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Abstract

In this study, the authors analyze laminated composite panels supported on an elastic foundation considering the
effects of transverse normal strain. A 2-parameter, i.e., Winkler and Pasternak foundation model is assumed to
represent the interaction between the panels and the foundation. The theory presented here takes into account the
effects of transverse shear and normal strains. The theory plots realistic distributions of the transverse shear stress
through the plate thickness and satisfies the shear-free conditions at the extreme surfaces of the panel. The differ-
ential equations of the present model are obtained from the principle of virtual work. The laminated composite
panel resting on the elastic foundation is analyzed for simply supported boundary conditions. For the verifica-
tion purpose, the presented problems are also solved using the Reddy’s model, Mindlin’s model, and the classical
model. Good agreement is observed between the numerical results obtained using the present model and the other
models.
© 2023 University of West Bohemia.
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1. Introduction

Since the last decade, the applications of fibrous laminated composite panels have gained pop-
ularity in different sectors of industry, such as civil, mechanical, and aerostructures, because of
their good strength and stiffness properties despite being light in weight. The increasing use of
laminated composite panels in various structures has attracted great interest in their structural
analysis. For multilayer laminated panels, the inter-laminar shearing stresses and strains be-
tween the layers strongly influence the bending behavior under transverse loading. The effects
of shearing stresses become more pronounced in shear deformable laminated panels. How-
ever, these stresses are neglected in the classical model, so this model fails to capture the exact
bending behavior of thick composite panels. Therefore, shear strain theory is required to ex-
plain the correct bending behavior of thick panels, including shear strain effects and related
cross-sectional deformations.

The first-order shear deformation plate theory (FSDT), developed by Mindlin [9], considers
the transverse shearing effect for the first time. However, FSDT violates the zero shearing
stress condition at the top and bottom of the panel and requires a correction to account for the
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strain energy caused by shearing deformation. For these reasons, researchers have developed
sophisticated panel theory to describe the precise bending behavior of laminated panels.

The theory by Reddy [12] is the most used plate theory by many researchers during the last
38 years. Akavci [3] applied his third-order shear deformable model, which considers the effect
of shearing strain, to the bending analysis of symmetrically laminated panels on elastic bases.
Akavci et al. [1] applied Mindlin’s plate model for symmetrically laminated composite panels
on elastic bases. Akavci [4] published an analysis of buckling and free vibration of laminated
composite panels placed on elastic foundations. Akavci [2] developed two new hyperbolic mod-
els for the analysis of laminated panels. Sayyad and Ghugal [14–16] developed a sine and cosine
model that considers the effects of both shear and normal strains to examine the bending of lam-
inated panels with and without elastic supports. Zenkour et al. [24–26] showed some problems
with laminated panels on elastic foundations. Zenkour [23] presented a bending analysis of or-
thotropic panels on Pasternak elastic foundations using the theory of mixed shear deformation.
Zenkour and Ashraf [22] presented a bending analysis of functionally graded panels resting on
elastic supports. Khateeb and Zenkour [7] studied the static response of advanced composite
panels placed on elastic foundations, including moisture and temperature loads. They investi-
gated the effects of the Winkler and Pasternak fundamental parameters, temperature, moisture
concentration, and volume fraction distribution, on the displacement and stresses. Setoodeh
and Azizi [17] presented static and vibration analysis of 0◦/90◦ and θ/− θ laminate composite
panels on elastic foundations using the four-variable laminate panel theory. Nedri et al. [11]
presented frequencies of laminated panels on elastic foundations using a sophisticated theory
of hyperbolic shear strain. Taibi et al. [20] presented a thermo-mechanical analysis of func-
tionally graded sandwich panels on elastic supports using the higher-order shear strain theory.
Zaoui [21] developed 2D and 3D high-order shear strain models to calculate the frequencies of
functionally graded panels on elastic supports. Atmane et al. [5] developed a new high-order
shear strain model to calculate the frequencies of functionally graded panels on two parametric
elastic substrates. Shinde et al. [19] developed a new higher-order shear deformation for the
bending analysis of orthotropic plates under various loading conditions. Mahmoudi et al. [8]
presented free vibrations analysis of a functionally graded plate resting on a Winkler-Pasternak
elastic foundation using the Navier’s technique based on a high-order shear deformation the-
ory (HSDT). Fahsi et al. [6] developed a new refined quasi-3D shear deformation theory for
bending, buckling, and free vibration analyses of a functionally graded porous beam resting on
an elastic foundation involving three unknown functions. Naik and Sayyad [10] developed a
fifth-order shear and normal deformation theory for the analysis of laminated composite and
sandwich plates. Shen [18] presented a nonlinear bending analysis of a simply supported shear
deformable cross-ply laminated plate with piezoelectric actuators subjected to a transverse uni-
form or sinusoidal load combined with electrical loads and in thermal environments.

Advantages of the proposed theory:
1. The present theory considers the effects of transverse normal strain, which is neglected in

many theories available in the literature including the theory of Reddy [12].
2. The theory plots realistic distributions of the transverse shear stress through the plate thick-

ness and satisfies the shear-free conditions at the extreme surfaces of the panel.
3. The present theory does not require a shearing correction factor to account for the strain

energy caused by shear deformation.
4. The above literature review indicates that there is limited research on the effect of Win-

kler and Pasternak parameters on the behavior of laminated panels. Therefore, the present
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high-order computational model, which accounts for the effects of both shearing and normal
strains, is developed here to predict the bending behavior of simply supported cross-laminate
panels resting on elastic 2-parameter foundations.

2. Materials and methods

2.1. Types of elastic foundation

The Winkler foundation is a parametric model that uses elastic springs and has a linear rela-
tionship between load and deflection. The Pasternak foundations are formed by connecting the
ends of springs to plates or ”shear layers” consisting of incompressible vertical elements that
can be deformed only by lateral shear. In this study, the laminated panel is assumed to rest on
a 2-parameter (Winkler and Pasternak) foundation with the Winkler spring stiffness K0 and the
shear stiffnessK1. The relationship between these stiffnesses and the lay-down of the laminated
sheets is given by the reaction force F [13]

F = k0w − k1

(
∂2

∂x2
+

∂2

∂y2

)
w, (1)

where w is the plate deflection.

2.2. A laminated panel on an elastic foundation

Let us consider a laminated panel of length a, width b, and thickness h, as shown in Fig. 1. The
laminate consists of N layers of linear elastic and orthotropic materials. The panel rests on a
2-parameter elastic foundation. A vertical load q(x, y) is applied to the top surface of the panel,
i.e., z = −h/2.

2.3. The displacement field

The displacement field of the present theory, considering the effects of the transverse normal
strain, is of the following form [13]:

u(x, y, z) = u0(x, y)− z
∂w0

∂x
+ f(z)ϕ(x, y) ,

v(x, y, z) = v0(x, y)− z
∂w0

∂y
+ f(z)ψ(x, y) , (2)

w(x, y, z) = w0(x, y) + g(z)ξ(x, y) ,

where the displacements of any point on the panel are u, v, w, the displacement of any point
on the midplane are u0, v0, w0, and the shear rotations are ϕ(x, y), ψ(x, y), and ξ(x, y). The
function f(z) is chosen based on the boundary conditions of the shearing strain. In this study,
f(z) = (h/π) sin(πz/h) and g(z) = cos(πz/h).

2.4. Strain-displacement relationships

For the panel deformation, the strain quantities εx, εy, εz, γxy, γxz, γyz and the displacement
quantities u, v, w follow the linear kinematic relations from the theory of elasticity [13]
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Fig. 1. The geometry and coordinate system of the laminated panel with an elastic foundation

εx =
∂u0
∂x

− z
∂2w

∂x2
+ f(z)

∂ϕ

∂x
, εy =

∂v0
∂y

− z
∂2w

∂y2
+ f(z)

∂ψ

∂y
,

εz = g′(z)ξ , γxy =
∂u0
∂y

+
∂v0
∂x

− 2z
∂2w

∂x∂y
+ f(z)

(
∂ϕ

∂y
+
∂ψ

∂x

)
,

γxz = g(z)

(
ϕ+

∂ξ

∂x

)
, γyz = g(z)

(
ψ +

∂ξ

∂y

)
.

(3)

2.5. Stress-strain relationships

The stress quantities of the k-th layer of the laminated panel are calculated using
σx
σy
σz
τyz
τxz
τxy


k

=


Q11 Q12 Q13 0 0 0
Q12 Q22 Q23 0 0 0
Q13 Q23 Q33 0 0 0
0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66


k


εx
εy
εz
γyz
γxz
γxy


k

, (4)

where

Q11 =
1− µ23µ32

E2E3∆
, Q12 =

µ21 + µ31µ23

E2E3∆
, Q13 =

µ31 + µ21µ32

E2E3∆
,

Q22 =
1− µ13µ31

E1E3∆
, Q23 =

µ32 + µ12µ31

E1E3∆
, Q33 =

1− µ12µ21

E1E2∆
,

Q44 = G23, Q55 = G13, Q66 = G12,

∆ = 1− µ12µ21 − µ23µ32 − µ31µ13 − 2µ21µ32µ13,

(5)

where Qij are the stiffness factors expressed by engineering constant, E1, E2, E3 are the elastic
moduli, µ12, µ21, µ23, µ32, µ13, µ31 are the Poisson’s ratios, and G12, G23, G13 are the shear
moduli of the material.
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2.6. Governing equations and boundary conditions

In the present study, we use the principle of virtual work to derive the governing equations and
boundary conditions of the current theory [13]

a∫
0

b∫
0

h
2∫

−h
2

(σxδεx + σyδεy + σzδεz + τxyδγxy + τxzδγxz + τyzδγyz) dx dy dz =

=

a∫
0

b∫
0

q(x, y) δw dx dy. (6)

Substituting all the strain quantities from (3) in (6) and integrating over the variable z, one can
rewrite (6) as follows:

a∫
0

b∫
0

[
Nx

∂

∂x
(δu0)−M c

x

∂2

∂x2
(δw0) +M s

x

∂

∂x
(δϕ) +Ny

∂

∂y
(δv0)−M c

y

∂2

∂y2
(δw0)+

+M s
y

∂

∂y
(δψ) +Qzδξ

]
dx dy +

a∫
0

b∫
0

{
Nxy

[
∂

∂y
(δu0) +

∂

∂x
(δv0)

]
− 2M c

xy

∂2

∂x∂y
(δw0)+

+M s
y

[
∂

∂y
(δϕ) +

∂

∂x
(δψ)

]
+Qx

[
δϕ+

∂

∂x
(δξ)

]
+Qy

[
δψ +

∂

∂y
(δw0)

]}
dx dy =

=

a∫
0

b∫
0

(
q(x, y) + k0w0 − k1

∂2w0

∂x2
− k1

∂2w0

∂y2

)
δw dx dy, (7)

where the resultant in-plane stresses are denoted byNx,Ny,Nxy, the resultant bending moments
are denoted by M c

x, M c
y , M c

xy, the resultant higher order moments are denoted by M s
x, M s

y ,
M s

xy, and the resultant shear forces are denoted by Qx, Qy, Qz. The aforementioned resultant
quantities are defined as:

1) resultant in-plane stresses

Nx =

h
2∫

−h
2

σx dz = A11
∂u0
∂x

−B11
∂2w0

∂x2
+ C11

∂ϕ
∂x

+ A12
∂v0
∂y

−B12
∂2w0

∂y2
+ C12

∂ψ
∂y

+D13 ξ,

Ny =

h
2∫

−h
2

σy dz = A12
∂u0
∂x

−B12
∂2w0

∂x2
+ C12

∂ϕ
∂x

+ A22
∂v0
∂y

−B22
∂2w0

∂y2
+ C22

∂ψ
∂y

+D23 ξ, (8)

Nxy =

h
2∫

−h
2

τxy dz = A66
∂u0
∂y

+ A66
∂v0
∂x

− 2B66
∂2w0

∂x∂y
+ C66

(
∂ϕ
∂y

+ ∂ψ
∂x

)
,

57



A. S. Sayyad et al. / Applied and Computational Mechanics 17 (2023) 53–70

2) resultant bending moments

M c
x =

h
2∫

−h
2

σxz dz = B11
∂u0
∂x

− F11
∂2w0

∂x2
+H11

∂ϕ
∂x

+B12
∂v0
∂y

− F12
∂2w0

∂y2
+H12

∂ψ
∂y

+ I13 ξ,

M c
y =

h
2∫

−h
2

σyz dz = B12
∂u0
∂x

− F12
∂2w0

∂x2
+H12

∂ϕ
∂x

+B22
∂v0
∂y

− F22
∂2w0

∂y2
+H22

∂ψ
∂y

+ I23 ξ, (9)

M c
xy =

h
2∫

−h
2

τxyz dz =
h
2∫

−h
2

Q66γxyz dz = B66
∂u0
∂y

+B66
∂v0
∂x

− 2F66
∂2w0

∂x∂y
+H66

(
∂ϕ
∂y

+ ∂ψ
∂x

)
,

3) resultant higher-order moments

M s
x =

h
2∫

−h
2

σxf(z) dz = C11
∂u0
∂x

−H11
∂2w0

∂x2
+ J11

∂ϕ
∂x

+ C12
∂v0
∂y

−H12
∂2w0

∂y2
+ J12

∂ψ
∂y

+ L13 ξ,

M s
y =

h
2∫

−h
2

σyf(z) dz = C12
∂u0
∂x

−H12
∂2w0

∂x2
+ J12

∂ϕ
∂x

+ C22
∂v0
∂y

−H22
∂2w0

∂y2
+ J22

∂ψ
∂y

+ L23 ξ,

M s
xy =

h
2∫

−h
2

τxyf(z) dz = C66
∂u0
∂y

+ C66
∂v0
∂x

− 2H66
∂2w0

∂x∂y
+ J66

(
∂ϕ
∂y

+ ∂ψ
∂x

)
, (10)

4) resultant shear forces

Qx =

h
2∫

−h
2

τxz g(z) dz =M55

(
ϕ+ ∂ξ

∂x

)
,

Qy =

h
2∫

−h
2

τyz g(z) dz =M44

(
ψ + ∂ξ

∂y

)
, (11)

Qz =

h
2∫

−h
2

σz
∂g(z)
∂z

dz = D13
∂u0
∂x

− I13
∂2w0

∂x2
+ L13

∂ϕ
∂x

+D23
∂v0
∂y

− I23
∂2w0

∂y2
+ L23

∂ψ
∂y

+ S33 ξ,

where

Aij = Qij

h
2∫

−h
2

dz, Bij = Qij

h
2∫

−h
2

z dz, Cij = Qij

h
2∫

−h
2

f(z) dz,

Dij = Qij

h
2∫

−h
2

g′(z) dz, Fij = Qij

h
2∫

−h
2

z2 dz, Hij = Qij

h
2∫

−h
2

f(z)z dz,

Iij = Qij

h
2∫

−h
2

zg′(z) dz, Jij = Qij

h
2∫

−h
2

[f(z)]2 dz, Lij = Qij

h
2∫

−h
2

g′(z)f(z) dz,

Mij = Qij

h
2∫

−h
2

[g(z)]2 dz, Sij = Qij

h
2∫

−h
2

[g′(z)]2 dz.

(12)
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The integration of (7) after imposing the fundamental lemma of calculus yields the following
equations of the present theory:

δu0 :
∂Nx

∂x
+
∂Nxy

∂y
= 0 ,

δv0 :
∂Ny

∂y
+
∂Nxy

∂x
= 0 ,

δw0 :
∂2M c

x

∂x2
+ 2

∂2M c
xy

∂x∂y
+
∂2M c

y

∂y2
+ q +

(
k0w0 − k1

∂2w0

∂x2
− k1

∂2w0

∂y2

)
= 0 ,

δϕ :
∂M s

x

∂x
+
∂M s

xy

∂x
−Qx = 0 ,

δψ :
∂M s

y

∂y
+
∂M s

xy

∂x
−Qy = 0 ,

δξ :
∂Qx

∂x
+
∂Qy

∂y
−Qz = 0.

(13)

The substitution of stress resultants from (8)–(12) into the set of governing equations (13),
allows us to write the final governing equations associated with the unknowns in the present
theory, i.e., δu0, δv0, δw0, δϕ, δψ, δξ,

δu0 : A11
∂2u0
∂x2

−B11
∂3w0

∂x3
+ C11

∂2ϕ

∂x2
+ A12

∂2v0
∂x∂y

−B12
∂3w0

∂x∂y2
+ C12

∂2ψ

∂x∂y
+D13

∂ξ

∂x
+

+ A66
∂2u0
∂y2

+ A66
∂2v0
∂x∂y

− 2B66
∂3w0

∂x∂y2
+ C66

(
∂2ϕ

∂y2
+

∂2ψ

∂x∂y

)
= 0, (14)

δv0 : A12
∂2u0
∂x∂y

−B12
∂3w0

∂x2∂y
+ C12

∂2ϕ

∂x∂y
+ A22

∂2v0
∂y2

−B22
∂3w0

∂y3
+ C22

∂2ψ

∂y2
+D23

∂ξ

∂y
+

+ A66
∂2u0
∂x∂y

+ A66
∂2v0
∂x2

− 2B66
∂3w0

∂x2∂y
+ C66

(
∂2ϕ

∂x∂y
+
∂2ψ

∂x2

)
= 0, (15)

δw0 : B11
∂3u0
∂x3

− F11
∂4w0

∂x4
+H11

∂3ϕ

∂x3
+B12

∂3v0
∂y∂x2

− F12
∂4w0

∂x2∂y2
+H12

∂3ψ

∂x2∂y
+ I13

∂2 ξ

∂x2
+

+B12
∂3u0
∂x∂y2

− F12
∂4w0

∂x2∂y2
+H12

∂3ϕ

∂x∂y2
+B22

∂3v0
∂y3

− F22
∂4w0

∂y4
+H22

∂3ψ

∂y3
+

+ I23
∂2 ξ

∂y2
+ 2B66

∂3u0
∂x∂y2

+ 2B66
∂3v0
∂x2∂y

− 4F66
∂4w0

∂x2∂y2
+ 2H66

(
∂3ϕ

∂x∂y2
+

∂3ψ

∂x2∂y

)
=

= q − k0w0 + k1
∂2w0

∂x2
+ k1

∂2w0

∂y2
, (16)

δϕ : C11
∂2u0
∂x2

−H11
∂3w0

∂x3
+ J11

∂2ϕ

∂x2
+ C12

∂2v0
∂x∂y

−H12
∂3w0

∂x∂y2
+ J12

∂2ψ

∂x∂y
+ L13

∂ξ

∂x
+

+ C66
∂2u0
∂y2

+ C66
∂2v0
∂x∂y

− 2H66
∂3w0

∂x∂y2
+ J66

(
∂2ϕ

∂y2
+

∂2ψ

∂x∂y

)
−M55

(
ϕ+

∂ξ

∂x

)
= 0,

(17)
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δψ : C12
∂2u0
∂x∂y

−H12
∂3w0

∂x2∂y
+ J12

∂2ϕ

∂x∂y
+ C22

∂2v0
∂y2

−H22
∂3w0

∂y3
+ J22

∂2ψ

∂y2
+ L23

∂ξ

∂y
+

+ C66
∂2u0
∂x∂y

+ C66
∂2v0
∂x2

− 2H66
∂3w0

∂x2∂y
+ J66

(
∂2ϕ

∂x∂y
+
∂2ψ

∂x2

)
−M44

(
ψ +

∂ξ

∂y

)
= 0,

(18)

δξ :M55

(
∂ϕ

∂x
+
∂2 ξ

∂x2

)
+M44

(
∂ψ

∂y
+
∂2 ξ

∂y2

)
−D13

∂u0
∂x

+ I13
∂2w0

∂x2
− L13

∂ϕ

∂x
−D23

∂v0
∂y

+

+ I23
∂2w0

∂y2
− L23

∂ψ

∂y
− S33 ξ = 0. (19)

3. Analytical solutions

In this section, we consider proving the validity and accuracy of the current theory for predicting
the bending response of simply supported laminated panels on 2-parameter elastic supports. The
panel is subjected to vertical load q(x, y) on the top surface (i.e., z = −h/2).

The Navier’s solution, which satisfies the simply supported boundary condition exactly, is
commonly used for local and global solutions of the simply supported boundary condition of
the plate. The simply supported boundary condition for the panel is

at x = 0, x = a : w = ψ = ξ =Mx =M s
x = 0,

at y = 0, y = b : w = ϕ = ξ =My =M s
y = 0.

(20)

Navier suggested taking the unknown variables in the following double trigonometric form to
get the value given by (20) exactly [13]

u0 = umn cos(αx) sin(βy), v0 = vmn sin(αx) cos(βy),

w0 = wmn sin(αx) sin(βy), ϕ = ϕmn cos(αx) sin(βy),

ψ = ψmn sin(αx) cos(βy), ξ = ξmn sin(αx) sin(βy),

(21)

where α = mπ/a and β = nπ/b, umn, vmn, wmn, ϕmn, ψmn, ξmn are the unknowns to be
determined, andm, n are the positive integers ranging from 1 to ∞. Using the Navier’s solution
method, the vertical load can be expressed in double trigonometric series [13]

q(x, y) =
∞∑

m=1,3,5

∞∑
n=1,3,5

qmn sin(αx) sin(βy), (22)

where qmn is the factor of the Fourier expansion of the vertical load [13]. The value of this
factor for sinusoidal and uniformly distributed loads is

sinusoidal loading (m = 1, n = 1) : qmn = q0,

uniform loading (m = n = 1, 3, 5 . . . ,∞) : qmn =
16q0
mnπ2

.
(23)
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The solution to the elastically supported laminate bending problem is obtained after insert-
ing (21) and (22) into (14)–(19)

K11 K12 K13 K14 K15 K16

K21 K22 K23 K24 K25 K26

K31 K32 K33 K34 K35 K36

K41 K42 K43 K44 K45 K46

K51 K52 K53 K54 K55 K56

K61 K62 K63 K64 K65 K66




umn
vmn
wmn
ϕmn
ψmn
ξmn

 =


0
0
qmn
0
0
0

 , (24)

where Kij are the stiffness coefficients of the panel given as

K11 = − (−A11α
2 + A66β

2) , K12 = − (A12αβ + A66αβ) ,

K13 = B11α
3 +B12αβ

2 + 2B66αβ
2, K14 = − (C11α

2 + C66β
2) ,

K15 = − (C12αβ + C66αβ) , K16 = D13α,

K22 = − (A66α
2 − A22β

2) , K23 = B12α
2β +B22β

3 + 2B66α
2β,

K24 = − (C12αβ + C66αβ) , K25 = − (C66α
2 + C22β

2) ,

K26 = D23β,

K33 = − (F11α
4 + 2F12α

2β2 + F22β
4 + 4F66α

2β2 + k0 + k1α
2 + k1β

2) ,

K34 = H11α
3 +H12αβ

2 + 2H66αβ
2, K35 = H22β

3 + 2H66α
2β +H12α

2β,

K36 = − (I13α
2 + I23β

2) , K44 = − (J11α
2 + J66β

2 +M55) ,

K45 = − (J12αβ + J66αβ) , K46 = L13α−M55α,

K55 = − (J22β
2 + J66α

2 +M44) , K56 = L23β −M44β,

K66 = − (M55α
2 +M44β

2 + S33) .

(25)

It is a well-known property of the stiffness matrix that it is always a symmetric matrix, i.e.,
Kij = Kji. The solution of (24) indicates the value of the unknown contained in the trigono-
metric form of the variable. Using these values, equations (2)–(5) can be used to calculate
the displacement and stresses and their distributions in the thickness direction. Estimating the
interlaminar transverse shear stress, we find that the constitutive relationship predicts two val-
ues of transverse shear stress at the ply interface due to changes in material properties. This
phenomenon is unacceptable for the design of panel structures. Therefore, in this study, the
transverse shear stress is determined using the equilibrium equation of the elastic theory. The
equilibrium equations for the elastic theory are

∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

= 0,
∂σy
∂y

+
∂τxy
∂x

+
∂τyz
∂z

= 0,
∂σz
∂z

+
∂τxz
∂x

+
∂τyz
∂y

= 0. (26)

4. Illustrative examples

To validate the current theory, the following problems are solved and presented:
1. Bending analysis of a 2-layered (0◦/90◦) laminated panel supported on an elastic foundation

under sinusoidal loading.
2. Bending analysis of 2-layered (0◦/90◦) laminated composite panel supported on elastic foun-

dation under uniform loading.
3. Bending analysis of 3-layered (0◦/90◦/0◦) laminated composite panel supported on elastic

foundation under sinusoidal loading.
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4. Bending analysis of 3-layered (0◦/90◦/0◦) laminated composite panel supported on elastic
foundation under uniform loading.

Numerical results are shown in Tables 1–4 and graphical results are shown in Figs. 2 and 3. The
following material properties are used to obtain numerical results corresponding to the bending
behavior of the laminated panel resting on elastic foundation:

E1

E2

= 25, E3= E2, G12= G13 = 0.5E2,

G23= 0.2E2, µ12= µ31 = µ23 = 0.25,
µij
µji

=
Ei
Ej
.

(27)

For the comparison purpose, the numerical results are presented in the following non-dimensional
form:

w̄(x, y, z)=
100E2

q0hS4
w

(
a

2
,
b

2
, 0

)
, (σ̄x, σ̄y)(x, y, z) =

1

q0S2
(σx, σy)

(
a

2
,
b

2
,±h

2

)
,

τ̄xy(x, y, z)=
1

q0S2
τxy

(
0, 0,±h

2

)
, τ̄xz(x, y, z) =

1

q0S
τxz

(
0,
b

2
, 0

)
,

τ̄yz(x, y, z)=
1

q0S
τyz

(a
2
, 0, 0

)
, S =

a

h
, K0 =

k0b
4

E2h3
, K1 =

k1b
2

E2h3
.

(28)

4.1. Discussion on numerical results

Problem 1: Displacements and stresses for 2-layered (0◦/90◦) laminated composite panels sup-
ported by the 2-parameter elastic foundation under sinusoidal loading are summarized in Ta-
ble 1. Both layers have the same thickness (h/2) and have the material properties given by
(27). The dimensionless forms of displacement and stress are given by (1). It can be seen from
Table 1 that the displacements and stresses obtained using the current theory and the Reddy’s
model [12] are in very good agreement, whereas the Mindlin’s model [9] does not account for
the effect of the transverse normal strain. The classical plate theory (CPT) underestimates these
results by ignoring both transverse shear and normal strains. The displacement and stress val-
ues decrease as the foundation stiffness and panel thickness increase. An increase in the aspect
ratio (S = a/h) causes a decrease in the values of displacements and stresses. The effects of
foundation modulus on the non-dimensional values of displacements and stresses for 2-layered
laminated panels under sinusoidal load with an aspect ratio of 4 are shown in Fig. 2. This figure
reveals that the values of non-dimensional displacements and stresses are predicted more when
the panel is not resting on elastic foundation. The elastic foundation decreases the values of
displacements and stresses.

Problem 2: This problem applies the current theory to the bending analysis of a 2-layered
(0◦/90◦) laminated composite panel placed on a two-parametric elastic foundation and sub-
jected to uniform loading. The material properties of the panel and the dimensionless form of
the numerical results are similar to Problem 1. Numerical results are shown in Table 2, and
the distribution of displacement and stress in the thickness direction is shown in Fig. 3. Table 2
clearly shows that the current theory agrees very well with the Reddy’s model [12]. Also, FSDT
and CPT are not accurate enough to capture the bending response of laminated panels on elastic
substrates. This is because the shear and normal strain effects are ignored. Table 3 also reveals
that the values of non-dimensional displacements and stresses are predicted more in the case of
uniform load as compared to sinusoidal loadings. The values of displacements and stresses are
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Table 1. Comparison of numerical results for 2-layered (0◦/90◦) laminated panels placed on 2-parameter
elastic foundations under sinusoidal loads

S K0 K1 theory w σ̄x σ̄y τ̄xy τ̄yz τ̄xz
4 0 0 present 1.9547 0.9064 0.9064 0.0562 0.3370 0.3370

ref. [12] 1.9985 0.9060 0.9060 0.0577 0.3396 0.3396
ref. [9] 1.9682 0.7157 0.7157 0.0525 0.3356 0.3356
CPT 1.0636 0.7157 0.7157 0.0525 0.3356 0.3356

100 0 present 0.6574 0.3067 0.3067 0.0190 0.1141 0.1141
ref. [12] 0.6665 0.3022 0.3022 0.0192 0.1132 0.1132
ref. [9] 0.6631 0.2273 0.2273 0.0167 0.1066 0.1066
CPT 0.5154 0.3468 0.3468 0.0254 0.1626 0.1626

100 10 present 0.2851 0.1330 0.1330 0.0082 0.0495 0.0495
ref. [12] 0.2878 0.1305 0.1305 0.0083 0.0489 0.0489
ref. [9] 0.2872 0.0968 0.0968 0.0071 0.0454 0.0454
CPT 0.2555 0.1719 0.1719 0.0126 0.0806 0.0806

10 0 0 present 1.2089 0.7471 0.7471 0.0530 0.3352 0.3352
ref. [12] 1.2161 0.7468 0.7468 0.0533 0.3357 0.3357
ref. [9] 1.2083 0.7157 0.7157 0.0525 0.3356 0.3356
CPT 1.0636 0.7157 0.7157 0.0525 0.3356 0.3356

100 0 present 0.5487 0.3391 0.3391 0.0241 0.1521 0.1521
ref. [12] 0.5488 0.3370 0.3370 0.0241 0.1515 0.1515
ref. [9] 0.5472 0.3199 0.3199 0.0235 0.1500 0.1500
CPT 0.5154 0.3468 0.3468 0.0254 0.1626 0.1626

100 10 present 0.2640 0.1632 0.1632 0.0116 0.0732 0.0732
ref. [12] 0.2634 0.1618 0.1618 0.0116 0.0727 0.0727
ref. [9] 0.2631 0.1530 0.1530 0.0112 0.0717 0.0717
CPT 0.2555 0.1719 0.1719 0.0126 0.0806 0.0806

100 0 0 present 1.0644 0.7177 0.7177 0.0525 0.3356 0.3356
ref. [12] 1.0650 0.7160 0.7160 0.0525 0.3356 0.3356
ref. [9] 1.0651 0.7157 0.7157 0.0525 0.3356 0.3356
CPT 1.0636 0.7157 0.7157 0.0525 0.3356 0.3356

100 0 present 0.5156 0.3477 0.3477 0.0254 0.1626 0.1626
ref. [12] 0.5158 0.3467 0.3467 0.0254 0.1625 0.1625
ref. [9] 0.5157 0.3466 0.3466 0.0254 0.1625 0.1625
CPT 0.5154 0.3468 0.3468 0.0254 0.1626 0.1626

100 10 present 0.2555 0.1723 0.1723 0.0126 0.0806 0.0806
ref. [12] 0.2556 0.1718 0.1718 0.0126 0.0805 0.0805
ref. [9] 0.2556 0.1717 0.1717 0.0126 0.0805 0.0805
CPT 0.2555 0.1719 0.1719 0.0126 0.0806 0.0806

observed lower when the elastic foundation is provided and higher when the elastic foundation
is not provided. This is also presented in Fig. 3.

Problem 3: In this problem, a 3-layered laminated panel is analyzed. The effects of the
2-parameter elastic supports on the dimensionless displacement and stress of laminated panels
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Fig. 2. Effects of foundation modulus on the non-dimensional values of displacements and stresses for
2-layered (0◦/90◦) laminated panels under uniform load with an aspect ratio of 4

Fig. 3. Through-thickness displacement and stress distribution of a 2-layered (0◦/90◦) laminated com-
posite panel resting on elastic foundation under uniformly distributed load (a/h = 4, K0 = 100,
K1 = 10)

with different a/h ratios are investigated in Table 3. The results developed using the current
theory are compared with the Reddy’s model [12], Mindlin’s model [9], and CPT. This compar-
ison demonstrates the validity and accuracy of the current theory. Table 3 shows that the present
results are in good agreement with those presented by Reddy [12] and Mindlin [9]. CPT and
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Table 2. Comparison of numerical results for 2-layered (0◦/90◦) laminated panels placed on 2-parameter
elastic foundations under uniform load

S K0 K1 theory w σ̄x σ̄y τ̄xy τ̄yz τ̄xz
4 0 0 present 2.9983 1.2603 1.2603 0.1104 0.8945 0.8945

ref. [12] 3.0796 1.2691 1.2691 0.1070 0.8648 0.8648
ref. [9] 3.0082 1.0636 1.0636 0.0992 0.7265 0.7265
CPT 1.6957 1.0763 1.0763 0.0934 0.7415 0.7415

100 0 present 0.9433 0.3330 0.3330 0.0481 0.5427 0.5427
ref. [12] 0.9420 0.3305 0.3305 0.0430 0.5068 0.5068
ref. [9] 0.9288 0.2938 0.2938 0.0391 0.3327 0.3327
CPT 0.8077 0.4813 0.4813 0.0494 0.4577 0.4577

100 10 present 0.4167 0.1550 0.1550 0.0207 0.2688 0.2688
ref. [12] 0.4141 0.1521 0.1521 0.0182 0.2554 0.2554
ref. [9] 0.4120 0.2179 0.2179 0.0155 0.1262 0.1262
CPT 0.3929 0.2181 0.2181 0.0271 0.2974 0.2974

10 0 0 present 1.9070 1.1057 1.1057 0.0978 0.7545 0.7545
ref. [12] 1.9173 1.1049 1.1049 0.0977 0.7530 0.7530
ref. [9] 1.9049 1.0717 1.0717 0.0961 0.7369 0.7369
CPT 1.6955 1.0763 1.0763 0.0934 0.7415 0.7415

100 0 present 0.8400 0.4515 0.4515 0.0504 0.4632 0.4632
ref. [12] 0.8389 0.4480 0.4480 0.0498 0.4557 0.4557
ref. [9] 0.8366 0.4365 0.4365 0.0486 0.4288 0.4288
CPT 0.8077 0.4813 0.4813 0.0494 0.4577 0.4577

100 10 present 0.3966 0.2033 0.2033 0.0267 0.2812 0.2812
ref. [12] 0.3952 0.2015 0.2015 0.0260 0.2746 0.2746
ref. [9] 0.3947 0.1982 0.1982 0.0251 0.2405 0.2405
CPT 0.3929 0.2181 0.2181 0.0271 0.2974 0.2974

100 0 0 present 1.6967 1.0796 1.0796 0.0933 0.7406 0.7406
ref. [12] 1.6976 1.0766 1.0766 0.0953 0.7414 0.7414
ref. [9] 1.6976 1.0763 1.0763 0.0934 0.7415 0.7415
CPT 1.6955 1.0763 1.0763 0.0934 0.7415 0.7415

100 0 present 0.8080 0.4827 0.4827 0.0493 0.4567 0.4567
ref. [12] 0.8081 0.4809 0.4809 0.0512 0.4574 0.4574
ref. [9] 0.8080 0.4808 0.4808 0.0494 0.4574 0.4574
CPT 0.8077 0.4813 0.4813 0.0494 0.4577 0.4577

100 10 present 0.3930 0.2188 0.2188 0.0271 0.2963 0.2963
ref. [12] 0.3929 0.2179 0.2179 0.0287 0.2967 0.2967
ref. [9] 0.3929 0.2179 0.2179 0.0272 0.2967 0.2967
CPT 0.3929 0.2181 0.2181 0.0271 0.2974 0.2974

FSDT underestimate the values of displacements and stresses due to neglecting the effects of
transverse shear and normal strains. An increase in the layers of laminated panels decreases
the values of displacements and stresses. Fig. 4 shows the effects of foundation modulus on
the non-dimensional values of displacements and stresses for 3-layered laminated panels under
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Table 3. Comparison of numerical results for 3-layered (0◦/90◦/0◦) laminated panels placed on
2-parameter elastic foundations under sinusoidal load

S K0 K1 theory w σ̄x σ̄y τ̄xy τ̄yz τ̄xz
4 0 0 present 1.9236 0.7535 0.0880 0.0496 0.2088 0.2768

ref. [12] 1.9218 0.7345 0.0782 0.0497 0.2086 0.2855
ref. [9] 1.5681 0.4370 0.0614 0.0369 0.1968 0.3368
CPT 0.4312 0.5387 0.0267 0.0213 0.0823 0.3951

100 0 present 0.6504 0.2577 0.0301 0.0170 0.0714 0.0947
ref. [12] 0.6577 0.2514 0.0268 0.0170 0.0714 0.0977
ref. [9] 0.6106 0.1574 0.0221 0.0133 0.0709 0.1213
CPT 0.3013 0.3764 0.0186 0.0149 0.0575 0.2761

100 10 present 0.2829 0.1121 0.0131 0.0074 0.0311 0.0412
ref. [12] 0.2862 0.1094 0.0116 0.0074 0.0311 0.0425
ref. [9] 0.2769 0.0696 0.0098 0.0059 0.0313 0.0536
CPT 0.1889 0.2360 0.0117 0.0093 0.0361 0.1731

10 0 0 present 0.7154 0.5720 0.0411 0.0278 0.1179 0.3670
ref. [12] 0.7125 0.5684 0.0387 0.0277 0.1167 0.3693
ref. [9] 0.6306 0.5134 0.0353 0.0252 0.1108 0.3806
CPT 0.4312 0.5387 0.0267 0.0213 0.0823 0.3951

100 0 present 0.4176 0.3339 0.0240 0.0162 0.0688 0.2142
ref. [12] 0.4161 0.3319 0.0226 0.0162 0.0682 0.2156
ref. [9] 0.3867 0.3076 0.0211 0.0151 0.0664 0.2280
CPT 0.3013 0.3764 0.0186 0.0149 0.0575 0.2761

100 10 present 0.2292 0.1833 0.0132 0.0089 0.0378 0.1176
ref. [12] 0.2284 0.1822 0.0124 0.0089 0.0374 0.1184
ref. [9] 0.2193 0.1717 0.0118 0.0084 0.0371 0.1273
CPT 0.1889 0.2360 0.0117 0.0093 0.0361 0.1731

100 0 0 present 0.4342 0.5397 0.0274 0.0213 0.0826 0.3947
ref. [12] 0.4342 0.5390 0.0268 0.0214 0.0827 0.3948
ref. [9] 0.4333 0.5384 0.0268 0.0213 0.0827 0.3950
CPT 0.4312 0.5387 0.0267 0.0213 0.0823 0.3951

100 0 present 0.3027 0.3763 0.0191 0.0149 0.0576 0.2752
ref. [12] 0.3027 0.3758 0.0187 0.0149 0.0577 0.2753
ref. [9] 0.3023 0.3755 0.0187 0.0149 0.0577 0.2755
CPT 0.3013 0.3764 0.0186 0.0149 0.0575 0.2761

100 10 present 0.1895 0.2356 0.0120 0.0093 0.0361 0.1723
ref. [12] 0.1895 0.2352 0.0117 0.0093 0.0361 0.1723
ref. [9] 0.1893 0.2351 0.0117 0.0093 0.0361 0.1725
CPT 0.1889 0.2360 0.0117 0.0093 0.0361 0.1731

sinusoidal load with an aspect ratio of 4.
Problem 4: In this problem, the effects of uniform loading on the deflection of 3-layered

laminated panels are investigated. The effects of base stiffness and a/h ratio on dimensionless
displacement and stress are examined in Table 4. This comparison of the present results with
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Fig. 4. Effects of foundation modulus on the non-dimensional values of displacements and stresses for
3-layered (0◦/90◦/0◦) laminated panels under uniform load with an aspect ratio of 4

Fig. 5. Through-thickness displacement and stress distribution of a 3-layered (0◦/90◦/0◦) laminated
composite panel resting on elastic foundation under uniformly distributed load (a/h = 4, K0 = 100,
K1 = 10)

those obtained with HSDT, FSDT, and CPT clearly shows the effect of lateral vertical loading.
Table 4 reveals that the present theory shows good agreement with the theory of Reddy [12].
Fig. 5 shows the through-the-thickness distributions of stresses for 3-layered laminated panels
under uniform load with an aspect ratio of 4.
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Table 4. Comparison of numerical results for 3-layered (0◦/90◦/0◦) laminated panels placed on
2-parameter elastic foundations under uniform load

S K0 K1 theory w σ̄x σ̄y τ̄xy τ̄yz τ̄xz
4 0 0 present 2.9040 1.0343 0.1138 0.1097 0.2933 0.3751

ref. [12] 2.9091 1.0177 0.1030 0.1092 0.3947 0.4036
ref. [9] 2.3538 0.6546 0.0852 0.0736 0.5528 0.6395
CPT 0.6660 0.8076 0.0307 0.0426 0.3859 0.7233

100 0 present 0.9086 0.2711 0.0279 0.0533 0.0531 0.0850
ref. [12] 0.9059 0.2705 0.0260 0.0529 0.1484 0.1030
ref. [9] 0.8412 0.2137 0.0253 0.0333 0.3133 0.2838
CPT 0.4573 0.5472 0.0185 0.0319 0.3374 0.5324

100 10 present 0.4097 0.1286 0.0146 0.0217 0.0161 0.0241
ref. [12] 0.4090 0.1269 0.0134 0.0222 0.0486 0.0329
ref. [9] 0.3954 0.0986 0.0125 0.0134 0.1078 0.1203
CPT 0.2861 0.3356 0.0118 0.0209 0.2421 0.3754

10 0 0 present 1.0954 0.8436 0.0510 0.0594 0.3553 0.6139
ref. [12] 1.0900 0.8395 0.0481 0.0593 0.3859 0.6259
ref. [9] 0.9642 0.7720 0.0442 0.0515 0.4230 0.7054
CPT 0.6660 0.8076 0.0307 0.0426 0.3859 0.7233

100 0 present 0.6181 0.4638 0.0249 0.0400 0.2633 0.3668
ref. [12] 0.6151 0.4622 0.0235 0.0400 0.2942 0.3775
ref. [9] 0.5736 0.4429 0.0227 0.0346 0.3374 0.4585
CPT 0.4573 0.3356 0.0185 0.0319 0.3374 0.5324

100 10 present 0.3381 0.2487 0.0141 0.0233 0.1432 0.2080
ref. [12] 0.3367 0.2482 0.0134 0.0234 0.1642 0.2166
ref. [9] 0.3245 0.2443 0.0132 0.0200 0.1937 0.2805
CPT 0.2861 0.5472 0.0118 0.0209 0.2421 0.3754

100 0 0 present 0.6704 0.8089 0.0317 0.0428 0.3852 0.7211
ref. [12] 0.6705 0.8080 0.0309 0.0428 0.3858 0.7216
ref. [9] 0.6691 0.8073 0.0308 0.0427 0.3863 0.7231
CPT 0.6660 0.8076 0.0307 0.0426 0.3859 0.7233

100 0 present 0.4593 0.5468 0.0191 0.0320 0.3363 0.5294
ref. [12] 0.4593 0.5462 0.0186 0.0320 0.3369 0.5298
ref. [9] 0.4587 0.5460 0.0186 0.0319 0.3374 0.5314
CPT 0.4573 0.5472 0.0185 0.0319 0.3374 0.5324

100 10 present 0.2868 0.3348 0.0122 0.0210 0.2405 0.3721
ref. [12] 0.2868 0.3344 0.0119 0.0210 0.2409 0.3724
ref. [9] 0.2866 0.3344 0.0119 0.0209 0.2414 0.3741
CPT 0.2861 0.3356 0.0118 0.0209 0.2421 0.3754

5. Conclusions

In this work, the sine and cosine theory was used for the bending analysis of simply supported
layered composite panels on a 2-parameter elastic foundation, considering transverse normal
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strains. The analysis considered Winkler and Pasternak type elastic foundation and used the
Navier method to develop an analytical solution. The authors investigated the effects of foun-
dation stiffness, stacking sequence, and a/h ratio on the bending behavior of laminated panels.
Comparative studies with existing theories were conducted to verify the validity and effective-
ness of current theories. It can be concluded that the present theory is capable of predicting
good results for thick laminated panels resting on an elastic foundation due to consideration
of the effects of transverse normal strain. The displacement and stress values decreased as the
foundation stiffness and panel thickness increased. The provision of an elastic foundation de-
creased the values of displacements and stresses. The values of non-dimensional displacements
and stresses were predicted more in the case of uniform load as compared to sinusoidal load-
ings. In the future, this theory can be extended for the analysis of sandwich plates resting on an
elastic foundation, the free vibration response of laminated and sandwich panels supported by
an elastic foundation, the effects of angle-ply laminates, etc.
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