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Abstract

The problem of ferroconvection in a viscoelastic fluid layer is studied with the aim to investigate oscillatory mo-
tions. In this article, a stability analysis for both linear and nonlinear systems is carried out. In the linear stability
analysis, the expressions for steady and oscillatory Rayleigh numbers are obtained and the effects of magnetic as
well as viscoelastic parameters on the onset of viscoelastic ferromagnetic convection are investigated numerically.
From the analysis, we found that the magnetic number (M1), the stress relaxation time (λ1) and the nonlinearity
of magnetization (M3) have destabilizing influences on the onset of ferroconvection, whereas the strain retardation
time (λ2) has stabilizing influence. In the weakly nonlinear stability analysis, the formula for heat transfer rate in
terms of the Nusselt number is derived for oscillatory convection. From the analyses, we found that for increasing
values of the magnetic number, stress relaxation time and nonlinearity of magnetization, the heat transfer rate rises,
whereas it decreases for larger values of the strain retardation time. Moreover, the pitchfork bifurcation analysis
yields that in order to reach the stable positions, the value of amplitude increases as the stress relaxation time
increases, whereas a reverse trend is observed for the strain retardation time.
© 2023 University of West Bohemia.
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1. Introduction

Stable colloidal synthetic mixtures of nanoscopic magnetic particles suspended in carrier liq-
uids, such as kerosene, water, heptane or synthetic oil, are termed ferrofluids. These suspended
particles (having a certain magnetic moment) are coated with some surfactants to prevent coag-
ulation. Magnetic drug targeting hyperthermia, contrast intensification of magnetic resonance
imaging (MRI), cooling of loudspeakers, sealing of rotating shafts, pressure seals of blowers
and compressors, etc. are some of the important applications of ferrofluids in the fields of
technology and biomedical sciences.

Currently, the study of viscoelastic ferromagnetic fluids is important, particularly the gel-
based weakly electrically conducting fluids with micron-sized ferrite suspended particles, due
to their variety of biomedical applications. Ferrofluids can be distinguished from other fluids
primarily by their body coupling and polarisation forces. In the past few years, the study of
the convective motions in ferrofluids has attracted considerable attention from researchers. A
thorough description of ferrofluids and their exciting properties was presented by Rosensweig
[23]. He found that the magnetic field, fluid density and fluid temperature change with varying
magnetization, and thus, affect the heat transfer rate and the distribution of the fluid’s body
force. In recent years, substantial attention has been paid to investigate the dynamical behavior
of ferrofluids under varying hydrodynamic assumptions.
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Ferroconvection (or ferrohydrodynamics) is the study of convective motions in ferrofluids
under an applied magnetic field and is similar to standard thermal convection, see [6]. One
of the striking features of ferrohydrodynamics is that the flow occurs even in the absence of
Lorentz forces. Finlayson in [12] studied ”the linear convective instability in a layer of ferro-
magnetic fluid heated from below permitted with a vertical magnetic field” using normal mode
analysis for infinite amplitude disturbances. He showed from the eigenvalue problem that the
overstable motions of increasing amplitude are prohibited under the assumption of extremely
small values of the magnetic parameter (M2

∼= 0), and thus, only the stationary mode of in-
stability is possible. However, for non-zero values of the magnetic parameter M2, Dhiman
and Sharma in [9] proved that the overstable motions of rising amplitude can still exist un-
der certain prescribed conditions. In [24], Siddheshwar studied ”the oscillatory convection in
a viscoelastic-Boussinesq-ferromagnetic fluid considering infinite magnetic susceptibility” and
discussed the linear stability analysis. He claimed that the strain retardation time has stabilizing
effects, whereas the stress relaxation time has destabilizing effects. Siddheshwar in [25] investi-
gated different types of ferromagnetic viscoelastic models and discussed the stabilizing effect of
the strain retardation time and destabilizing effect of the stress relaxation time and magnetiza-
tion on the onset of the linear oscillatory instability in ferroconvection. In [14], Kanchana et al.
studied cellular-convective and chaotic motions in a ferrofluid, revealing the advanced onset of
regular convection and delayed chaotic motions, with vigorous-chaotic motions observed with
vertical modes and also discussed the horizontal modes and multiple modes. Further, Dhiman
and Sharma in [8] investigated the effect of temperature-dependent viscosity and boundary con-
ditions on the ferroconvection problem and compared the values of critical Rayleigh numbers
for different cases of boundary conditions.

Fluids are termed as non-Newtonian fluids when there is a nonlinear relationship between
the rate of strain and the shearing stress. The non-Newtonian fluids have a subclass called
viscoelastic fluids, which combine viscous and elastic characteristics and are widely utilized in
various industrial applications. The viscoelastic properties of fluids are characterized by three
constants, namely, the coefficient of viscosity µ, the retardation time λ1, and the relaxation time
λ2, and termed as Oldroydian fluid, when both stress relaxation time and strain retardation time
characteristics are prevalent (see [2, 20, 22] and references therein).

Various authors have studied the effects of viscoelastic parameters (λ1 and λ2) in non-
Newtonian fluids in the Rayleigh-Bénard geometry and have discussed both stationary and
oscillatory modes of instability in linear stability regimes. However, because of the mathemat-
ical complexity involved in solving nonlinear stability problems for oscillatory cases, limited
efforts have been put in by authors. Using nonlinear stability analysis, the problem of ferrocon-
vection in a viscoelastic medium has been investigated for the stationary case by some authors.
In [19], Laroze et al. demonstrated in their investigation of ferrofluid’s chaotic convection that
the system exhibits several changes in parameter space from an orderly to chaotic behavior.
The stationary convection amplitude equation in a viscoelastic magnetic fluid was examined
in [17]. This work was carried forward in [18] by examining the effect of rotation on the am-
plitude equation in stationary convection. Further, the authors of [4,7,16] studied the nonlinear
oscillatory instability of thermal/thermohaline convection problems and discussed the effects of
various parameters on the heat transfer rate (Nusselt number) utilizing the amplitude function
from the complex Ginzburg-Landau equation. Siddheshwar et al. in [28] investigated the ”effect
of time-periodic vertical oscillations of the Rayleigh-Bénard system on nonlinear convection in
viscoelastic liquids and they found that the effect of time-periodic vertical oscillations of the
Rayleigh-Bénard system (also known as gravity modulation or g-jitter) is to increase the critical
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Rayleigh number and to reduce the heat transport”. Recently, Dhiman and Sood in [10] consid-
ered the nonlinear ferroconvection problem to discuss the effect of uniform vertical rotation and
analyzed the effects of various factors on the Nusselt number for oscillatory instability. Further,
for latest research on the nonlinear ferroconvection one may refer to [1, 30, 31] and references
therein.

Nonlinear analysis is also helpful in understanding bifurcation, and hence, is one of the
most active research fields these days. The mathematical study of variation in the shape of a
particular family of curves is known as bifurcation theory. Bifurcations occur when equilibrium
is reached by bigger invariant sets like periodic orbits. As elaborated by Karaaslan in [15],
bifurcation is a spot or area, where something splits into two sections. In [22], Rosenblat has
performed the bifurcation analysis utilizing nonlinear stability in a viscoelastic fluid layer. For
more details and further progress on the subject matter of nonlinear convective instability in
viscoelastic and ferrofluids, one may refer to [13, 26, 27] and references therein.

The investigations and analyses discussed above make it plentifully evident that oscillations
may occur and arise at the onset of ferroconvection in a viscoelastic ferrofluid layer heated
from below under the influence of the magnetic field. Hence, in view of the importance of
oscillations in convective problems, the investigation of the nonlinear oscillatory instability of
certain classes of non-Newtonian fluids is desired in understanding the phenomena. As far as
the authors’ knowledge, any work on nonlinear stability analysis of oscillatory modes in ferro-
convection in the Oldroydian model has not yet been reported. In view of the above discussion,
we are motivated to mathematically investigate the linear as well as nonlinear stability of the
ferroconvective viscoelastic fluid layer. The first-order problem (the linear stability case), the
second-order, which gives the expression for the Nusselt number, and the third-order problem,
used to compute the amplitude from the derived Ginzburg-Landau equation, are discussed in
the present analysis. In both linear as well as nonlinear stability analyses, the effects of various
factors on the onset of convection are numerically determined and the outcomes are depicted
graphically using Mathematica® software. The pitchfork bifurcation analysis is also presented
at the end.

2. Mathematical formulation

Let us assume a horizontal infinite layer of incompressible viscoelastic ferromagnetic fluid held
between two isothermal and dynamically free horizontal boundaries (z = 0 and z = d). These
boundaries are kept at uniform temperatures T1 and T0 so that an adverse temperature gradient
across the layer is maintained (as shown in Fig. 1) and a constant vertical magnetic field H⃗
permeates the system. We shall investigate the two-dimensional convective rolls; hence, the
fluid flow parameters are taken to be independent of the y-coordinate. Here, our aim is to
examine the stability of this physical configuration.

The fundamental equations governing the hydrodynamics of the above physical configura-
tion under the Boussinesq approximation are the equations of continuity, equations of momen-
tum, equation of energy, and equation of state, which are given as (see [10, 12, 25])

∇ · v⃗ = 0, (1)

ρ0

(
1 + λ1

∂

∂t

)(
∂v⃗

∂t
+ v⃗ · ∇v⃗

)
=

(
1 + λ1

∂

∂t

)[
−∇p+ ρg⃗ +∇ ·

(
H⃗B⃗

)]
+

(
1 + λ2

∂

∂t

)(
µ∇2v⃗

)
, (2)
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Fig. 1. Schematic sketch of the physical problemρ0CV,H − η0H⃗ ·

(
∂M⃗

∂T

)
V,H

 DT
Dt

+ η0T

(
∂M⃗

∂T

)
V,H

DH⃗

Dt
= K1∇2T, (3)

ρ = ρ0 [1− α (T − T 0)] . (4)

In the above equations, v⃗ = (u, v, w) is the velocity, T is the temperature, H⃗ is the magnetic
field, g⃗ is the external gravitational force, B⃗ is the magnetic induction, M⃗ is the magneti-
zation and p is the pressure. Also, ρ, µ, λ2, λ1, α, K1, η0, and CV,H are, respectively, the
fluid density, viscosity, strain retardation time, stress relaxation time, coefficient of volume ex-
pansion, thermal conductivity, magnetic permeability, and heat capacity at fixed volume and
magnetic field. T0 and ρ0 are the values of temperature and density at the lower boundary and
D
Dt

≡
(
∂
∂t
+ v⃗ · ∇

)
is the material derivative.

In the absence of displacement current for a ferromagnetic fluid (non-conducting), the
Maxwell’s equations are given as

∇ · B⃗ = 0, ∇× H⃗ = 0, H⃗ = ∇ϕ, (5)

where M⃗ is the magnetization, H⃗ is the magnetic field, and ϕ is the magnetic scalar potential.
Further, these quantities are related to the magnetic induction B⃗ as

B⃗ = η0

(
H⃗ + M⃗

)
. (6)

Equations (5)1 and (6) are combined to yield

∇ ·
(
H⃗ + M⃗

)
= 0. (7)

Assume that the magnetization and magnetic field are aligned, but depend upon the temperature
and the magnitude of the magnetic field as

M⃗ =
H⃗

H
M(H,T ). (8)

The magnetic equation of state in linearized form is given by

M =M0 −K2 (T − T0) + χ (H −H0) , (9)
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where M0 is the magnetization at temperature T0 and magnetic field H0, χ =
(
∂M⃗

∂H⃗

)
H0,T0

is the

magnetic susceptibility, and K2 = −
(
∂M⃗
∂T

)
H0,T0

is the pyromagnetic coefficient.

Initially, the basic state in the absence of motions, is given as

v⃗ = (u, v, w) = v⃗b = 0, T = Tb(z) = T0 − βz, ρ = ρb(z), p = pb(z),

H⃗b =

(
H0 −

K2βz

1 + χ

)
k̂, M⃗b =

(
M0 +

K2βz

1 + χ

)
k̂, H0 +M0 = H0

ext,
(10)

where the subscript ’b’ indicates the values of variables in their initial state and k̂ is the unit
vector in the vertical direction z. Further, the maintained uniform opposing temperature gradient
is represented by β = ∆T

d
= T0−T1

d
.

To examine the instability of the above system at equilibrium, small perturbations are intro-
duced to the basic state variables and the perturbed quantities are now represented as

v⃗ = v⃗b + v⃗ ′, T = Tb(z) + θ′, p = pb(z) + δp′,

H⃗ = H⃗b(z) + H⃗ ′, M⃗ = M⃗b(z) + M⃗ ′, ρ = ρb(z) + ρ′,
(11)

where v⃗ ′ = (u′, v′, w′), δp′, θ′, H⃗ ′, ρ′, and M⃗ ′ are perturbations in the initial velocity, pressure,
temperature, magnetization, density, and intensity of the magnetic field, respectively.

To examine the two-dimensional convective rolls instability, utilizing the perturbed quan-
tities (11) in (1)–(4) and (7)–(9) and dropping the primes for convenience in writing from the
resulting equations, the following system of equations governing the perturbations is obtained:

∂u

∂x
+
∂w

∂z
= 0, (12)

ρ0

(
1 + λ1

∂

∂t

)(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
=

(
1 + λ1

∂

∂t

){
−∂δp
∂x

+ η0 (H0 +M0)
∂Hx(z)

∂z

+ η0

[
(Hx +Mx)

∂Hx(z)

∂x
+ (Hz +Mz)

∂Hx(z)

∂z

]}
+ µ

(
1 + λ2

∂

∂t

)
∇2u, (13)

ρ0

(
1 + λ1

∂

∂t

)(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
=

(
1 + λ1

∂

∂t

){
−∂δp
∂z

+ η0 (H0 +M0)
∂Hz(z)

∂z

+η0

[
(Hx +Mx)

∂Hz(z)

∂x
+ (Hz +Mz)

∂Hz(z)

∂z

]
+ gαθρ0 + η0 (Mz +Hz)

∂

∂z

(
H0 −

K2βz

1 + χ

)}
+ µ

(
1 + λ2

∂

∂t

)
∇2w, (14)

ρ0C1
∂θ

∂t
= K1∇2θ + ρ0C1βw − ρ0C1

(
u
∂θ

∂x
+ w

∂θ

∂z

)
+ Σ(., .), (15)

∂

∂x
(Hx +Mx) +

∂

∂z
(Hz +Mz) = 0, (16)

Hx +Mx =

(
1 +

M0

H0

)
Hx, and Hz +Mz = (1 + χ)Hz −K2θ, (17)

where ρ0C1 = ρ0CV,H+K2H0η0. Also, the last term in (15) denoted by Σ(., .) consists of linear
as well as nonlinear terms. Further, the approximation K2βd ≪ (1 + χ)H0 is used in deriving
(17).
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Now, eliminating δp between (13) and (14) and using the relations (5)3 and (17), we get

ρ0

(
1 + λ1

∂

∂t

)[
∂

∂t

(
∂u

∂z
− ∂w

∂x

)
+

∂

∂z

(
u
∂u

∂x
+ w

∂u

∂z

)
− ∂

∂x

(
u
∂w

∂x
+ w

∂w

∂z

)]
=

= µ

(
1 + λ2

∂

∂t

)
∇2

(
∂u

∂z
− ∂w

∂x

)
− η0K2

(
1 + λ1

∂

∂t

)[
∂θ

∂x

∂

∂z

(
∂ϕ

∂x

)
− ∂θ

∂z

∂

∂x

(
∂ϕ

∂x

)]
+

(
1 + λ1

∂

∂t

)[
η0K2β

∂

∂x

(
∂ϕ

∂z

)
− η0K2

2β

(1 + χ)

(
∂θ

∂x

)
− ρ0gα

(
∂θ

∂x

)]
. (18)

Using the stream function ψ and the perturbed magnetic potential ϕ defined by u = ∂ψ
∂z

,
w = −∂ψ

∂x
and Hx = ∂ϕ

∂x
, Hz = ∂ϕ

∂z
in (18), (15) and (16) and utilizing the following non-

dimensional quantities (with hats) in the resulting equations:

(x, y, z) = d (x̂, ŷ, ẑ) , ψ = κT ψ̂, λ1 = λ̂1
d2

κT
, θ = ∆T · θ̂ = βdθ̂,

t = t̂
d2

κT
, v =

κT v̂

d
, λ2 = λ̂2

d2

κT
, ϕ = ϕ̂

K2βd
2

(1 + χ)
,

(19)

the following system of non-dimensional equations is obtained (after dropping the hats):[
1

σ

(
1 + λ1

∂

∂t

)
∂

∂t
−
(
1 + λ2

∂

∂t

)
∇2

]
∇2ψ +

(
1 + λ1

∂

∂t

)
R (1 +M1)

∂θ

∂x

−RM1

(
1 + λ1

∂

∂t

)
∂

∂x

(
∂ϕ

∂z

)
=

(
1 + λ1

∂

∂t

)[
1

σ
J
(
ψ,∇2ψ

)
−RM1J

(
θ,
∂ϕ

∂z

)]
, (20)

∂ψ

∂x
+

(
∂

∂t
−∇2

)
θ = J (ψ, θ) , (21)

∂θ

∂z
−
(
M3

∂2

∂x2
+

∂2

∂z2

)
ϕ = 0, (22)

where σ = ν
κT

, M1 = η0K2
2β

ρ0gα(1+χ)
, and R = gαβd4

νκT
are the Prandtl number, the magnetic num-

ber, and the Rayleigh number, respectively. Also in the above equations, ν = µ
ρ0

denotes the

kinematic viscosity and M3 =
(
1 + M0

H0

)
1

(1+χ)
is the nonlinearity parameter of magnetization.

Further, λ2 and λ1 are the non-dimensional strain retardation and stress relaxation times, re-
spectively.

The nonlinear terms in the aforementioned equations are represented by J(., .) in the form of
Jacobians. Further, all the terms in the expression Σ (., .) in (15) after non-dimensionalization
vanish, because all these terms have a multiplicative factor M2

(
= η0T0K2

2

ρ0C1(1+χ)

)
, which is taken

to be very small of the order of 10−5, see [10, 12]. The system of equations (20)–(22) is solved
with respect to the following boundary conditions:

ψ =
∂2ψ

∂z2
= θ =

∂ϕ

∂z
= 0 at z = 0 and 1 (stress free and isothermal boundaries). (23)

3. Mathematical analysis

Following the analysis of Dhiman and Sood in [10], the variables appearing in (20)–(22) are
expressed in power of small perturbations ε as follows:

R= Rc + ε2R2 + . . . , ψ= εψ1 + ε2ψ2 + ε3ψ3 + . . . ,
θ= εθ1 + ε2θ2 + ε3θ3 + . . . , ϕ= εϕ1 + ε2ϕ2 + ε3ϕ3 + . . . ,

(24)
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where Rc is the critical Rayleigh number. Considering the slow time scale s and the fast time
scale τ , in order to have the anticipated frequency shift along the bifurcation solution as

∂

∂t
=

∂

∂τ
+ ε2

∂

∂s
. (25)

Now, substituting the expansions (24) and (25) into the non-dimensional equations (20)–(22),
we obtain the following equations:{[

1

σ

(
1 + λ1

∂

∂τ

)
∂

∂τ
−
(
1 + λ2

∂

∂τ

)
∇2

]
∇2ψ1 + (1 +M1)Rc

(
1 + λ1

∂

∂τ

)
∂θ1
∂x

−RcM1

(
1 + λ1

∂

∂τ

)
∂

∂x

(
∂ϕ1

∂z

)}
ε+

{[
1

σ

(
1 + λ1

∂

∂τ

)
∂

∂τ
−
(
1 + λ2

∂

∂τ

)
∇2

]
∇2ψ2

+

(
1 + λ1

∂

∂τ

)[
(1 +M1)Rc

∂θ2
∂x

−RcM1
∂

∂x

(
∂ϕ2

∂z

)]
−
(
1 + λ1

∂

∂τ

)[
1

σ
J
(
ψ1,∇2ψ1

)
−RcM1J

(
θ1,

∂ϕ1

∂z

)]}
ε2 +

〈[
1

σ

(
1 + λ1

∂

∂τ

)
∂

∂τ
−
(
1 + λ2

∂

∂τ

)
∇2

]
∇2ψ3

+

(
1 + λ1

∂

∂τ

)[
(1 +M1)Rc

∂θ3
∂x

−RcM1
∂

∂x

(
∂ϕ3

∂z

)]
−
(
1 + λ1

∂

∂τ

){
1

σ

[
J
(
ψ1,∇2ψ2

)
+J
(
ψ2,∇2ψ1

)]
−RcM1

[
J

(
θ1,

∂ϕ2

∂z

)
+ J

(
θ2,

∂ϕ1

∂z

)]}
+

[
1

σ

(
1 + λ1

∂

∂τ

)
∂

∂s
+

1

σ
λ1

∂

∂τ

∂

∂s
− λ2

∂

∂s
∇2

]
∇2ψ1 + (1 +M1)

[(
1 + λ1

∂

∂τ

)
R2

+λ1Rc
∂

∂s

]
∂θ1
∂x

−M1

[(
1 + λ1

∂

∂τ

)
R2 + λ1Rc

∂

∂s

]
∂

∂x

(
∂ϕ1

∂z

)〉
ε3 = 0, (26)[

∂ψ1

∂x
+

(
∂

∂τ
−∇2

)
θ1

]
ε+

[
∂ψ2

∂x
+

(
∂

∂τ
−∇2

)
θ2 − J (ψ1, θ1)

]
ε2

+

{
∂ψ3

∂x
+

(
∂

∂τ
−∇2

)
θ3 +

[
∂θ1
∂s

− J (ψ1, θ2)− J (ψ2, θ1)

]}
ε3 = 0, (27)[

∂θ1
∂z

−
(
M3

∂2

∂x2
+

∂2

∂z2

)
ϕ1

]
ε+

[
∂θ2
∂z

−
(
M3

∂2

∂x2
+

∂2

∂z2

)
ϕ2

]
ε2

+

[
∂θ3
∂z

−
(
M3

∂2

∂x2
+

∂2

∂z2

)
ϕ3

]
ε3 = 0. (28)

In order to have first, second and third order stability problems, we can compare the coefficients
of ε, ε2 and ε3 from (26)–(28). In the following analysis, each of these stability problems is
discussed separately.

The problem of first-order stability is given by the following system of equations:[
1

σ

(
1 + λ1

∂

∂τ

)
∂

∂τ
−
(
1 + λ2

∂

∂τ

)
∇2

]
∇2ψ1 + (1 +M1)Rc

(
1 + λ1

∂

∂τ

)
∂θ1
∂x

−RcM1

(
1 + λ1

∂

∂τ

)
∂

∂x

(
∂ϕ1

∂z

)
= 0, (29)

∂ψ1

∂x
+

(
∂

∂τ
−∇2

)
θ1 = 0, (30)

∂θ1
∂z

−
(
M3

∂2

∂x2
+

∂2

∂z2

)
ϕ1 = 0. (31)
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Following [10] and [16], the solution of (29)–(31) in view of (23) is represented in the following
periodic forms as:

θ1 =
(
A1(s)e

iωτ + A1(s)e
−iωτ) cos ax sin πz,

ψ1 =
(
B1(s)e

iωτ +B1(s)e
−iωτ) sin ax sin πz,

ϕ1 =
(
C1(s)e

iωτ + C1(s)e
−iωτ) cos ax cos πz. (32)

Here, a and ω stand for the wavenumber and frequency, respectively, corresponding to the
Rayleigh number R, whereas the overbar ( ) denotes a complex conjugate.

The relationships between the undetermined amplitudes A1, B1, and C1 appearing in (32)
are given by

A1(s) = − a

c+ iω
B1(s), C1(s) =

πa

(c+ iω) (M3a
2 + π2)

B1(s), (33)

where
c = a2 + π2. (34)

Substituting solutions (32) in (29)–(31) and eliminating the undetermined amplitudesA1(s),
B1(s), andC1(s) with the help of (33), we get a complex equation. The real and imaginary parts
of this equation yield the expressions for the thermal Rayleigh number and its corresponding
periodic oscillation frequency given as

ROv=

{
c3

a2

(
1

1 + ω2λ1
2

)
− λ21cω

4 − [σλ1λ2c
3 + σ (λ1 − λ2) c

2 − c]ω2

a2σ
(
1 + ω2λ1

2
) }

M3a
2 + π2

M3 (1 +M1) a2 + π2

(35)
and

ω =

√
cσ (λ1 − λ2)− (1 + σ)

λ1(λ1 + λ2σ)
. (36)

Using (36) in (35), we get the following expression for the oscillatory Rayleigh number:

ROv =
M3a

2 + π2

M3 (1 +M1) a2 + π2
· λ1 + λ2σ

λ1 + λ2σ + λ1 [cσ (λ1 − λ2)− (σ + 1)]
·
{
c3

a2
+

[c2σ (λ1−λ2)−(σ + 1) c] [c2λ1λ2σ (λ1 + λ2σ) + cσ2λ2 (λ1−λ2) + (λ1 + 1)−σ (λ1−λ2)]
a2σλ1 (1 + σλ2)

2

}
.

(37)

From (36), one can conclude that for λ1 ≤ λ2, the oscillatory motions are not admissible as the
frequency ω cannot be a complex quantity. This means that for oscillatory convection to appear,
the following inequality must hold good:

λ1 > λ2, (38)

which is the same condition obtained by Basu and Layek in [2] for classical Newtonian fluids.
Also for the viscoelastic fluid layer in the absence of ferromagnetic effects (i.e., when M1 =
M3 = 0), formula (37) yields the following form of the oscillatory thermal Rayleigh number:

ROv =
λ1 + λ2σ

(λ1 + λ2σ) + λ1 [cσ (λ1 − λ2)− (σ + 1)]
·
{
c3

a2
+

[c2σ (λ1−λ2)−(σ + 1) c] [c2λ1λ2σ (λ1 + λ2σ) + cσ2λ2 (λ1−λ2) + (λ1 + 1)−σ (λ1−λ2)]
a2σλ1 (1 + σλ2)

2

}
.

(39)
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Similar expression was obtained in [2].
Further, expression (35) for the steady convection (when ω = 0) reduces to the following

thermal formula for the Rayleigh number:

RSteady =
c3(M3a

2 + π2)

a2 [M3 (1 +M1) a2 + π2]
, (40)

the same result obtained by Finlayson in [12] for the case of a ferrofluid layer. Also when
M1 =M3 = 0 (for an ordinary viscous fluid layer), the same value of the Rayleigh number was
attained in [6] by Chandrasekhar for stationary convection as

RSteady =
c3

a2
. (41)

For the second-order problem, equations (26)–(28) yield the following system of equations:[
1

σ

(
1 + λ1

∂

∂τ

)
∂

∂τ
−
(
1 + λ2

∂

∂τ

)
∇2

]
∇2ψ2 +

(
1 + λ1

∂

∂τ

)[
(1 +M1)Rc

∂θ2
∂x

−RcM1
∂

∂x

(
∂ϕ2

∂z

)]
=

(
1 + λ1

∂

∂τ

)[
1

σ
J
(
ψ1,∇2ψ1

)
−RcM1J

(
θ1,

∂ϕ1

∂z

)]
, (42)

∂ψ2

∂x
+

(
∂

∂τ
−∇2

)
θ2 = J (ψ1, θ1) , (43)

∂θ2
∂z

−
(
M3

∂2

∂x2
+

∂2

∂z2

)
ϕ2 = 0, (44)

where the Jacobians representing the nonlinear terms J (ψ1,∇2ψ1), J
(
θ1,

∂ϕ1
∂z

)
and J (ψ1, θ1)

yield the following values on expansion:

J
(
ψ1,∇2ψ1

)
= 0, J

(
θ1,

∂ϕ1

∂z

)
= 0,

J (ψ1, θ1) =
πa

2

[
A1(s)B1(s) + A1(s)B1(s)+

A1(s)B1(s)e
2iωτ + A1(s)B1(s)e

−2iωτ

]
sin 2πz.

(45)

Now, for this problem, the temperature is expressed as

θ2 =
(
θ20 + θ22e

2iωτ + θ22e
−2iωτ

)
sin 2πz. (46)

Using (45) and (46), the expression for the magnetic potential can be written as

ϕ2 =
(
ϕ20 + ϕ22e

2iωτ + ϕ22e
−2iωτ

)
cos 2πz, (47)

where θ20 and ϕ20 are the temperature and magnetic scalar potential fields independent of τ ,
and θ22 and ϕ22 are the temperature and magnetic scalar potential fields associated with the fre-
quency 2ω. Utilizing the expansions given by (45)–(47) in (42)–(44), the second-order stability
problem now takes the following form:

ψ2 = 0,

(
∂

∂τ
−∇2

)
θ2 = J (ψ1, θ1) ,

∂θ2
∂z

−
(
M3

∂2

∂x2
+

∂2

∂z2

)
ϕ2 = 0. (48)
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Using (45)–(47) in (48), substituting the values of A1(s), B1(s) and C1(s) from (33) and then
solving the resulting equations, the following solutions in the form of amplitude are obtained:

ψ20 = 0, θ20 = − a2c

4π (c2 + ω2)
|B1(s)|2 , ϕ20 =

a2c

8π2 (c2 + ω2)
|B1(s)|2 , (49)

ψ22 = 0, θ22 =
−a2π

(8π2 + 4iω) (c+ iω)
B1(s)

2, ϕ22 =
a2

(16π2 + 8iω) (c+ iω)
B1(s)

2. (50)

We know that the expression for the averaged Nusselt number Nu is given by

Nu = 1− ε2
(
∂θ2
∂z

)
z=0

, (51)

the value of which can be obtained using (46) and (49)–(50), which obviously involves the un-
determined amplitude B1(s). This amplitude will be obtained by solving the Ginzburg-Landau
equation in the following analysis.

As discussed earlier, equations (26)–(28) yield the third-order problem governed by the
following set of equations:[

1

σ

(
1 + λ1

∂

∂τ

)
∂

∂τ
−
(
1 + λ2

∂

∂τ

)
∇2

]
∇2ψ3 +

(
1 + λ1

∂

∂τ

)[
(1 +M1)Rc

∂θ3
∂x

−

RcM1
∂

∂x

(
∂ϕ3

∂z

)]
=

(
1 + λ1

∂

∂τ

){
1

σ

[
J
(
ψ1,∇2ψ2

)
+ J

(
ψ2,∇2ψ1

)]
−RcM1

[
J

(
θ1,

∂ϕ2

∂z

)
+ J

(
θ2,

∂ϕ1

∂z

)]}
−
[
1

σ

(
1 + λ1

∂

∂τ

)
∂

∂s

+
1

σ
λ1

∂

∂τ

∂

∂s
− λ2

∂

∂s
∇2

]
∇2ψ1 − (1 +M1)

[(
1 + λ1

∂

∂τ

)
R2 + λ1Rc

∂

∂s

]
∂θ1
∂x

+M1

[(
1 + λ1

∂

∂τ

)
R2 + λ1Rc

∂

∂s

]
∂

∂x

(
∂ϕ1

∂z

)
, (52)

∂ψ3

∂x
+

(
∂

∂τ
−∇2

)
θ3 = J (ψ1, θ2) + J (ψ2, θ1)−

∂θ1
∂s

, (53)

∂θ3
∂z

−
(
M3

∂2

∂x2
+

∂2

∂z2

)
ϕ3 = 0. (54)

Using ψ2 = 0 from (48)1, the non-linear Jacobian terms of (52) and (53) are obtained as

J
(
ψ1,∇2ψ2

)
+ J

(
ψ2,∇2ψ1

)
= 0, (55)

J

(
θ1,

∂ϕ2

∂z

)
+ J

(
θ2,

∂ϕ1

∂z

)
=

a4π2

c2 + ω2

[
c

4π2(c+ iω)
+

1

8π2 + 4iω
− c

4 (c+ iω) (M3a2 + π2)

− π2

(M3a2 + π2)(8π2 + 4iω)

]
B1(s) |B1(s)|2 eiωτ sin ax sin πz, (56)

J (ψ1, θ2) + J (ψ2, θ1) = π2a3
[

c

4π2(c2 + ω2)
+

1

(c+ iω) (8π2 + 4iω)

]
B1(s) |B1(s)|2 eiωτ cos ax sin πz. (57)
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In view of the values of the sum of the Jacobian terms appearing in (55)–(57), let us consider
the solutions of the third-order problem (52)–(54) in the following forms:

θ3 = A3(s)e
iωτ cos ax sin πz, (58)

ψ3 = B3(s)e
iωτ sin ax sin πz, (59)

ϕ3 = C3(s)e
iωτ cos ax cosπz. (60)

Upon using the values of Jacobians from (55) and J (ψ2, θ1) = 0 (in view of ψ2 = 0) in (52)–
(53), equations (52)–(54) assume the following forms:[

1

σ

(
1 + λ1

∂

∂τ

)
∂

∂τ
−
(
1 + λ2

∂

∂τ

)
∇2

]
∇2ψ3

+

(
1 + λ1

∂

∂τ

)[
(1 +M1)Rc

∂θ3
∂x

−RcM1
∂

∂x

(
∂ϕ3

∂z

)]
= R31, (61)

∂ψ3

∂x
+

(
∂

∂τ
−∇2

)
θ3 = R32, (62)

∂θ3
∂z

−
(
M3

∂2

∂x2
+

∂2

∂z2

)
ϕ3 = 0, (63)

where

R31 =−RcM1

(
1 + λ1

∂

∂τ

)[
J

(
θ1,

∂ϕ2

∂z

)
+ J

(
θ2,

∂ϕ1

∂z

)]
−
[
1

σ

(
1 + λ1

∂

∂τ

)
∂

∂s

+
1

σ
λ1

∂

∂τ

∂

∂s
− λ2

∂

∂s
∇2

]
∇2ψ1 − (1 +M1)

[(
1 + λ1

∂

∂τ

)
R2 + λ1Rc

∂

∂s

]
∂θ1
∂x

+M1

[(
1 + λ1

∂

∂τ

)
R2 + λ1Rc

∂

∂s

]
∂

∂x

(
∂ϕ1

∂z

)
(64)

and
R32 = J (ψ1, θ2)−

∂θ1
∂s

. (65)

The above system of equations (61)–(63) can be written in a matrix form (AX = B) asA11 A12 −
(
1 + λ1

∂
∂τ

)
RcM1

(
∂
∂x

)
∂
∂z

∂
∂x

(
∂
∂τ

−∇2
)

0

0 ∂
∂z

−
(
M3

∂2

∂x2
+ ∂2

∂z2

)

ψ3

θ3
ϕ3

 =

R31

R32

0

 , (66)

where

A11 =

[
1

σ

(
1 + λ1

∂

∂τ

)
∂

∂τ
−
(
1 + λ2

∂

∂τ

)
∇2

]
∇2, A12 =

(
1 + λ1

∂

∂τ

)
(1 +M1)Rc

∂

∂x
.

The matrix operator A is said to be a self-adjoint operator if and only if it is symmetric. How-
ever, from (66), it is clear that the matrix operator A is not a self-adjoint operator; hence, for a
non-self-adjoint operator, the solvability condition cannot be applied. Therefore, to overcome
this difficulty, let us construct a self-adjoint operator by reducing the order of the matrix, as
follows.
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Applying the operator
(
M3

∂2

∂x2
+ ∂2

∂z2

)
to both sides of (61) and then using the relation

derived from (63) as
(
M3

∂2

∂x2
+ ∂2

∂z2

)
ϕ3 =

∂θ3
∂z

, we get the following equation:(
M3

∂2

∂x2
+

∂2

∂z2

)[
1

σ

(
1 + λ1

∂

∂τ

)
∂

∂τ
−
(
1 + λ2

∂

∂τ

)
∇2

]
∇2ψ3 +Rc

(
1 + λ1

∂

∂τ

)
[
(1 +M1)

(
M3

∂2

∂x2
+

∂2

∂z2

)
−M1

∂2

∂z2

]
∂θ3
∂x

=

(
M3

∂2

∂x2
+

∂2

∂z2

)
R31. (67)

Next, let us write (67) and (62) in the matrix form[
Â11 Â12
∂
∂x

(
∂
∂τ

−∇2
)] [ψ3

θ3

]
=

[(
M3

∂2

∂x2
+ ∂2

∂z2

)
R31

R32

]
, (68)

where

Â11 =

(
M3

∂2

∂x2
+

∂2

∂z2

)[
1

σ

(
1 + λ1

∂

∂τ

)
∂

∂τ
−
(
1 + λ2

∂

∂τ

)
∇2

]
∇2,

Â12 = Rc

(
1 + λ1

∂

∂τ

)[
(1 +M1)

(
M3

∂2

∂x2
+

∂2

∂z2

)
−M1

∂2

∂z2

]
∂

∂x
.

Applying the elementary row operation

R2→R2 ×
{
Rc

(
1 + λ1

∂

∂τ

)[
(1 +M1)

(
M3

∂2

∂x2
+

∂2

∂z2

)
−M1

∂2

∂z2

]}
,

the system (68) takes the following form:[
Ã11 Ã12

Ã21 Ã22

] [
ψ3

θ3

]
=

 (
M3

∂2

∂x2
+ ∂2

∂z2

)
R31

Rc

(
1 + λ1

∂
∂τ

) [
(1 +M1)

(
M3

∂2

∂x2
+ ∂2

∂z2

)
−M1

∂2

∂z2

]
R32

 , (69)

where

Ã11 =

(
M3

∂2

∂x2
+

∂2

∂z2

)[
1

σ

(
1 + λ1

∂

∂τ

)
∂

∂τ
−
(
1 + λ2

∂

∂τ

)
∇2

]
∇2,

Ã12 = Ã21 =

[
Rc (1 +M1)

(
1 + λ1

∂

∂τ

)(
M3

∂2

∂x2
+

∂2

∂z2

)
−RcM1

∂2

∂z2

]
∂

∂x
,

Ã22 =

[
Rc (1 +M1)

(
1 + λ1

∂

∂τ

)(
M3

∂2

∂x2
+

∂2

∂z2

)
−M1

∂2

∂z2

](
∂

∂τ
−∇2

)
.

From (69), it is clear that the matrix operator is symmetric, and hence, a self-adjoint ma-
trix operator. Further, it should be mentioned here that the non-self-adjoint matrix operator
in system (66) is reduced to a self-adjoint operator matrix by an elementary matrix operation.
And since the reduced self-adjoint matrix operator is a second-order system that arises from the
non-self-adjoint third-order system, we would expect the same Ginzburg-Landau equation as
a result of using the solvability in the two systems. So, using the solutions (58)–(60) and the
values of Jacobians from (55)–(57) in (69), following the analyses in [10] and [16], and finally
invoking the solvability criteria, the desired Ginzburg-Landau equation is obtained as follows:

γB
′

1(s)− FB1(s) + k |B1(s)|2B1(s) = 0, (70)
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where ′ denotes the derivative of the quantity and γ, F and k are given by

γ =

[
1− Rca

2σλ1
c (c+ iω) (1 + 2iωλ1)

+
Rca

2σ

c (c+ iω)2
1 + iωλ1
1 + 2iωλ1

M3a
2 (1 +M1) + π2

M3a2 + π2
+

λ2cσ

1 + 2iωλ1

]
,

(71)

F =

[
R2a

2σ

c (c+ iω)

M3a
2 (1 +M1) + π2

M3a2 + π2

1 + iωλ1
1 + 2iωλ1

]
, (72)

k =
Rca

4π2σM1

c (c2 + ω2)

1 + iωλ1
1 + 2iωλ1

[
c

4 (c+ iω) (M3a2 + π2)
+

π2

(8π2 + 4iω) (M3a2 + π2)

− c

4π2 (c+ iω)
− 1

8π2 + 4iω

]
+
Rca

4π2σ

c+ iω

M3a
2 (1 +M1) + π2

M3a2 + π2

1 + iωλ1
1 + 2iωλ1[

1

4π2 (c2 + ω2)
+

1

(8π2 + 4iω) c (c+ iω)

]
. (73)

One should mention here that the Ginzburg-Landau equations, derived by Bhadauria and Kiran
in [4] for non-ferro viscoelastic fluids and by Dhiman and Sood in [10] for non-viscoelastic
ferrofluids, can be easily deduced from (70)–(73) by neglecting the respective effects.

Now, B1(s) can be expressed in phase-amplitude form as

B1(s) = |B1(s)| eiΦ. (74)

Using (74) in (70) and comparing the real and imaginary components of the resulting equations,
a pair of equations involving the amplitude |B1(s)| is obtained as(

|B1(s)|2
)′ − 2 pr |B1(s)|2 + 2 lr |B1(s)|4 = 0, (75)

(ph(B(s)))′ = pi − li |B1(s)|2 , (76)

where γ1−1F = pr + ipi and γ1−1k1 = lr + ili, and ph (.) denotes the phase shift.
Following the work [11] in terms of amplitude B0(s), the growth of |B1(s)| with time can

be represented as

|B1(s)|2 = B0
2(s)

{
lr
pr
B0

2(s) +

[
1− lr

pr
B0

2(s)

]
e−2prs

}−1

, pr > 0, lr > 0. (77)

It is clear from (77) that as s→ −∞, |B1(s)| → 0, and as s→ +∞, then |B1(s)| propagates in
the direction of

√
pr/lr, whenever 0 < B0 <

√
pr/lr, and decreases towards

√
pr/lr, whenever

B0 >
√
pr/lr. It is obvious that when pr < 0, the point B1(s) = 0 is the only point of

equilibrium that is stable. When pr = 0, the only stable equilibrium position is at the origin.
Further, when pr > 0, lr > 0, |B1(s)| = 0 is still an equilibrium point. However, it deviates
from equilibrium and two new symmetrically situated stable points at |B1(s)| = ±

√
pr/lr

appear on either side of |B1(s)| = 0 (shown in Figs. 11 and 13). This kind of bifurcation is
known as a supercritical pitchfork bifurcation.

Using (33), (34), (46), (49), and (50), the value of the horizontally averaged Nusselt number
from (51) is given by

Nu = 1 +

[
a2c

2 (c2 + ω2)
+

2π2a2√
64π4 + 16ω2

√
c2 + ω2

]
|B1(s)|2 . (78)
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Following the works [3,5], wherein the authors have commented that ”the Ginzburg-Landau
equation is the Bernoulli equation and obtaining its analytic solution is difficult due to its non-
autonomous nature”. So, this is solved numerically subjected to the suitable initial condition
B0 = b0, where b0 is the appropriately taken initial convection amplitude. In the present analy-
sis, R2 = Rc (the initial condition, where Rc is the value of the threshold Rayleigh number, at
which the convection just starts) is assumed to keep the parameters to the minimum.

4. Results and discussions

The effects of magnetic number M1, nonlinearity of magnetization parameter M3, strain retar-
dation time λ2, and stress relaxation time λ1 on ferroconvection in a viscoelastic fluid layer is
studied in this paper. From earlier studies (e.g., [8, 12]), it is clear that the oscillations are not
permitted in the ferroconvection problem, and hence, only the stationary instability is allowed.
However, in the present analysis, it is shown that the oscillatory convection can exist in the
ferromagnetic viscoelastic fluid layer, when λ1 > λ2. The stress relaxation time λ1 defines the
time, which a system takes to relax in response to certain changes in the environment, whereas
the strain retardation time λ2 specifies the time required by the system to regain its equilibrium
position after imposition of stress. Both parameters are crucial for defining the properties of a
viscoelastic fluid.

The present section is divided into two subsections: linear stability analysis and weakly
non-linear stability analysis. We shall discuss each of these separately.

4.1. Linear stability analysis

In linear stability analysis, the values of the thermal Rayleigh numbers for stationaryRSteady and
oscillatory ROv cases were numerically calculated corresponding to the wave number a for the
constant values of λ1 = 0.4, λ2 = 0.1, σ = 10, M1 = 10, and M3 = 5 (cf. [2, 12]), using the
Mathematica® software. The outcomes are presented through graphs in Figs. 2–5.

Fig. 2 depicts the effect of M3 on stationary Rc
Steady and oscillatory Rc

Ov Rayleigh num-
bers plotted as a function of the wave number a. From the results, we observed that M3 has
destabilizing influence on the onset of convection. ”This effect may be due to the large value
of the pyromagnetic coefficient or due to the large temperature gradient” as claimed by Dhiman
and Sood in [10]. Similarly, from Fig. 3, the effect of M1 on stationary Rc

Steady and oscillatory
Rc

Ov Rayleigh numbers plotted for varying a also indicates destabilizing influence of M1 on the
onset of convection. In [10], Dhiman and Sood also claimed that ”this behavior of the ferrofluid
convective system may be due to the increase in the destabilizing magnetic force, as heat is
being now transported more efficiently in magnetic ferrofluids as compared to ordinary fluids”.
Further, from the variations presented in Figs. 2 and 3, it is observed that the oscillatory mode
of ferroconvection is the preferred mode in the present problem.

In Fig. 4, the effect of λ1 on ROv = ROv(a) is depicted graphically in view of the condition
λ1 > λ2, see (38). From the variations, it is observed that λ1 has destabilizing influence on the
onset of oscillatory instability. While Fig. 5 depicts the effect of λ2 on ROv as a function of a,
which validates the stabilizing effect of λ2 as per the claim made by Basu and Layek in [2].

4.2. Weakly non-linear stability analysis

For the case of weakly nonlinear instability, the interpolating function describing amplitude
B1 (s) for the constant values of the parameters (cf. [21]): λ1 = 0.4, λ2 = 0.1, σ = 10,
M1 = 10, andM3 = 5, is obtained from the complex Ginzburg-Landau equation. Consequently,
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Fig. 2. R as a function of a for λ1 = 0.4 , λ2 = 0.1,
σ = 10 and M1 = 10

Fig. 3. R as a function of a for λ1 = 0.4 , λ2 = 0.1,
σ = 10 and M3 = 5

Fig. 4. ROv as a function of a for σ = 10 and
λ2 = 0.1

Fig. 5. ROv as a function of a for σ = 10 and
λ1 = 0.4

in Figs. 6–10, the variations of heat transfer rate Nu versus time s for a certain set of fixed values
of parameters σ, λ1, λ2, M1, and M3, respectively, are depicted graphically.

In Fig. 6, the effect of σ is studied on the heat transfer rate Nu. It is observed that with
increasing values of σ, the heat transfer rate decreases, cf. [21, 29].

Fig. 6. Nu as a function of s for λ1 = 0.4,
λ2 = 0.1, M1 = 10 and M3 = 5

Fig. 7. Nu as a function of s for λ2 = 0.1, σ = 10,
M1 = 10 and M3 = 5
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Fig. 8. Nu as a function of s for λ1 = 0.4, σ = 10,
M1 = 10 and M3 = 5

Fig. 9. Nu as a function of s for λ1 = 0.4,
λ2 = 0.1, σ = 10 and M3 = 5

The effects of λ1 and λ2 are studied on the heat transfer rate Nu in Figs. 7 and 8, respectively.
From the variations shown in these graphs, it is found that λ1 increases the heat transfer rate,
whereas λ2 decreases it. These findings can be validated using the results of Bhadauria and
Kiran in [4] as they have also claimed that ”for a fixed value of other parameters, the critical
Rayleigh number for the onset of oscillatory convection decreases with an increase in the value
of λ1”, indicating that the effect of increasing viscoelastic parameter is to advance the onset
of oscillatory convection. Thus, it is confirmed that the elastic behavior of the non-Newtonian
fluids leads to oscillatory motions; hence, the heat transfer increases. Further, the effect of
retardation parameter λ2 is found to stabilize the system as the heat transfer decreases with
increasing λ2.

Further, the effects of ferromagnetic parameters M1 and M3 on the heat transfer rate Nu is
depicted in Figs. 9 and 10, respectively. From the variations, it is observed that both M1 and
M3 boost the heat transfer rate, see [10].

The supercritical pitchfork bifurcations for the ferromagnetic viscoelastic fluid layer are
depicted in Figs. 11 and 13 under the effects of λ1 and λ2, respectively. Analogously, the
pitchfork bifurcation phase plots, i.e., B1

′
(s) versus B1 (s), are drawn in Figs. 12 and 14. The

examination of the pitchfork bifurcation diagrams (Figs. 11 and 12) reveals that the equilibrium
point is found to be unstable at s = 0 for each fixed value of the stress relaxation time (λ1 =0.3,

Fig. 10. Nu as a function of s for λ1 = 0.4,
λ2 = 0.1, σ = 10 and M1 = 10

Table 1. Values of the critical wave number ac and
critical Rayleigh number Rc for the stationary case

M1 M3 ac RSteady
c

0 0 2.22144 657.511
0 1 2.22144 657.511
1 0 2.22144 657.511
1 1 2.51404 482.903

10 1 3.00248 129.390
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Fig. 11. Supercritical pitchfork bifurcation for
λ2 = 0.1, σ = 10, M1 = 10 and M3 = 5

Fig. 12. Pitchfork bifurcation phase portraits for
λ2 = 0.1, σ = 10, M1 = 10 and M3 = 5

Fig. 13. Supercritical pitchfork bifurcation for
λ1 = 0.4, σ = 10, M1 = 10 and M3 = 5

Fig. 14. Pitchfork bifurcation phase portraits for
λ1 = 0.4, σ = 10, M1 = 10 and M3 = 5

0.4, 0.5) and the value of amplitude grows with increasing stress relaxation time. Also, the
analysis of the variations in Figs. 13 and 14 related to the pitchfork bifurcation shows that the
equilibrium point is also unstable at s = 0 for every fixed value of the strain retardation time
(λ2 = 0.1, 0.12, 0.14). However, the value of amplitude declines with an increase in strain
retardation time as compared to the stress relaxation time.

In Tables 1 and 2, the comparison of numerical values of Rc with regard to ac for stationary
and oscillatory cases is presented. It is seen that oscillations are not possible for an ordinary
ferrofluid layer (λ1 = λ2 = 0) as the frequency has complex values.

In Tables 3 and 4, the critical values for Rc
Steady and Rc

Ov corresponding to the calculated
values of ac for steady and oscillatory cases, respectively, are presented and compared with the
values published in [1,6,12,21], which are in a good agreement with the earlier obtained results.

5. Conclusions

In the present analysis, the effects of the Prandtl number σ, magnetic number M1, measure of
nonlinearity of magnetization M3, and stress relaxation λ1 and strain retardation λ2 times on
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Table 2. Values of the critical wave number ac, critical Rayleigh number Rc, and oscillatory frequency
ω for the oscillatory case with σ = 10

Fluid type λ1 λ2 M1 M3 ac ROv
c ω

Newtonian fluid 0 0 10 1 — — complex (no oscillations)
Maxwellian fluid 0.3 0 0 0 4.62938 33.0894 30.3502

0 1 4.62938 33.0894 30.3502
1 0 4.62938 33.0894 30.3502
1 1 5.26873 19.3187 33.6464

10 1 5.84160 3.95853 33.6639
Oldroydian fluid 0.3 0.1 0 0 2.48661 361.77 7.35643

0 1 2.48661 361.77 7.35643
1 0 2.48661 361.77 7.35643
1 1 2.81918 255.538 7.94771

10 1 3.30287 64.6892 8.85163

Table 3. Values of the critical wave number ac and corresponding critical Rayleigh number Rc are
compared for the linear stationary case with some limiting values of M1 and M3

Authors
M1 =M3 = 0 M1 =M3 = 1 M1 = 10, M3 = 1.5

σ = 1 σ = 1 σ = 10

Rc ac Rc ac Rc ac

Chandrasekhar [6] 657.511 2.22 — — — —
Neha et al. [1] 657.511 2.221 482.903 2.51404 — —
Finlayson [12] — — 482.903 2.5140 — —
Melson et al. [21] — — — — 109.864 2.888
Current analysis 657.511 2.2214 482.903 2.51404 109.864 2.88804

Table 4. Values of the critical wave number ac and corresponding critical Rayleigh number Rc are
compared for the linear oscillatory case with σ = 10, M1 = 10, M3 = 1.5 and limiting values of λ1, λ2

Authors
Maxwellian fluid Oldroydian fluid
λ1 = 0.2, λ2 = 0 λ1 = 0.2, λ2 = 0.1

ROv
c ac ROv

c ac

Melson et al. [21] 6.7967 5.97931 85.61 3.18589
Current analysis 6.79671 5.97931 85.6101 3.18589

linear and weakly nonlinear ferroconvection have been studied.
For the linear stability case:

• λ2 shows a stabilizing effect, whereas λ1 shows a destabilizing effect on the onset of
oscillatory instability; however, these parameters have no effect on the steady convection.

• M1and M3 both destabilize the onset of ferroconvection.
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• Overstability is a preferred mode of instability.
For the weakly nonlinear stability case:

• The Nusselt number Nu decreases for increasing values of λ2, while it grows with in-
creasing values of λ1.

• The rate of heat transfer declines with the increasing value of the Prandtl number.
• M1and M3 have a destabilizing effect on the nonlinear stability, as the heat is transferred

more quickly in magnetic ferrofluids than in viscoelastic/ordinary fluids.
• The amplitude grows with increasing stress relaxation time; however, the amplitude de-

creases with increasing strain retardation time to reach stable positions.
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