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Abstract

Optimization is getting more and more important due to its application in real engineering problems. Recently,
the vibrating particles system algorithm has been developed as an efficient method for mono-objective optimiza-
tion. However, in multi- and many-objective design problems, the vibrating particles system method is unable to
handle simultaneously the conflicting objectives. The second drawback of the vibrating particles system algorithm
is the variability of the obtained results at each independent test, due to its inability to balance exploitation and
exploration capabilities. To address these issues, this paper proposes an enhanced vibrating particles system al-
gorithm called the many-objective vibrating particles system algorithm. The proposed many-objective vibrating
particles system algorithm uses the Pareto principle to store the non-dominated solutions of multiple conflicting
functions. Moreover, the implementation of the particle position enhancement mechanism to boost this algo-
rithm’s exploitation and exploration capabilities is another distinctive aspect of the suggested method. A variety of
high-dimensional test functions and engineering design problems are used to evaluate the efficiency of the many-
objective vibrating particles system algorithm. The obtained results show that the proposed algorithm outperforms
other popular methods in terms of convergence characteristics and global search ability.
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1. Introduction

Optimizing multiples objectives is an issue encountered in most scientific and engineering ap-
plications [3]. These optimization problems are called multi-objective when there are two or
three objectives, whereas they are called many-objective when there are more than three ob-
jectives. Several methodologies have been proposed to solve multi- and many-objective opti-
mization problems over the last two decades. These methods are based on laws of nature, such
as those found in the biological evolution, animal behavior, socio-political field and physical
phenomena. Evolutionary algorithms utilize biological evolution-inspired ideas like crossover,
mutation, and selection. The Pareto archived evolution strategy [23], the non-dominated sort-
ing genetic algorithm III [40], a set-based genetic algorithm [19] and the improved differential
evolutionary algorithm [39] are well-known evolutionary methods used in solving engineering
problems.

Numerous animal behaviors, such as fishing and bird flock movements, are examined and
mimicked as clever principles to create a variety of effective algorithms. The lifespan of water
strider insects served as the model for the population-based algorithm known as the water strider
algorithm [32]. This algorithm imitates water strider order, clever rippling interaction, breeding
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Nomenclature
BP bad particle MOMVO multi-objective multi-verse
DTLZ Deb-Thiele-Laumanns- optimization
Zitzler test functions MOSHO spotted hyena optimizer
GP good particle MOVPS multi-objective VPS
HB best situation attained OHB historically the best position
in the population in the population
HMOSHSSA hybrid multi-objective spotted S non-dominated solution set
hyena salp swarm algorithm SAMO  surrogate assisted multi-
HV hypervolume metric objective optimization
IBGA incentives based grant SD standard deviation
allocation algorithm SP spread metric
IGD inverted generational SPA spacing metric
distance metric UF unconstrained test functions
Iter current iteration number VPS vibrating particles system
Itermax total number of iterations WFEG walking fish group
MaF many-objective test functions test functions
MOABHH multi-objective agent-based ZDT Zitzler-Deb-Thiele’s
hyper-heuristic algorithm test functions

manner, and territorial actions. Moreover, the particle swarm optimization is a well-known
method inspired from animal behavior and used in multi and many optimization engineering
design [44]. This algorithm was motivated by fish schools or flocks of birds. The ant colony
optimizer [40] is inspired by the method adopted by the colony of ants to reach their food.
The imperialist competitive algorithm is a socio-political behavior of countries divided into
imperialists and their colonies for expanding power or authority. The well-known versions of
imperialist competitive methods are the multi-objective imperialist competitive algorithm [4]
and the enhanced colonial method [46].

Natural physical rules are usually replicated by algorithms that are based on physical phe-
nomena. The thermal exchange optimization algorithm [31] was based on the Newton’s law
of cooling indicating that a body rate of heat loss is directly related to the temperature dif-
ferential between the body and its environment. The Vibrating Particles System (VPS) is a
newly designed algorithm that is based on physical principles [36]. With viscous damping, this
method simulates the unconstrained vibration of single degree of freedom systems. The theo-
retical structure of VPS is simple and its performance has been demonstrated through several
engineering design problems [36]. VPS has been used in hard clustering problems [30], re-
inforced concrete shear walls [51], reservoir system operation [49], photovoltaic system [18],
steel curved roof frames [34], buckling restrained brace frames [50] as well as other engineering
design issues [38].

Despite its efficiency in mono-objective optimization and reduced calculation time [37],
VPS has some drawbacks. The major drawback of VPS is the variability of the result at each
independent test. This proves that the ability to balance exploitation (convergence capability)
and exploration (explore the global regions of the search space) in VPS is not always successful
[18]. Adding a mechanism for improving exploitation and exploration abilities can improve the
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performances of the algorithm to reach the global optimum position in the search space. On
the other hand, VPS cannot handle simultaneously multiple conflicting objectives in multi- and
many-objective design problems [35].

In [33], Kaveh et al. used VPS to solve a multi-objective optimization problem by converting
it to a mono-objective issue using the weighted sum of objectives. In fact, they used VPS
to identify deterioration of truss systems. In this work, the selection of weighting factors is
arbitrary and rarely justified. The ideal solution changes when these weighting parameters are
changed [50]. Other authors suggested combining VPS with another method to address multi-
and many-objective issues. For truss structures optimization, Kaveh and Ilchi [35] established
the MDVC-VPS method which combines VPS and the Multi-Design Variable Configuration
(MDVO).

Few researchers have concentrated on developing a multi-objective VPS version. In order to
address various structural design issues, Kaveh and Ilchi [37] established a multi-objective vari-
ant of VPS that combines the VPS algorithm with the maximal strategy concept. To our knowl-
edge, the literature research seems to be missing multi-objective versions of VPS. Moreover,
no prior studies have proposed a mechanism to improve the VPS exploitation and exploration
abilities.

The aim of this study is to develop a novel Multi-Objective Vibrating Particles System
(MOVPS) algorithm based on the Pareto front concept. Moreover, in order to improve the
algorithm’s exploitation and exploration abilities, an enhancement mechanism of the particle
position has been implemented at the end of the evaluation phase. In fact, the equations of
the VPS algorithm have been updated and new parameters were added. The performances of
MOVPS are tested through several high dimension test functions and a set of multi- and many-
objective engineering design problems. The obtained results show that the proposed approach
is efficient and is able to yield a wide spread of solutions with good convergence, diversity and
robustness.

2. The proposed multi-objective vibrating particles system algorithm

2.1. The original VPS

This section describes the VPS algorithm. First, a brief overview of the free vibration of single
degree of freedom systems with viscous damping is provided and then the proposed method is
presented.

2.1.1. Brief concepts of VPS

Vibration is a mechanical phenomenon that causes oscillations around a fixed point. A mass
spring damper system is used to analyze the damped vibrating motion, as shown in Fig. 1.
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Fig. 1. Free vibration of a system with damping
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Lx(t) = pe~tent sin(wpt + @)

*x(6) = pe~font

Fig. 2. Vibrating motion of an underdamped system

If the block of mass m is moved by distance x from its equilibrium point, the equation of
motion can be expressed as
max + cx + kx = 0, (1)

where c is the coefficient of viscous damping, and £ is the spring stiffness. The solution to this
equation is [48]
z(t) = pe "t sin (wpt + @), 2)

where p and ¢ are constants determined by the initial conditions of the problem, w,, = \/k/m,
wp = wpy/ (1 — &%), and £ = ¢/(2mwy,,) are the natural circular frequency, the damped natural
frequency, and the damping ratio, respectively. The vibrating motion of the underdamped sys-
tem (2) is presented in Fig. 2. An underdamped single degree of freedom system oscillates and
returns to its equilibrium position. This kind of motion serves as inspiration for VPS.

2.1.2. VPS algorithm

The VPS method has been developed recently by Kaveh and Ilchi in [36]. Fig. 3 illustrates the
VPS flowchart. The particles system is represented by a number of possible solutions in VPS. In
the search space, the particles are randomly initiated and eventually approach their equilibrium
positions. The different phases of VPS are presented in the following sections.

Phase 1 - Initialize VPS: The particle initial positions are produced at random

where xi is the j-th variable of particle ¢, and rand is a random number uniformly distributed
in the range of [0, 1]. The lowest and maximum permitted variable vectors are i, and Zax,
respectively.

Phase 2 — Candidate solution evaluation: In this step, the value of the objective function
for every particle is calculated.

Phase 3 — Update the particle location: For each particle, three equilibrium positions with
differing weights are defined: (1) the historically best (HB) position of the entire population,
(2) a good particle (GP), and (3) a bad particle (BP). The current population is sorted in ascend-
ing order according to the values of their objective functions in order to select GP and BP for
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Start

!

[ Initialize the VPS parameters and create the initial positions ]

b

[ Compute the objective function values and select 7B ]

»
>

[ For each particle, select GP and BP ]

4

[ For each particle, calculate the values of w, and ws ]

|

[ Determine the new positions by Eq. (7) ]

!

Regenerate the violated components ]

¥

Compute the objective function values ]

L

[ Update B ]

[ Report the best solution found by the algorithm ]

!

End

Fig. 3. The vibrating particles system flowchart

each candidate solution. Then, GP and BP are chosen randomly from the first and second hallf,
respectively. The locations are changed to reflect the previously described ideas

xf = wy (DA randl + HBj) + wy (DA rand2 + GPj) + w3 (DA rand3 + BPj) , @

where D = (Iter/Itery.) “, Iter is the current iteration number, [ter . is the total number
of iterations for the optimization process, and

A= [w; (HB! — 21)] + [ws (GP? — 2)] + [w3 (BP — )], (5)
where wy, ws, and w3 (w; + wy + ws = 1) are three parameters to measure the relative im-
portance of HB, GP, and BP, respectively, randl, rand2, and rand3 are random numbers uni-
formly distributed in the range of [0, 1], and « is a constant value. Picking a value of 0.05 is
advised [36]. The effect of A and D parameters in (4) is similar to that of p and e~*“" in (2),
respectively. Also, the value of sin (wpt + ¢) is considered unity in (4) (z(t) = pe=%*! are
shown in Fig. 2 by interrupted lines).
A parameter like p within (0, 1) is defined and it is specified that the effect of BP is some-
times ignored in an updating position. For each particle, p is compared with rand and if
p < rand, then wy = 0 and wy = 1 — wy.
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This algorithm takes into account three important concepts: competition, cooperation, and
self-adaptation. Self-adaptation happens as a particle runs in the direction of HB. Cooperation
between particles is offered in VPS, where every particle has the capacity to influence the new
location of other particles. The competition is provided as the p parameter indicates that the
influence of GP is greater than the influence of BP.

Phase 4 — Constraints handling: During the optimization process, the particle explores
the search space in order to obtain a more accurate result. If any candidate solution violates the
constraints, it must be regenerated by a penalty function approach [20]. Using this technique,
unfeasible solutions are converted into a poor function (6) value. A constrained optimization
problem can be turned into an unconstrained one by including a penalized term in the objective

function f ( )
X if X € F,
f(X) = { F(X) + penalty otherwise, ©

where X represents the design vector of the system and F' is the feasible search space. The
penalty value was empirically chosen to be far larger than the objective function values gener-
ated by the problems under consideration. In fact, when the constraint is violated, the penalty
is a high value number (here given as 10'!) that penalizes the objective function.

Phase S — Controlling the final criterion: Steps 2 to 4 are repeated until a termination
criterion is satisfied. In this study, the optimization process is stopped after achieving a prede-
termined number of iterations.

2.2. The proposed MOVPS algorithm

In what follows, the Multi-Objective Vibrating Particles System algorithm (MOVPS, based on
the original VPS) is proposed, see Fig. 4. Two main changes are performed on the original VPS:
* Incorporation of the particle position enhancement mechanism to improve the exploita-
tion and exploration abilities of the algorithm.
* The fast non-dominated sorting strategy has been integrated into the algorithm to handle
many conflicting objective functions.
The following paragraphs give details of the steps added to the original VPS.

2.2.1. The particle position enhancement mechanism

After the evaluation of candidate solutions, the particle position undergoes an enhancement
phase. This enhancement mechanism improves convergence speed and algorithm search capa-
bility. "Memory” and "OHB” are two new parameters introduced in this step. Memory works
in the same way as HB, only it saves the number of the historically best locations in the entire
population. OHB (one of the historically greatest positions in the entire population) is one row
of Memory that is randomly picked. In the MOVPS algorithm, HB is substituted by Memory.
Another change in the VPS algorithm is that (4) should be replaced with (7);. In (7), one of the
equations (a)—(c) is applied with the possibility of w,, ws or w3, respectively, i.e.,

 ( DArandl + OHB', (a) (+1) (OHB’ — ), (d)
xz] = ¢ DArand2 + GP’, (b) A=q (#1)(GP —af), @) ™
DArand3 + BP/, (©) (£1) (BP —]), (0

where (+1) is randomly used.

82



M. Nejlaoui / Applied and Computational Mechanics 18 (2024) 77-110

Start

¢

[ Initialize the VPS parameters and create the initial positions ]

{

[ Compute the objective function values and select /B ]

»

Generation of Pareto Front J

'

[ For each particle, select GP and BP ]

!

[ For each particle, calculate the values of w; and ws ]

L

Determine the enhanced positions by Eq. (12) J

!

[ Regenerate the violated components ]

¥

[ Compute the objective function values ]

Update OHB

Display the Pareto front J

¥

End

Fig. 4. The multi-objective vibrating particles system flowchart

2.2.2. Generation of the Pareto front

This phase is used to keep the non-dominated solutions, reflecting the Pareto front, in an archive
by using the fast non-dominated solution approach [14]. During the initial iteration, /V particles
are chosen. Each particle 7 is contrasted with the remaining particles 7, as illustrated in Fig. 5.
The particle ¢ counter variable (np;) is augmented anytime it is dominated. The particle that has
np; = 0 is kept in the archive. This process is done until the Pareto front is complete. In the
remaining iterations, particles will be compared with those representing the precedent Pareto
front (Fig. 5).

3. Experiments and results

3.1. Performance metrics

To evaluate the performances of MOVPS, five performance metrics will be used. These perfor-
mance metrics are defined as follows [28,47]:

¢ Inverted Generational Distance (IGD): The distance between the non-dominated solutions set
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[ Initialization: npi=0 and Front=0 ]

¥
[ Select the particle i H Select the particle j

[Front =Front u{ if ]

End

Fig. 5. Generation of the Pareto front

S and the distributed solutions over the true Pareto front P* is measured by this metric, which
can simultaneously show the convergence and the distribution of S along P*. This metric is
defined as [59]

IGD (S, P*) = 7 rélzulldzst(p,s ), (8)

=1

where |P*|and |S| are, respectively, the number of solutions in P* and S given by the corre-
sponding test functions, dist (pi, s’“) is the Euclidean distance between the solutions p’ € P*
and s* € S. Itis noted that the set S with a low IGD value indicates a high approximation to
the entire true Pareto front.

Hypervolume (HV): This measures the volume surrounded by the obtained non-dominated
solutions set S with a reference point r meeting s* < r, Vk = 1,...,|S|. This metric is

defined as [59]
N

HV(S,r) = volume U HyperRectangle(sk,T) ) 9)
k=1

where Hyper Rectangle (sk, 7") designates a hyper-rectangle designed by the point r and the
solution s¥, as illustrated in Fig. 6. The reference point » = (r,7,...,r) is specified in the
normalized objective space as follows [31]

1
=1+ — 10
r + ST—1 (10)
where |S| is the number of non-dominated solutions.
Standard Deviation (SD): In order to assess the robustness of MOVPS for each test function,
10 independent runs (/) were conducted. The standard deviation, over the 10 runs, of the
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7

/i

Fig. 6. Hyper Rectangle (sk, r) for two-objective optimization

obtained finding (Y) is calculated as follows

1 R

SD(Y) = | 5>, (¥i=Y)", (11)
=1

where Y is the average of the obtained results during the 10 runs.
Spacing (SPA): This metric indicates the evenness of the solutions dispersed along the Pareto
front set [27]

Bl :

SPA = |—;|Z(dk—a)2 , (12)
k=1

where d;, is the Euclidean distance in the Pareto front between the solution k& and its closest
subsequent solution, and d is the average of all distances between the closest solutions in S.
The obtained non-dominated solutions have a more uniform distribution when SPA is lower.
Spread (SP): This metric is used to calculate the extent of spread by the obtained solution

set S
|S] S| _
> d(se,: S) + X0 (di —d)
SP — k=1 5 k=1 : (13)
> d(sk,.S)+[S|d

k=1

where s* are the extreme non-dominated solutions in S and d(s%,, S) is the minimum Eu-
clidean distance between s*_ and the points in S.

3.2. Test suites

Various well-known test suites were used to assess the performance of the MOVPS algorithm.
These tests functions considered bi-objective (Zitzler—-Deb—Thiele’s and the unconstrained func-
tions), tri-objective (Deb-Thiele-Laumanns-Zitzler and the Walking Fish Group), and many-
objective (many-objective test functions) optimization problems of different natures.

The Zitzler-Deb-Thiele’s (ZDT) test suite [14] offers two main advantages: The Pareto op-
timal fronts of its problems are well-defined and the test results from a variety of other research
papers are commonly available, which facilitates comparisons with new algorithms.

The unconstrained functions (UF) [55] allow the discussion of a number of characteristics
like multi-modality, bias, and Pareto front irregularity that add to the problems complexity. The
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Deb-Thiele-Laumanns-Zitzler (DTLZ) test suites [15] are frequently used as a starting point
for evaluating how well multi-objective algorithms work. DTLZ1 exhibits both multimodal
and linear properties. The Pareto fronts of DTLZ2—-6 are concave. The features of DTLZ7
are biased, discontinuous and mixed. The Walking Fish Group (WFG) test functions [25] are
scalable issues in terms of both the number of objectives and the treated variables, as well
as non-separable problems, deceiving problems, genuinely degenerative problems, and mixed
form Pareto front problems. The many-objective functions (MaF) [12] are test suites for many-
objective optimization that was recently proposed. Among the many characteristics of the MaF
issues are their multimodality, degeneracy and bias. Verifying the efficacy of MOVPS on many-
objective optimization problems with a range of real-world scenarios, is the goal of employing
MaF.

3.3. Obtained results
3.3.1. Results of bi-objective test functions

The MOVPS performances are assessed using a series of bi-objective test functions: Zitzler-
Deb-Thiele’s and unconstrained test functions [14,55]. The obtained results by MOVPS for the
bi-objective test functions are illustrated in Fig. 18 (see Appendix). Tables 4-5 (see Appendix)
provide a comparison between the MOVPS results and those obtained by other well-known
algorithms.

It is noted that in every test function, the Pareto fronts produced by the proposed MOVPS
closely mimic the true Pareto front solutions (Fig. 18). These results validate the MOVPS
convergence efficiency. In particular, the effectiveness of MOVPS becomes apparent in ZDT3
and UFG6 test function results, where the solutions in the Pareto front exhibit discontinuities.
Moreover, for all bi-objective test functions, MOVPS provides smaller values of IGD, SPA and
SP and higher values of the HV metric than those given in the literature (Tables 4-5). The
results demonstrate that MOVPS outperforms other algorithms in terms of convergence and
solution diversity. Indeed, the variance of the results yielded by MOVPS is smaller compared
to the variances obtained from other algorithms (see Tables 4-5). These findings demonstrate
the robustness of MOVPS.

3.3.2. Results of tri-objective test functions

The effectiveness of MOVPS is also evaluated in terms of managing issues with three con-
flicting objective functions: Deb-Thiele-Laumanns-Zitzler and Walking Fish Group (WFG) test
functions [15,25]. Nine common test functions with known Pareto fronts were chosen. The so-
lutions for these test functions can vary in linear, spherical, curvilinear, or discontinuous forms.

Fig. 19 (see Appendix) displays the MOVPS results of tri-objective test functions as well as
the true Pareto fronts. It can be noted that the Pareto fronts generated by the proposed MOVPS
align with the true Pareto fronts in all tri-objective test functions. These results demonstrate the
convergence efficiency of MOVPS when optimizing three conflicting functions.

The algorithm performances were also assessed by comparing them with the results from
existing studies in the literature (Tables 67, see Appendix). It can be noted that the MOVPS al-
gorithm has achieved better results in all metrics compared to the other well-known algorithms.

3.3.3. Results of many-objective test functions

The MOVPS performances were evaluated through a set of many-objective test functions (MaF)
[12], as presented in Fig. 20 (see Appendix). The high convergence and solution diversity
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abilities of the proposed MOVPS are demonstrated in all test functions, see Fig. 20. In fact, the
non-dominated solutions are very close to the true Pareto front.

The algorithm effectiveness is also evaluated by comparing it to findings from previous
research outlined in Table 8, see Appendix. It is noted that the proposed MOVPS surpasses the
other algorithms in all metrics, demonstrating its high convergence, diversity and robustness for
all many-objective test functions.

4. Engineering applications

In this section, the MOVPS algorithm will be used to solve three engineering design problems.
These problems are the speed reducer design problem, the tri-objective vehicle crashworthi-
ness design and the many-objective machining problem. After that, the obtained results are
compared to those presented in the literature.

4.1. Speed reducer design problem

As shown in Fig. 7, the design of the speed reducer is considered having the face width (b), the
module of the teeth (m), the number of teeth on pinion (z), the length of the first shaft between
bearings (L), the length of the second shaft between bearings (L-), diameter of the first shaft
(day), and the diameter of the second shaft (das) [16,29,45]. The objective is to minimize the
total weight of the speed reducer while satisfying eleven constraints. The constraints include
the limits on the bending stress of the gear teeth, surface stress, transverse deflections of shafts
1 and 2 due to the transmitted force, and stresses in shafts 1 and 2.

The mathematical programming model of the speed reducer problem considered in this
study is expressed as follows:

Fy = 0.7854bm? (1% +14.9332 — 43.0934) — 1.508b (da; + da3)

Minimize +7.477 (da$ + da3) + 0.7854 (Lyda? + Lada3) (14)
Fy = 2/ (74510)* 4+ 1.69 x 107
(
9=~ <0, 92 =gz — 3975 < 0,
_ L3 L < _ L3 L <
93 = mzdalI T 193 =% 94 = mzala2I T 193 =%
g5 = mz—40 <0, gG:%—12§O,
Subjectto ¢ ¢g; = 5— L <0, gs =19~ L, +1.5da; <0, (15)

gJg = 1.9 — L2 + 1.1da2 S O,
g0 = g/ (T4510) + 1,60 x 107 — 1300 < 0,

_ 1 Lo \2
| g = m\/(”%—i) + 1.575 x 108 — 1100 < 0,
where the search domains of the different design parameters are

2.6 < b < 3.6, 0.7 <m < 0.8, 17 < z < 28, 7.3 < L; < 8.3,

73<L0,<83, 29<da; <39,  5<day<5.5. (16)

Fig. 8 shows the optimization results obtained by the proposed MOVPS algorithm. Accord-
ing to this figure, one can note that the MOVPS solutions are very close to the true Pareto front.
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Fig. 7. Speed reducer problem design

This illustrates that the MOVPS approach shows effective convergence towards the true Pareto
front while maintaining a high level of diversity in the obtained solutions.

The MOVPS results are compared to those given by the literature [2, 16, 29, 43, 45], as
illustrated in Table 1. One can note that MOVPS yields better results than those given by the
HMOSHSSA, MOSHO and MOMVO methods. In fact, MOVPS provides smaller values of
IGD and higher values of HV.

4.2. Tri-objective vehicle crashworthiness design problem

This problem can be formulated as structural optimization of the frontal structure of a vehicle
for crash-worthiness [2,5,29,43]. It contains three objectives which need to be minimized: mass
of the vehicle (f1), deceleration during the full frontal crash (f>) and the toe board intrusion

1400 T T
|——TePF o Movps]| |
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u™ 1000 -
900 r

800 r
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600 1 1 1 1 1 1
2500 3000 3500 4000 4500 5000 5500 6000

Fi
Fig. 8. Speed reducer optimization results
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Table 1. IGD and HV metrics findings

IGD HV
Mean SD Mean SD
HMOSHSSA [52] | 0.00312 | 0.00156 | 0.86200 | 0.22100
MOSHO [7] 0.00413 | 0.00157 | 0.32200 | 0.22000
MOMVO [6] 0.43067 | 0.04121 - -
MOVPS 0.00271 | 0.00116 | 0.89715 | 0.00914

Methods

in the offset-frontal crash (f5). The design variables are the thickness values of five reinforced
members around the frontal structure of the vehicle (¢4, to, t3, t4, and ¢5), as presented in Fig. 9.
The design problem can be formulated as follows [5,45]:

(f1 = 1640.2823 + 2.3573285¢; + 2.3220035t; + 4.5688768t

+7.72136334 + 4.4559504;5,
fo = 6.5856 + 1.15t; — 10427ty + 0.9738t3 + 0.8364¢, — 0.3695tt,
Minimize { —0.0861¢,t5 + 0.3628t5t, — 0.1106¢2 — 0.3437¢2 — 0.176412, (17)
f3 = —0.0551 + 0.0181¢; + 0.1024¢, + 0.0421¢5 — 0.0073t 15

+0.024t5t5 — 0.0118t5t, — 0.0204¢5t4 — 0.008¢ 5t

—0.0241£2 4 0.0109¢2.

\

MOVPS is used to solve the multi-objective optimization problem of the car crashworthiness
design and the obtained results are presented in Fig. 10. It is noted that MOVPS offers a range of
solutions that are very close to the true Pareto front. These results validate the MOVPS capacity
to deliver precise and reliable outcomes.

The performances of the proposed MOVPS algorithm is compared to the existing results
from the literature [2,5,45], see Table 2. It is noted that the MOVPS algorithm has outperformed
the other literature methods in terms of IGD and HV metrics.

4.3. Many-objective machining problem

The machining problem [8] formulates machining recommendations under multiple criteria.
This problem considered tests on aluminum cut with VC-3 carbide cutting tools, see Fig. 11,

(a) A frontal crash (b) Design variables

Fig. 9. Crashworthiness design
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Table 2. Vehicle crashworthiness design results

1GD HV
Mean SD Mean SD
d-NSGA-II [5] | 0.03528 | 0.00470 | 1.02700 | 0.002500
SAMO [2] 0.00580 | 0.00030 | 0.01040 | 0.000800
MOMVO [45] | 0.01608 | 0.00474 | 0.01057 | 0.000015
MOVPS 0.00297 | 0.00019 | 1.04050 | 0.000011

Methods

as a basis to test the approach, which has significant automotive industry applications [8]. The
problem has three decision variables and four objective functions. The speed (¢), feed (j), and
cut depth (D,) are attributes considered in the definition of three decision variables: m; = In 4,
my = In(10007), and m; = In (1000D..). The four objectives are considered in (18): (i) min-
imizing the surface roughness f;(m), (ii) maximizing the surface integrity fo(m), (iii) maxi-
mizing the tool life f3(m), and (iv) maximizing the metal removal rate f;(m). The machining
optimization problem can be formulated as [8]:

fi = —7.49 + 0.44m; — 1.16mq + 0.61ms,

MInimize § % 91 90 — 1.94m, — 0.3my — 1.04ms, (18)
f4 = —11.331 +mq + mo + ms.
= —0. . - 0. < =8.
Subject to GQ 0 92m1 + 0 16m2 0 43m3 S 8 04, (19)

Gy = 1.94m, + 0.3my + 1.04ms < 18.5,
6.4 <my <7.00, 0.60 < my < 2.89, 3.91 < my < 4.61.

Fig. 12 presents the parallel coordinate plot solutions corresponding to the many-objective
machining problem and obtained by using the MOVPS algorithm. In Table 3, we provide a

True PF
o MOVPS

1660

f, 11 1700 f,

Fig. 10. Obtained results for vehicle crashworthiness problem
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Fig. 11. Machining operation

Objective Value

Objective Number

Fig. 12. Parallel coordinate plot solutions corresponding to machining problem

comparison of the MOVPS results with those reported in the existing literature. According to
Table 3, MOVPS surpasses the other algorithms in both measures (IGD and HV), demonstrating
its ability to achieve high convergence and diversity for the complex many-objective machining

problem.

Table 3. Results of the machining problem

IGD HV
Methods Mean SD Mean SD
MOABHH [8] 5.0530e-04 - 2.7118e-01 -
Kemeny-Young [7] - - 2.8194e-01 -
IBEA [8] 5.1369e-04 - 2.7348e-01 -
MOVPS 3.0521e-04 | 0.00009 | 5.7946e-01 | 0.00081
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5. High dimensional problems

To evaluate the performance of MOVPS for high-dimensional problems, a set of benchmark
functions is employed. These test functions can be divided into unimodal, multimodal, fixed
dimension multimodal, and composite benchmark functions [1,17,22,54]. The unimodal func-
tions are appropriate for benchmarking exploitation. The multimodal functions, in contrast to
the unimodal ones, have a large number of local optima, which increases exponentially with
dimension. As a result, they are ideal for evaluating an algorithm exploration ability. The
composite functions can be used to benchmark both exploration and exploitation at the same
time [22,54]. The graphs illustrating the surface plots of these test functions are given in Fig. 13
as well as in Figs. 21 and 22, see Appendix.

F1

100

100

200

X -200  -200

Fig. 13. Unimodal issues
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Objective Functions

50 100 150 200 250 300 350 400 450 500
Iteration

Fig. 14. Unimodal issues findings

Ten runs were performed for each benchmark function. The mean and the standard devi-
ation of the obtained results were then recorded. During each iteration, the objective function
was plotted. The results are displayed in logarithmic and linear scales in Figs. 14-17. The
MOVPS results are compared, in Tables 9-10 (see Appendix), to the literature findings. Table 9
(Unimodal) shows that MOVPS presents a very competitive performance. In fact, MOVPS out-
performs the literature methods in all unimodal test functions. These results demonstrate the
MOVPS ability to reach the global optimum.

Furthermore, Table 9 (Multimodal) and Table 10 (Fixed dimension multimodal) show that
MOVPS produces extremely competitive results for multimodal test functions. In fact, for the
majority of multimodal functions, MOVPS dominates existing published methods. These find-
ings prove that the MOVPS method outperforms the other algorithms in terms of exploration.
MOVPS also presents very competitive performance for all composite benchmark functions, as
shown in Table 10 (Composite).

Thus, it proves that MOVPS is able to balance successfully the exploration and exploitation

1010 |- T T T T T T T T T
| F9 F10 F11 F12 F13]

‘-
10° \\\

Objective Functions

50 100 150 200 250 300 350 400 450 500
Iteration

Fig. 15. Multimodal issues findings
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Fig. 17. Convergence curve for composite test functions

capabilities. This is due to the particle position enhancement mechanism implemented in the
algorithm and used during the search for the optimal solution.

6. Conclusions

In this study, the Vibrating Particles System (VPS) algorithm was improved to address multi-
and many-objective optimization problems with high convergence and diversity performances.
The proposed method is called the Multi-Objective Vibrating Particles System (MOVPS) algo-
rithm. For this purpose:
* The original VPS was modified by implementing the Pareto concept in order to deal with
the many conflicts objective functions.
* A particle position enhancement mechanism was introduced in the algorithm to enhance
the quality of obtained solutions and ensure the best compromise between exploitation
and exploration skills.
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Several test functions were investigated to validate the proposed MOVPS.

The efficiency of the proposed method was tested on multi- and many-objective engineer-
ing issues as well as unimodal, multimodal and composite test functions.

An experimental study was conducted to compare the performance of MOVPS to other
methods suggested in the literature.

The performance of the proposed algorithm was assessed using inverted generational dis-
tance, hypervolume, robustness, spacing and spread measures, which are comprehensive
indices of convergence and solution diversity.

It was demonstrated that MOVPS produced superior outcomes than those found in the
literature, even for high dimensional problems.

In order to assess the MOVPS robustness, we looked at the variance of findings as a
function of the number of runs in this study.

The influence of the setup parameters on the algorithm performance will be examined in
a future study.
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Fig. 18. The true and Pareto fronts of bi-objective test functions
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Table 4. IGD and HV values for bi-objective test functions
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Table 5. SPA and SP values for bi-objective test functions
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Table 6. IGD and HV values for tri-objective test functions
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Table 7. SPA and SP values for tri-objective test functions
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Table 8. IGD and HV values for many-objective test functions
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Table 9. Results of unimodal and multimodal benchmark functions
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Table 10. Results of fixed dimension multimodal and composite benchmark functions
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