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Abstract

In recent years, the flow analysis by means of computational fluid dynamics (CFD) has become a useful design
and optimization tool. Unfortunately, despite advances in the computational power, numerical simulations are still
very time consuming. Thus, empirical correlation models keep their importance as a tool for early stages of axial
compressor design and for prediction of basic performance parameters. These correlations were developed based
on experimental data obtained from 2D measurements performed on cases of classical airfoils such as the NACA
65-series or C.4 profiles. There is insufficient amount of experimental data for other families of airfoils, but CFD
simulations can be used instead and their results correlated using artificial neural networks (ANN), as described
in this work. Unlike the classical deep learning approach using perceptrons, this work presents neural networks
employing higher order neural units.
© 2023 University of West Bohemia.
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1. Introduction

When subsonic flows corresponding to low Mach number occur, well-known profiles such as the
NACA 65-series and C.4 circular-arc are suitable. In cases when the flow is accelerated to high
subsonic, transonic or even to low supersonic velocities, double-circular arc and multi-circular
arc profiles are able to operate with high efficiency [1]. A special family of airfoils are so-
called controlled diffusion (CD) airfoils, which are used for subsonic and transonic applications
and they can provide better performance than the aforementioned airfoils. A construction of
the shape uses a concept of shaping the blade beyond the point of peak suction of the surface
velocity such that the diffusion rate and associated suction boundary layer result in minimum
loss for the airfoil [14] resulting in tight range of acceptable incidence angles [1].

Achieving stable design conditions can be very tricky in real operation, especially in real en-
gineering applications, e.g., cooling of a nuclear reactor using an axial compressor placed in the
secondary system. Thus, it is necessary to ensure reliable running of the device when off-design
conditions occur, e.g., when the incidence angle differs from the design one or parameters of
the medium change. The new family of the airfoils introduced in [9] should outperform the
classical NACA 65-series, the performance should be comparable with the CD airfoils and the
span of incidence angles, until stall occurs, should be much wider. The camber line of the pro-
file and its thickness distribution are defined according to the desired pressure distribution on
the blade surface.
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Flow analysis by means of computational fluid dynamics (CFD) can be still very time con-
suming, thus, empirical correlations are commonly used as a tool for design and prediction of
axial compressor cascade performance. Unfortunately, there is not sufficient amount of experi-
mental data in case of other families of airfoils except the classical profiles, and thus, there are
no correlations for them. The present work deals with searching similar relations that will serve
for other family of airfoils in the same manner as correlations from the literature. The current
paper is an extension of the total pressure loss correlation model for design points of an axial
compressor cascade designed with a new family of airfoils presented in [10]. Furthermore, de-
sign flow parameters, such as the angle of attack α∗, the incidence angle i∗, and the deviation
angle δ∗, are modelled using an artificial neural network (ANN) to accelerate the design of a
compressor cascade.

Basic concepts of empirical models in an axial compressor cascade are discussed. Basics
of higher order neural networks (HONNs) together with supervised learning methods are pre-
sented. Empirical correlations from the literature are compared to a function learned by ANN.
It turns out that the approach using ANN fits the data obtained by means of CFD much bet-
ter than the correlations from the literature for cases of profiles studied in the presented work.
The workflow of the methodology to predict flow parameters is introduced. Finally, one geo-
metrical setup of the cascade is selected, which was not included in the training data set, and
the prediction of flow parameters is tested. Results obtained by ANNs outperformed available
correlations from the literature for the studied family of airfoils and proved their ability to be a
useful tool during the initial stages of axial compressor design.

2. Objective statement

Firstly, let us introduce geometrical parameters in the compressor cascade. As can be seen in
Fig. 1 (top), parameter c stands for the blade chord, parameters a, b denote the point where the
maximum of the camber line is reached and symbols χ1, χ2 represent blade angles relative to the
chord line. Subscripts 1 and 2 are used to distinguish conditions at the inlet and the discharge
of the blade, respectively. Angle θ is the sum of blade angles, θ = χ1 + χ2.

In the case of a cascade, Fig. 1 (bottom), there is a stagger or setting angle γ, which is
the angle between the chord line and the axial direction, and blade angles κ1, κ2 between the
camber line and the axial direction at the leading and trailing edges. The density of the blades
is expressed by the solidity σ = c/s. The flow is described by the velocities W1, W2 and the
flow angles with the axial direction β1, β2. Further, there are the incidence angle i, the deviation
angle δ and the angle of attack α defined in [1] as

α = β1 − γ, κ1 = χ1 + γ, κ2 = γ − χ2, i = β1 − κ1, δ = β2 − κ2. (1)

2.1. About difficulties related to design point finding by CFD

In recent years, the flow analysis by computational fluid dynamics has become a useful design
and optimization method. Despite advances in computational power, it can still be very de-
manding to perform a series of numerical simulations. To obtain conditions at the design point,
it is necessary to find the correct value of the design angle of attack α∗ or the incidence angle
i∗, as can be seen in Fig. 2.

In Fig. 2 (bottom), the procedure how a design point can be found is indicated. Through a
series of simulations with different boundary conditions and loss evaluations, the point with the
smallest pressure loss (PL) is said to be the design point.
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Fig. 1. Cascade nomenclature: (top) profile parameters, (bottom) cascade and flow parameters

2.2. About empirical correlations

The basic objective of the empirical modelling process is to predict the fluid turning and the
total pressure loss for a cascade under fairly general operating conditions [1]. The empirical
correlations are derived from experimental data obtained from two-dimensional (2D) measure-
ments.

2.2.1. Design angle of attack α∗ and incidence angle i∗

The design angle of attack α∗, or the design incidence angle i∗, define a near-optimum or
minimum-loss inlet angle for the cascade. The selection of α∗ was based on achieving smooth
blade surface pressure distributions, particularly on the suction surface. In [6], Herrig et al.
formulated the following empirical model:

α∗ =

[
3.6KshKt,i + 0.3532 θ

(a
c

)0.25
]
σe, e = 0.65− 0.002 θ, (2)

where the correction factor Ksh is assumed to be constant for a specific family of airfoils and
the parameter Kt,i can be correlated as a function of the maximal blade thickness-to-chord ratio
tb/c [1]

Kt,i =

(
10

tb
c

)q

, q =
0.28

0.1 +
(
tb
c

)0.3 . (3)
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Fig. 2. CFD post processing: (top) flow field example, (bottom) design point finding

Since the parameter Ksh and the ratios tb/c, a/c are constant, the parameter Kt,i is also constant
for the studied family of airfoils and the issue can be simplified to a function of two variables
α∗ = f(σ, θ).

The design incidence angle i∗ correlation was developed by Lieblein in [11]

i∗ = KshKt,i(i
∗)(10) + nθ. (4)

The first term on the right-hand side is the design incidence angle for a camber angle of zero. It
is computed from a correlation for NACA 65-series blades and corrected by Ksh and Kt,i

(i∗0)(10) =
βp
1

5 + 46 exp(−2.3σ)
− 0.1σ3 exp

(
β1 − 70

4

)
, p = 0.914 +

σ3

160
. (5)

According to [8], the slope factor n can be expressed as

n = 0.025σ − 0.06−
(
β1

90

)(1+1.2σ)

1.5 + 0.43σ
. (6)

Unlike the correlation for α∗ except for σ and θ, the flow angle at the cascade inlet β1 appears
in the equations, thus, the design incidence angle i∗ should be modelled as i∗ = f(σ, θ, β1).
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2.3. Design deviation angle δ∗

There is also an empirical model for the design deviation angle δ∗ supplied by Lieblein in [12]
that corresponds to operation at the design incidence angle i∗. The model has similar form as
the design incidence angle correlation discussed above

δ∗ = KshKt,δ(δ
∗
0)(10) +mθ. (7)

The coefficient Ksh is the same as for the design incidence angle model and the parameter Kt,δ

is correlated as

Kt,δ = 6.25

(
tb
c

)
+ 37.5

(
tb
c

)2

. (8)

The design zero-camber deviation angle (δ∗0)(10) from [8] can be obtained as

(δ∗0)(10) = 0.01σβ1 + (0.74σ1.9 + 3σ)

(
β1

90

)(1.67+1.09σ)

. (9)

Defining x = 0.01β1, the slope factor m for the NACA 65-series camberline is modelled as [1]

m =
m1.0

σb
, m1.0 = 0.17− 0.0333x+ 0.333x2, b = 0.9625− 0.17x− 0.85x3. (10)

One can see that the issue is the same as in the case of the previous incidence angle correlation,
the design deviation angle can be modelled as δ∗ = f(σ, θ, β1).

2.4. Total pressure loss PL

In [12], Lieblein developed an empirical correlation for pressure loss PL as a function of the
equivalent diffusion factor Deq [13], based on experimental cascade data for the NACA 65-
series and C.4 circular-arc blades as

PL =
ω cos β2

2σ

(
W1

W2

)2

= K1

[
K2 + 3.1 (Deq − 1)2 + 0.4 (Deq − 1)8

]
, (11)

where K1 = 0.004, K2 = 1 and

Deq =

(
Wmax

W1

)
W1

W2

=

[
1.12 + 0.61

cos2 β1

σ
(tan β1 − tan β2)

]
W1

W2

. (12)

In the present paper, the pressure loss is modelled as PL = f(Deq). As can be seen in the equa-
tions above, the dependency between the monitored parameters (α∗, i∗, δ∗, PL), the cascade
parameters and the parameters of the flow is strongly non-linear, making it a suitable task for
ANN.

3. Methodology

Basic ideas on the working of higher order neural networks, the learning process and approxi-
mate error evaluation are introduced in this section. Finally, the procedure of flow parameters
prediction is presented together with a clear flowchart.
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Fig. 3. Neural network: (left) single neural unit, (right) shallow neural network

3.1. Basic ideas of higher order neural networks

The information processing within a neural unit consists of two separated mathematical opera-
tions [4]. The first of them is a so-called synaptic operation, which receives inputs and combines
them with neural weights that represent some kind of memory. A somatic operation can be re-
sponsible for introducing nonlinearities such as thresholding, non-linear activation, aggregation,
etc. A neural output ỹ of the individual unit is a scalar as can be seen from

ỹ = σ(s) (13)

and continues as a nerve impulse into the next layer of neural units as indicated in Fig. 3 (left).
The N -th order synaptic operation of the neural unit can be written as [5]

s = w0x0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i

wijxixj + · · ·+
n∑

i1=1

· · ·
n∑

iN=iN−1

wi1i2...inxi1xi2 . . . xin , (14)

where x0 = 1 stands for the threshold and n denotes the length of the input feature vector.
Since samples in the training data set are labelled, neural network does supervised learning,

which is the task of learning a function that maps inputs to desired outputs. The weight of
similarity between the neural outputs and the true outputs is represented with the cost function

#–e =
#̃–

Y − #–

Y . (15)

It is evident that the error is strongly dependent on neural memories represented by the vector
of weights

#  –

W . Thus, the processing of information should be done in a way that leads to the
neural unit being learned. For this purpose, the gradient descent batch Levenberg-Marquardt
algorithm for weights updating [4] is employed in this work

#  –

W =
#  –

W +∆
#  –

W , (16)

∆
#  –

W T = −
(

#–
#–

J T
#–
#–

J +
1

µ

#–
#–

I

)−1 #–
#–

J T #–e . (17)

The coefficient µ is the learning rate,
#–
#–

I is the nw × nw identity matrix, nw is the number of

weights, and
#–
#–

J represents the n× nw Jacobian matrix.
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Fig. 4. Workflow for flow parameters prediction

It is convenient to divide the training data set, which in this case contains 48 samples, into
three parts. The first one, usually the largest part, serves for learning and weights updating.
The validating set serves for error estimation after each learning epoch, which gives us a check
if neural network is not overtrained. The learning algorithm continues until this error starts
increasing. The last part measures the error after learning termination. The testing error is
measured as a mean squared error (MSE) defined as

MSE =
1

n

n∑
i=1

(yi − ỹi)
2 . (18)

The composed shallow neural network is assembled with two neurons in the first layer and a
single neuron in the output layer, as indicated in Fig. 3 (right). A quadratic polynomial synaptic
operation was prescribed to the whole network. A bipolar sigmoid activation function σ(·) was
selected for the first layer. Linear activation was employed in the output layer. The multilayer
backpropagation algorithm, described in [5], was used for the error propagation in this work.

3.2. Getting all working together to predict flow parameters

The procedure starts with the calculation of α∗. Because there are only two parameters neces-
sary as inputs, it can give an estimation based on purely geometrical parameters of the cascade,
i.e., σ, θ. Then, one can make an estimation of the flow angle β1 as described in (1) and compute
the angles i∗ and δ∗ using trained neural networks. Since the flow angles β1 and β2 are calcu-
lated, the only unknown parameter is the velocity at the cascade outlet W2. The ratio W2/W1

can be determined by the following relation [3]:

W1 cos β1 = W2 cos β2. (19)

Now all parameters necessary to calculate the equivalent diffusion ratio Deq described by
(12) are known and the last correlation for the design total pressure loss PL can be applied as
indicated by the prediction workflow in Fig. 4.

4. Results

To obtain a data set without experimental measurements, CFD simulations seem to be a suf-
ficient compromise. Thus, simulations under different geometrical setups and inlet boundary
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conditions were done, e.g., in [2]. According to [1], the design point of the cascade can be
found as the flow under the incidence angle with the lowest pressure loss.

The obtained data are subjected to several investigations. Firstly, to standard method –
optimization of the coefficient in generalized empirical relations for monitored quantities by
means of least squares. Secondly, an approach using neural networks is applied and the obtained
results are compared with the calculated data. Finally, a comparison on the airfoil that was
excluded from the data set to prove the applicability of the proposed correlations is performed.

4.1. An approach using the least squares method

Since the empirical correlations can be generalized using the coefficients as KSH , K1, K2 and
the functions for m1.0 and b, the initial attempt should be to find these parameters for a new
family of airfoils. It could be done by using the least squares method to fit the data obtained
through CFD.

In the case of the total pressure loss PL correlation, there are two coefficients K1, K2 to
be found. The optimization was performed using the standard Nelder-Mead algorithm imple-
mented in the MATLAB framework. Equation (18) was chosen as the cost function to measure
the error. It turned out that the coefficient K1 should be equal to 0.003 5 and K2 should stay
equal to one.

Another case is the optimization of the KSH coefficient that appears in several correlations.
At first sight, the coefficient should be the same for all the correlations where it plays its role.
Fitting of the parameters was done, when the cost function was assumed as a sum of MSE
performed on the data for both the design angle of attack α∗ and the incidence angle i∗. It
turned out that the coefficient performs better than the correlations from the literature only in
the case of α∗, as can be seen in Table 1 and the following Tables 3 and 4. Hence, the coefficient
KSH was later assumed to be independent of the quantity and fitted for individual correlation
separately.

Table 1. The resulting values of KSH and comparison of performed MSE

Interval KSH MSE : α∗ MSE : i∗

Optimized to MSEα∗+i∗ 0.929 6.760 4.434

Optimized to MSEα∗ 0.351 4.511 8.952

Optimized to MSEi∗ 1.164 14.481 3.523

Based on the knowledge from previous coefficients optimization, it turned out that in order
to reach the best match with the CFD data, the coefficient KSH should be fitted individually for
each of the searched correlations.

Unlike the previous scalar coefficients KSH , K1, K2, the parameters m and b are func-
tions of the variable x, thus, the finding of these unknowns is performed as an optimization of
polynomials P

Pm1.0,b = a0,m1.0,b + a1,m1.0,bx+ a2,m1.0,bx
2 + a3,m1.0,bx

3. (20)

To sum it up, finding the best match with CFD data in the sense of the least squares method
leads to the optimization of nine parameters. The KSH value for the design incidence angle δ∗

was found as KSH = 1.951. Finally, plots of the functions found as the best fitting for the design
deviation angle δ∗ together with m1.0 for the NACA-65 and circular arc profiles can be seen in
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Fig. 5. Optimized functions: (left) slope factor m1.0, (right) exponent factor b

Fig. 5 (left). The trend of found b function against the original function from the literature can
be seen in Fig. 5 (right).

4.2. An approach using neural networks

The data set was split into three parts, 80 % of the samples belong to the training subset and
the rest was equally distributed to the validating and testing subsets. The learning rate in the
weights updating formula (16) was set to µ = 0.4.

4.2.1. Correlation for the design total pressure loss (PL)

Twenty epochs were enough for the neural network to learn with a testing error of 0.016 3, as it
is shown in Fig. 6 (left). Fig. 6 (right) shows a comparison of the function learned by ANN and
the Lieblein’s correlation with the whole data set obtained using CFD.

Table 2 lists deviations measured using MSE. The results obtained by the Lieblein’s correla-
tion, the generalized correlation with optimized coefficients K1, K2, and by the ANN approach
are related to data obtained by CFD. As can be seen, an approximation by ANN is more than
three times more accurate than the Lieblein’s correlation model and almost three times more
precise than the optimized version of the correlation in the whole interval of the equivalent dif-
fusion ratio Deq. In the region of interest, i.e., under the diffusion limit (Deq < 2) that refers to
a limit, beyond which an abrupt increase in the pressure loss can be expected, the difference be-
tween the discussed methods is smaller but the ANN method is still almost twice more accurate
compared to the Lieblein’s correlation. The relation with optimized coefficients K1 = 0.003 5,
K2 = 1 showed even a higher error in the region Deq < 2 that corresponds to a three times
higher difference than the approach using ANN.

4.3. Correlation for design angle of attack (α∗)

Graphical comparisons of the correlations from the literature and the neural network approach
are shown in Fig. 7. The design angle of attack α∗ is a function of two variables, unlike the
design total pressure loss correlation. To clarify the meaning of the following comparisons, i.e.,
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Table 2. MSE comparison for design total pressure loss PL

Correlation Literature Optimized ANN Lit./ANN Opt./ANN
MSE : Deq < 2 0.157 0.244 0.090 1.744 2.711

MSE : whole interval 0.356 0.303 0.109 3.244 2.779

the design incidence angle i∗ and the design deviation angle δ∗, there are two figures for the
α∗ correlation. In Fig. 7 (left), there is a comparison in the {σ, θ} space. The same results are
shown in Fig. 7 (right) but in dependence on the serial number of sample.

The results displayed in Fig. 7 (right) give a better idea of the error size. This is especially
true if the function depends on more than two variables, as will be shown below.

The ability to predict the design angle of attack by ANN and by the correlation from the
literature is listed in Table 3. The accuracy of the neural network approach in terms of MSE
outperformed the original correlation developed by Herrig et al. more than eight fold. In the
case of the optimized coefficient KSH = 0.351, there is an improvement of the approximation
quality, but the error is still more than five times higher in comparison with ANN.

Table 3. MSE comparison for design angle of attack α∗

Correlation Literature Optimized ANN Lit./ANN Opt./ANN
MSE : α∗ 7.343 4.511 0.886 8.288 5.091

4.4. Correlations for the design incidence and deviation angles (i∗, δ∗)

The correlations for the design incidence angle i∗ and the design deviation angle δ∗ were mod-
elled using the same neural network architecture as for the previous correlations. In the case
of the design incidence angle i∗, the coefficient KSH was set to 0.351 and KSH = 1.951 was

Fig. 6. Progress of learning (left), ANN results compared to the Lieblein’s correlation (right)
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Fig. 7. Results: (left) design angle of attack α∗ correlation comparison in the {σ, θ} space, (right) design
angle of attack α∗ correlation comparison against the number of samples

Fig. 8. Results: (left) design incidence angle i∗ correlation comparison, (right) design deviation angle δ∗

correlation comparison

set for the design deviation angle δ∗. The coefficients in the formulas for the slope factor m1.0

and for the exponent factor b are selected, as is presented in Fig. 5. Since these relations are
assumed to be functions of three variables, they are shown only as a comparison against the
serial number of sample, as can be seen in Fig. 8.

A performance comparison is listed in Table 4. At first sight, it can be seen that the original
correlations from the literature lack the ability to predict both the design incidence and the de-
viation angles. In the case of the design incidence angle i∗, ANN showed seventeen fold higher
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accuracy in comparison with the original literature correlation. When the coefficient KSH is
optimized, the error is lower but still of the same order of magnitude. Another case is the inves-
tigation of correlation for the design deviation angle δ∗ when nine parameters were optimized,
as discussed in the previous section. Except for the KSH coefficient, eight parameters in poly-
nomial functions representing factors m1.0 and b were also optimized in this case. Although
MSE is five times higher than the one from the ANN approach, it is two orders of magnitude
more precise than the original literature correlation developed by Lieblein.

Table 4. MSE comparison for design incidence angle i∗ and deviation angle δ∗

Correlation Literature Optimized ANN Lit./ANN Opt./ANN
MSE : i∗ 3.967 3.523 0.233 17.026 15.120

MSE : δ∗ 4.640 0.091 0.018 257.778 5.056

4.5. Flow parameters prediction for an airfoil excluded from the training data set

Finally, there is a test of neural network predictions performed on a cascade geometry, which
was not included in the training data set, specifically a cascade with solidity σ = 1.25, blade
angle between the camberline and the axial direction at the leading edge κ1 = 40◦ and θ = 30◦.

Referring to the flowchart in Fig. 4, the angle of attack can be calculated based on known
cascade parameters. Since the inlet flow angle β1 can be estimated, it is possible to determine
the angles i∗ and δ∗ using trained neural networks. Thus, the flow angles β1 and β2 can be
calculated, as well. The only unknown parameter is the velocity at the cascade outlet W2,
which can be calculated using (19). Since all parameters to calculate the equivalent diffusion
ratio Deq described by (12) are known, the correlation for the design total pressure loss PL can
be applied.

The results of the described procedure are shown in Fig. 9. In this studied case, only the
design angle of attack α∗ was predicted more accurately by both literature correlations – the
original and the one with optimized coefficients – than the approach by ANN. It turned out that

Fig. 9. Comparison of flow field parameters obtained by CFD, ANN and literature correlations performed
on the profile excluded from the training data set
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Fig. 10. Design incidence angle i∗ and total pressure loss PR predictions comparison for the profile
excluded from the training data set

the initial estimate of α∗ by the literature correlation does not lead to a more accurate prediction
of the remaining parameters.

The comparison of the design incidence angle estimation and the total pressure loss is in
Fig. 10. The angles ic, is denote positive and negative stall incidence angles, which bound the
range of acceptable incidence angles until total pressure loss increases twice [7, 12]. It can be
seen that although the estimation difference in the other parameters (in Fig. 9) is not significant,
the incidence angle predicted by the correlations from the literature exceeds this range, thus, it
is unsuitable for the studied family of airfoils.

Deviations from the ANN approach and from the correlations from the literature compared
to the data obtained by CFD are listed in Table 5, both measured with relative error related to
the value from CFD as

Error =
ϕ− ϕCFD

ϕCFD

. (21)

The only worse predicted flow parameter is the angle of attack α∗ in the presented case.
The worst predicted parameter from the literature correlations is the design incidence angle i∗,
where the error reached up to 92.8 % and 81.7 % in the case of the original and optimized cor-
relations, respectively. The lower error in the predicted i∗, when optimized correlation is used,

Table 5. Mean square error comparison

Parameter α∗ i∗ δ∗ W2/W1 Deq PL

CFD 17.32 6.10 8.00 0.61 2.11 1.21

Lit. 14.09 0.44 6.61 0.79 1.61 0.86

Opt. Lit. 12.34 1.12 10.96 0.81 1.56 0.69

ANN 11.55 6.57 7.17 0.72 1.80 1.47

Lit. : Error −18.6% −92.8% −17.3% 30.3% −23.9% −28.8%

Opt. Lit. : Error −28.8% −81.7% 36.9% 32.4% −26.3% −43.2%

ANN : Error −33.3% 7.8% −10.4% 18.1% −14.9% 21.4%
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is balanced by a higher error in the predicted deviation angle δ∗ that resulted in worse predic-
tion of the remaining flow parameters, especially that of the pressure loss PL. The prediction
performed by ANN for the rest of parameters (except for α∗, i∗) was better by 8 % in average
in comparison with the more precise original correlations from the literature. Thus, it can be
seen that the approach using artificial neural networks outperformed the available correlations
from the literature even in the case of an airfoil, which was excluded from the training data set.
This test proved the ANN ability to be a useful tool during the initial stages of axial compressor
design.

5. Conclusion

An approach for loss correlation modelling was presented in this paper. Basic terminology of
compressor cascades and empirical correlations were introduced. Basic ideas of neural net-
works and supervised learning approach were discussed. Output of CFD simulations was taken
as the input data set and artificial neural networks were taught to predict the angle of attack α∗,
the incidence angle i∗, the deviation angle δ∗ and the total pressure loss at design point of an
axial compressor cascade designed with a new family of airfoils.

The results of the learning were compared against classical empirical models from the lit-
erature and against generalized correlations with optimized coefficients for another family of
airfoils. The optimization process and found constants were also presented. The approximation
using ANN outperformed available correlation models from the literature as could be seen in
Tables 2, 3 and 4. The most significant improvement is evident in the design incidence and
the deviation angles, where the MSE ratio Lit./ANN reached up to 17.026 and 257.779, respec-
tively. The results obtained using fitted empirical correlations were more accurate, but they
were not able to outperform the approach using artificial neural network in terms of MSE.

Finally, there was a test of neural networks prediction on a cascade, which was not included
in the training data set. The neural network was able to better predict all parameters except the
angle of attack α∗. The rest of parameters was predicted with a maximal error of 21.4 % that is
by seven percent better than the second more accurate result. The design incidence angle was
estimated with the smallest error of 7.8 %, where the classical correlation from the literature
failed completely and predicted this parameter with an error higher than 90 %. The optimized
correlation performed better, but with the error still higher than 80 %. The ANN ability to be a
useful tool during the initial stages of axial compressor design was demonstrated. It was also
shown that neither classical nor generalized correlations with fitted coefficients were able to
describe the problem more precisely.

Further work should aim to predict performance of axial compressors at off-design points.
Firstly, it will require to extend the training data set involving Mach number effects. In this
case, it will be possible to estimate acceptable incidence angles range bounds, i.e., positive
and negative stall incidence angles. Secondly, it should be possible to estimate off-design flow
parameters, e.g., the deviation angle, loss coefficient and overall behaviour of the device. In
the off-design cases, even in the case of compressor pumping, it is very tricky to reach a stable
CFD simulation due to the transient nature of the phenomenon, thus, flow parameters are very
difficult to obtain. Finally, taught neural networks should be deployed as a library for a CFD
solver to accelerate simulations.
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