical lines B and D and y-component of
velocity is shown along the horizontal lines C and E. In addition, Fig. 12 shows z-component
of velocity along the vertical lines B and D, but only for the case of rotating rotor. In all of
those cases, results computed by the present DG solver for three different meshes and by Ansys
Fluent are shown.

Fig. 5. Velocity lines

A F

Fig. 6. Comparison of x component of velocities along the lines specified in Fig. 5 with rotor at rest

B C

Fig. 7. Comparison of x and y components of velocities along the lines specified in Fig. 5 with rotor at
rest
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D E

Fig. 8. Comparison of x and y components of velocities along the lines specified in Fig. 5 with rotor at
rest

A F

Fig. 9. Comparison of x component of velocities along the lines specified in Fig. 5 with rotor rotating
with a frequency 50 Hz

B C

Fig. 10. Comparison of x and y components of velocities along the lines specified in Fig. 5 with rotor
rotating with a frequency 50 Hz
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D E

Fig. 11. Comparison of x and y components of velocities along the lines specified in Fig. 5 with rotor
rotating with a frequency 50 Hz

B D

Fig. 12. Comparison of z component of velocity along the lines specified in Fig. 5 with rotor rotating
with a frequency 50 Hz

Figs. 13 and 14 show the comparison of velocity vectors inside the first and second cavities
computed by present DG solver and by Ansys Fluent. In both cases, solution using mesh 1
and mesh 3 are shown. The solution obtained by Fluent resembles to the solution obtained by
the present solver with mesh 1 much more closely than the solution with obtained with the
finest mesh. This fact indicates that the discontinuous Galerkin method is able to achieve higher
accuracy on the same computational mesh. Notice that secondary vortices appear in both cavities
in the solution obtained using mesh 3. A detailed view of chosen secondary vortices is shown
in Figs. 13 and 14.

The distribution of Mach number in a chosen cross section is visualised in Fig. 15. A
comparison between the results computed by the present solver with all of the three meshes
and results obtained by Ansys Fluent is shown. Finally, the last figure, Fig. 16, shows the
z-component of velocity in a chosen cross section. Here a comparison between the results
computed by the present solver with the finest mesh, mesh 3, and result obtained by the Ansys
Fluent is shown.
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(a) DG mesh 3 (b) DG mesh 3 – right top corner

(c) DG mesh 1 (d) Fluent

Fig. 13. Velocity vectors inside the first cavity

(a) DG mesh 3 (b) DG mesh 3 – right bottom corner

(c) DG mesh 1 (d) Fluent

Fig. 14. Velocity vectors inside the second cavity
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Fig. 15. Mach number contours in a cross section computed by the present solver with mesh 1, 2 and 3
and by Fluent, respectively from top to bottom

Fig. 16. Contours of the z-component of velocity in a cross section computed by the present solver with
mesh 3 (top) and by Fluent (bottom) for rotor rotating at 50 Hz
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9. Conclusion

In the present paper, the DG method was implemented and applied to the numerical simulation
of a turbulent compressible fluid flow in a staggered labyrinth seal. Two different cases were
consider – one case with a stationary rotor and the other with rotor rotating at 50 Hz. Each
case was computed three times using three different meshes. To validate the DG method, a
numerical simulation using the commercial CFD software Ansys Fluent was performed. In
order to visualise the results, pressure was plotted across a cross section of the labyrinth seal and
velocity was plotted along chosen lines in the clearances and inside both cavities. Moreover, the
Mach number contours and the contours of the z-component of velocity were plotted inside a
chosen cross section of the labyrinth seal.

The numerical results, i.e. pressure and velocity fields, are in the quantitative agreement with
the solution obtained by Ansys Fluent. The comparison of the pressure distribution across the
labyrinth seal, see Fig. 4, is the most important indicator of weather the two solvers agree with
each other. The results show that the pressure field in the individual cavities takes on similar
values in the case of all simulations by the present solver and in the case of Ansys Fluent. In
the velocity plots, i.e., Figs. 6–12, the greatest agreement between the present solver and Ansys
Fluent is seen for the coarsest mesh, that is for mesh 1. The reason for this is that the DG method
has a high accuracy and, with a finer mesh, it starts to capture fine structures, such as small
eddies, which change the character of the solution. This affect can be seen in Figs. 13 and 14.
In particular, notice the small eddies in the case of the results computed by the finest mesh, i.e.,
mesh 3, in Figs. 13a and 14a. The eddies that from right on top of the rotor and stator teeth
have a significant effect on the solution. The presence of eddies in the clearances can be seen in
Figs. 6 and 9, where the dip in velocity close to the teeth is apparent when mesh 2 or mesh 3 is
used. The effect of the rotor rotation on the z-component of velocity is shown in Fig. 12. The
present solver gives a similar value z-component of velocity as Ansys Fluent when mesh 2 or
mesh 3 is used. However, Ansys Fluent shows somewhat sharper boundary layer due to the wall
treatment with wall functions, see [1].

In conclusion, the results suggest that the presented DG solver is able to capture the flow
field more precisely than Ansys Fluent on a mesh with similar element size. Using the presented
curvilinear element, a smaller number of elements can be placed around the circumference of
the seal without a substantial loss of accuracy. The curvilinear element can be extended for
cases where rotor undergoes precession. A fluid flow in a labyrinth seal with rotor undergoing
precession can be solved in two different ways. The first option is to prescribe a motion to the
rotor, in which case, the governing equations are solved using the arbitrary Lagrangian-Eulerian
method. The second option is to change the perspective from a stationary frame of reference to
the non-inertial rotating reference frame that follows the precession of the rotor. The presented
curvilinear element is especially suitable for the latter approach, where the labyrinth seal is not
rotationally symmetric.

9.1. Limitations of the study

The implementation of the discontinuous Galerkin method in combination with the k−ε or k−ω
turbulence model in a robust way is still a challenging task. To avoid numerical difficulties, the
one-equation Spalart–Allmaras turbulence model was used in this study instead. A study that
implements one of the aforementioned two-equation turbulence models is needed. Although
the results of the present study suggest that the curvilinear element allows substantially large
element size to be used in the circumferential direction, more research needs to be done to
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determine the dependency of the number of circumferential division on the accuracy of the
solution.
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