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Abstract

The application of nanofluids in the presence of a magnetic field holds promise for advanced drug delivery sys-
tems, where controlled manipulation of magnetic nanoparticles within nanofluids can enhance targeted and local-
ized drug delivery. This study explores the instability of a viscous fluid-nanofluid interface arranged in a planar
configuration influenced by a tangential magnetic field using the irrotational flow theory. When the nanofluid is
positioned above a viscous fluid, the interface is susceptible to the Rayleigh-Taylor instability. Employing lin-
ear stability theory, an explicit relationship connecting the perturbation growth parameter with the wavenumber
is derived. Different dimensionless quantities such as the Atwood number, Weber number, Froude number, and
Reynolds number are analyzed using stability plots. These plots provide valuable information about the behavior
of interfaces. Increased magnetic field strength is observed to delay instability onset. Surface tension is found to
stabilize the interface, whereas inertial forces destabilize it. This investigation contributes to understanding and
controlling the interface dynamics in nanofluid systems.
© 2024 University of West Bohemia.
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1. Introduction

In [25], Rayleigh demonstrated that an equilibrium configuration of a fluid system, character-
ized by an uneven distribution of mass where the heavier fluid resides above the lighter fluid,
becomes susceptible to gravitational destabilization. Taylor [29] later extended this finding to
encompass accelerated fluid systems, wherein the heavier fluid situated atop the lighter fluid
can lead to similar instability. This phenomenon is now termed the Rayleigh-Taylor instability
(RTI). In the context of nuclear explosions, the vicinity of the detonation experiences a substan-
tial rise in air temperature. The resulting hot air, encircled by the cooler ambient air, creates
conditions favorable for the development of an unstable interface. Other instances of RTI in-
clude the formation of mushroom clouds and situations where water is suspended above oil,
among others. In [17], Lewis made observations of RTI occurring at the interface between
compressed gas and water. Emmons et al. [9] conducted experimental investigations on RTI,
studying an accelerated interface between liquid and air and also considered the impact of sur-
face tension. However, their efforts did not yield complete stabilization of the interface. In [5],
Cole and Tankin replicated a similar experiment and achieved improved results in their findings.
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Sharp [27] provided a comprehensive and detailed description of RTI. On the other hand, Jacobs
and Catton [14] tackled the RTI problem in a three-dimensional configuration involving liquid
and gas to arrive at a solution. Boffetta et al. [2] established intermittent statistics in RTI and
demonstrated that the time-dependent behavior of the Reynolds and Nusselt numbers followed
the Kraichnan scaling regime, which is associated with a highly pronounced level of thermal
convection.

Particular emphasis has been placed on conducting experiments involving thin layers of
ferrofluids, which have yielded a diverse array of structural configurations [3, 4, 7]. Ferrofluids
are composite substances composed of magnetic nanoparticles dispersed within a colloidal solu-
tion. These materials can be manipulated through the application of magnetic forces. They have
been extensively scrutinized and broadly applied in an assortment of engineering scenarios, as
documented by Rosensweig in [26]. Moatimid and El-Dib [19] undertook an exploration into
the stability of an interface delineating two unyielding magnetic fluids characterized by distinct
densities. These fluids flowed in parallel orientation, influenced by an oblique magnetic field.
Elhefnawy [8] further enriched this domain by addressing the nonlinear stability exhibited by
ferromagnetic fluids. Anjali Devi and Hemamalini [6] delved into the ramifications of a normal
magnetic field on RTI manifesting within rotating layers of fluid. The fluids under consider-
ation possessed negligible viscosity and the investigation of stability encompassed nonlinear
analyses. Moatimid [18] probed the stability attributes of two magnetically fluidized columns
undergoing rigid rotation within an environment of zero gravity. The collective insights from
these inquiries substantially augment our comprehension of the intricate dynamics underpinning
the stability of magnetic fluids across diverse contextual settings. Shukla and Awasthi [28] sys-
tematically investigated the effects stemming from a vertically applied magnetic field, thereby
extending the scope of exploration.

With the rapid progress of technology and the expanding range of nanofluid applications in
various industrial processes, numerous researchers have dedicated efforts to explore instabili-
ties arising from the mixing of different nanofluids under diverse conditions and configurations.
In [11], He and Elazem conducted a study on the impact of radiation on the flow of nanoflu-
ids containing carbon nano-tubes in the presence of a magnetic field, specifically around a
stretched sheet experiencing slip conditions. The implications of their findings extend to vari-
ous domains, including thermo-mechanical processes, biomedical applications, and the design
of efficient heat transfer systems for renewable power generation. This research holds promise
for advancing technologies and processes in these fields by enhancing our understanding of fluid
dynamics and heat transfer in complex systems influenced by radiation and magnetic fields. He
et al. [13] explored the characteristics of a non-Newtonian MHD Carreau nanofluid flowing
over a vertically stretched cylinder within an incompressible boundary layer. The unique as-
pect of this study involves the presence of mobile microorganisms and the flow occurs through
permeable media, adhering to the modified Darcy’s law.

In [16], Kumar et al. conducted a study focused on optimizing micro-channel heat sinks
through irreversibility analysis. The research involved employing a nanofluid consisting of
Al2O3-water, with varying concentrations of nanoparticles and temperature-dependent proper-
ties, as the chosen coolant. Zhang et al. [30] conducted an experimental study involving the dis-
placement of hexadecane by a micellar nanofluid within a glass capillary. This research inves-
tigates the interplay of micellar nanofluids and hydrocarbon fluids, providing insights into dis-
placement mechanisms and fluid behavior within confined spaces. Moatimid and Hassan [20]
conducted an analysis on the linear convective stability of a viscoelastic nanofluid of Walter’s
type within a vertical layer. In a related study [21], Moatimid et al. discussed the linear stabil-
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ity analysis of two electrically conducting nanofluid layers. Temporal instability between two
nanofluids in a swirling annular layer was presented by Moatimid et al. in [22]. Moatimid and
Mohamed [24] conducted an analysis focusing on the nonlinear stability of two viscoelastic
electrified superimposed liquids within a porous medium. This study delves into the intricate
dynamics of the interplay between viscoelastic properties, electrical influences, and the porous
environment. In [23], Moatimid et al. thoroughly examined the nonlinear stability of a planar
interface between two fluids characterized by Walter’s B type. The study specifically investi-
gated the influence of a constant tangential electric field on two dielectric fluids in the presence
of steady relative velocities. Agarwal et al. [1] investigated a spherical nanofluid interface and
observed that the viscosity of the nanofluid contributes to interface stabilization, while the frac-
tal index of the nanoparticles exhibits a destabilizing nature.

Nanofluids influenced by a magnetic field have diverse applications, including targeted drug
delivery where magnetic nanoparticles aid in controlled drug release. In heat transfer, these
nanofluids can enhance thermal conductivity, improving efficiency in cooling systems. Addi-
tionally, magnetic nanofluids play a role in hyperthermia for cancer treatment, as their response
to magnetic fields can generate localized heat to target and destroy cancer cells. In this inves-
tigation, we examine the impact of a tangential magnetic field on the stability of the nanofluid
interface. The mathematical equations governing the system are derived within the framework
of the viscous potential flow theory. This theoretical approach takes into account the viscosity
of the fluids in the analysis while considering the flow to be irrotational. At the interface, the
stress balance equation considers normal viscous stresses, and their difference is counteracted
by interfacial tension.

2. Mathematical formulation and boundary conditions

2.1. Mathematical model

A nanofluid layer is present above a viscous liquid, Fig. 1. The height z = hn is the thickness of
the nanofluid with density ρn, viscosity µn and magnetic permeability µn

m. The height z = −hv
is the thickness of the viscous fluid with density ρv, viscosity µv and magnetic permeability
µv
m. The equation z = 0 represents interfacial equation at the equilibrium. The magnetic field

intensity H is applied in the direction of the x-axis.
If Un = (un, vn) and Uv = (uv, vv) denote the velocities in viscous fluid and nanofluid

phases, the equations that govern the upper and lower phases are [6]

∇ ·Un = 0, ρn

[
∂Un

∂t
+ (Un · ∇)Un

]
= −∇pn + µn∇2Un + ρn g + J×H , (1)

∇ ·Uv = 0, ρv

[
∂Uv

∂t
+ (Uv · ∇)Uv

]
= −∇pv + µv∇2Uv + ρv g + J×H , (2)

where pn and pv stand for the pressures of the nanofluid and viscous incompressible fluid phases,
respectively, J denotes the current density, while H is the magnetic field vector defined as
H = Hêx.

The density ρn and viscosity µn may be represented using the subsequent expressions [1]

ρn = ϕρp + (1− ϕ)ρf , (3)

where ρf denotes the density of the base fluid, ρp signifies the density of the metal particles,
and the nanoparticle volume fraction is indicated by ϕ. Zuo [31] has also suggested a viscosity
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Fig. 1. Layout of the considered problem

model for the nanofluids

µn = µef

(
1− ϕag

ϕm

)−[δ]ϕm

, (4)

where µef stands for the viscosity of the pristine fluid, ϕm represents the uppermost volume
fraction achievable for spheroidal nanoparticles, and the shape parameter of the nanoparticles
is labeled as δ. The aggregate volume fraction of the nanoparticles, denoted as ϕag, can be
expressed using the equivalent volume fractions of the nanoparticles, denoted as ϕmod, and the
fractal index d, as detailed by Agarwal et al. in [1],

ϕag = ϕmod

(ra
r

)3−d

. (5)

In this context, the equivalent volume fractions of the nanoparticles ϕmod can be formulated
in relation to the volume fraction ϕ, the interfacial layer thickness γ, and the lengths of the
nanoparticles semi-minor and semi-major axes, b and a, respectively. In [10], He and Liu
presented comprehensive formulas related to nanofluid flow in porous media as

ϕmod = ϕ
(
1 +

γ

a

)(
1 +

γ

b

)2

. (6)

2.2. Interfacial and boundary conditions

In [12], He et al. introduced a model for the flow of an electromagneto-nanofluid, exploring the
dynamics of a radiative electromagnetic-Casson nanofluid flowing past a stretching sheet. Their
study incorporates the influences of a chemical reaction and nonlinear thermal radiation. The
continuity of the tangential magnetic field component is required at the interface [28], i.e.,

n×∥H∥ = 0, (7)

where ∥x∥ = xn − xv.
A disparity exists in the regular current across the interface: The buildup of charge within

a material element is counteracted by conduction from the surrounding fluid on both sides of
the boundary. The prescribed condition at the interface, pertaining to the normal component of
magnetic induction, is expressed as [28]

n · ∥µmH∥ = 0. (8)

Additionally, the fluids will remain confined within the rigid boundaries, resulting in

vn = 0 at z = hn, vv = 0 at z = −hv. (9)
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3. Stability analysis

3.1. Basic state

In its fundamental state, the interface will exist at z = 0 and the fluid velocities Un(un, vn) =
(0, 0) and Uv(uv, vv) = (0, 0). Hence, the pressures will be constant and equal to c.

3.2. Perturbed state

Upon the introduction of a disturbance to the system, the equation governing the interface trans-
forms to z = ℓ(x, t). As a result, the perturbed flow field can be represented as

Un = 0+U ′
n = (u′n, v

′
n), Uv = 0+U ′

v = (u′v, v
′
v), pn = c+ p′n, pv = c+ p′v.

The equation of magnetic field strength in the perturbed state is given as

Hi = Hêx −∇ψi, i = n, v. (10)

The perturbed state is characterized by the following linear equations:

∇ ·U ′
n = 0, ρn

(
∂U ′

n

∂t

)
= −∇pn + µn∇2U ′

n + ρn g + J×Hn, (11)

∇ ·U ′
v = 0, ρv

(
∂U ′

v

∂t

)
= −∇p′v + µv∇2U ′

v + ρv g + J×Hv. (12)

The disturbed flow is assumed to lack rotation, hence, U ′
n = ∇φ′

n, U ′
v = ∇φ′

v, where φ′ is
the velocity potential function. The fluids maintain incompressibility, implying ∇2φ′

n = 0,
∇2φ′

v = 0. Under these circumstances, we suppose the validity of the quasi-static approxima-
tion, allowing the computation of the magnetic field via a harmonic magnetic scalar potential
function, namely ∇2ψn = 0, ∇2ψv = 0. The perturbed tangential magnetic field and perturbed
normal magnetic induction can be expressed in their linear forms as follows:

∂ψn

∂x
=
∂ψv

∂x
, (13)

µn
m

(
∂ψn

∂z
+H

∂ℓ

∂x

)
= µv

m

(
∂ψv

∂z
+H

∂ℓ

∂x

)
, (14)

∂ψn

∂x
= 0 at z = hn,

∂ψv

∂x
= 0 at z = −hv. (15)

The conditions for the velocity potential at the interface is given by

∂φ′
n

∂x
=
∂ℓ

∂t
at z = 0,

∂φ′
v

∂x
=
∂ℓ

∂t
at z = 0. (16)

The dynamic equation governing the free surface equilibrium involves the equilibrium be-
tween the disparity in normal stresses and the surface forces acting at the free surface. The
coupling of normal stresses at the interface occurs in conjunction with pressures and the nor-
mal component of viscous stresses, emphasizing the interconnected nature of these factors in
the dynamics of the system. This interplay reflects the complex relationship between surface
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forces and stress components at the free surface. The linear dynamical equation at the interface
is given as [18, 28][

pn − 2µef

(
1− ϕag

ϕm

)−[δ]ϕm ∂2φ′
n

∂z2

]
−
(
pv − 2µv

∂2φ′
v

∂z2

)
+H

(
µn
m

∂ψn
m

∂x
− µv

m

∂ψv
m

∂x

)
+(ρn − ρv)g = −σ∂

2ℓ(x, t)

∂x2
. (17)

The normal mode procedure is utilized and the perturbed quantities are expressed asG′(x, z, t) =
Ḡ(z)eη and ℓ(x, t) = ℓ0e

η with η = ikx−iωt, where ω is the complex frequency ω = ωR+iωI ,
and k denotes the wavenumber of the perturbation.

4. Dispersion relation

By employing the technique of normal mode analysis, the solution for the potential functions
φ′
n and φ′

v can be determined, involving certain unspecified constants. These potential functions
adhere to (9) and (16), allowing the expressions to be formulated as follows:

φ′
n =

iω

k

cosh [k(z − hn)]

sinh(khn)
ℓ0e

η, φ′
v = −iω

k

cosh [k(z + hv)]

sinh(khv)
ℓ0e

η. (18)

The magnetic potential functions can be computed using the conditions (13)–(15) as

ψn =
iH(µn

m − µv
m)

[µn
m coth(khn) + µv

m coth(khv)]

sinh [k(z − hn)]

sinh(khn)
ℓ0e

η, (19)

ψv =
iH(µn

m − µv
m)

[µn
m coth(khn) + µv

m coth(khv)]

sinh [k(z + hv)]

sinh(khv)
ℓ0e

η. (20)

The pressures in (17) can be computed through the Bernoulli’s equation and, hence, equation
(17) takes the form as(
ρn
∂φ′

n

∂t
− ρv

∂φ′
v

∂t

)
+ 2

[(
1− ϕag

ϕm

)−[δ]ϕm ∂2φ′
n

∂z2
− µv

∂2φ′
v

∂z2

]
+H0

(
µn
m

∂ψn
m

∂x
− µv

m

∂ψv
m

∂x

)
+(ρn − ρv)g = −σ∂

2ℓ(y, t)

∂y2
. (21)

By substituting the values obtained from (18)–(20) into (21), we establish the connection be-
tween the growth rate parameter and the wavenumber as described below:

M2ω
2 + iM1ω −M0 = 0, (22)

where

M2 = ρn coth(khn) + ρv coth(khv),

M1 = 2k2

[
µef

(
1− ϕag

ϕm

)−[δ]ϕm

coth(khn) + µv coth(khv)

]
,

M0 = σk3 − (ρn − ρv)gk +
k2H2(µn

m − µv
m)

2

µn
m coth(khn) + µv

m coth(khv)
.
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Since ω = ωR + iωI , and therefore, equation (22) can be separated as

M2(ω
2
R − ω2

I )−M1ωI −M0 = 0, (23)
2ωRωIM2 +M1ωR = 0 =⇒ ωR = 0. (24)

Hence, equation (22) can be re-written as

M2ω
2
I +M1ωI +M0 = 0. (25)

If the upper fluid is also a viscous fluid, the expression of Joseph et al. [15] can be achieved
from (25).

By employing the Routh-Hurwitz criteria to (25), the stability condition is expressed as
M2 > 0, M1 > 0, M0 > 0. The first condition (M2 > 0) is evident and considering the
positivity of µef and µv, it follows that M1 > 0. Consequently, the stability criterion dictates
that M0 > 0, while the condition for a marginal state is characterized by M0 = 0, i.e.,

σk2 − (ρn − ρv)g +
kH2(µn

m − µv
m)

2

µn
m coth(khn) + µv

m coth(khv)
= 0. (26)

We found that the viscosity does not affect the stability criterion.
Introducing the characteristic velocity as well as the characteristic length, denoted as V and

h = hn + hv, respectively, enables the expression of the dimensionless representation of the
remaining physical parameters as follows:

Ren =
ρnhV

µef

, Wen =
ρnhV

2

σ
, ρ =

ρv
ρn
, µ =

µv

µef

, µ̄m =
µv
m

µn
m

, J =
ωIh

V
, H̄ =

H

V

√
µn
m

ρn
.

The dimensionless form of (25) can be obtained as

L̄2J
2 + L̄1J + L0 = 0, (27)

where

L̄2 = coth(k̄hn) +
1− At
1 + At

coth(k̄hv),

L̄1 =
2k̄2

Ren

[(
1− ϕag

ϕm

)−[δ]ϕm

coth(k̄hn) + µ coth(k̄hv)

]
,

L̄0 = − 2At
1 + At

k̄

Fr2
+

k̄3

Wev
− k̄2H̄2(1− µ̄m)

2

coth(khn) + µ̄m coth(khv)
.

5. Results and discussions

In this section, we expound upon the computational procedures applied to the considered model,
utilizing equation (27), which characterizes a second-order algebraic equation. Upon solving
this equation for a defined set of inputs, two distinct values of the growth rate J emerge. In this
analysis, the larger of the two values is plotted to symbolize the growth rate in our visualization,
providing insights into the model behavior under specific conditions. The following set of
values are considered for the numerical computation:

h̄n = 0.3, At = 0.8, Ren = 50, Wen = 1.7, Fr = 1.3, H̄ = 2.0, µ̄m = 0.6.
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Fig. 2. Comparison with existing results

In [15], Joseph et al. investigated the interface of a viscous-viscous fluid using the irrota-
tional theory of viscous fluids, with a focus on a channel flow with a top-heavy configuration. In
contrast, our current study considers the upper fluid as nanofluid and the presence of a magnetic
field. Fig. 2 presents a comparison between the growth rates observed by Joseph et al. in [15]
and our results. It is crucial to highlight that in the presence of a magnetic field, perturbations
exhibit a slower growth rate compared to scenarios without a magnetic field. This disparity in-
dicates that the magnetic field introduces a stabilizing influence. Considering the magnetic field
in our study, there is a notable increase in the Lorentz force within the fluid phases, opposing
the movement of disturbances and contributing to the observed stabilization effect.

The graphical representation in Fig. 3 illustrates the stability growth curves attained under
varying Atwood numbers. The curves corresponding to the growth rate J are depicted along-
side the wavenumber k̄. Clearly, this illustration demonstrates higher growth as the Atwood
number increases. Thus, these dimensionless parameters play a role in initiating instability in
the nanofluid interface.

The Atwood number, At = (ρn−ρv)/(ρn+ρv), which is defined as the ratio of viscous fluid
density ρv to the density of the nanofluid ρn, becomes a pivotal factor. With ρv held constant and
ρn increased, the resultant escalation of inertial forces induces a commensurate augmentation
in the growth of interface disturbances. Thus, an augmentation in nanofluid density precipitates
an unstable interface. The rise in inertial forces attributable to the heightened nanofluid density
exerts a discernible impact on the interface. This impetus induces acceleration in interfacial
disturbances, thereby engendering a deferment in the attainment of stability.

Fig. 4 portrays the growth curves corresponding to diverse non-dimensional Froude numbers
(Fr). These curves conspicuously illustrate an expanding stable domain as the Froude number is
increased. Consequently, it can be postulated that the Froude number exerts a stabilizing influ-
ence on the interface by mitigating disturbance growth. The non-dimensional Froude number is
predicated on the ratio of inertial force to gravitational force. It serves as a metric to analyze the
interplay between gravitational acceleration and inertial forces. Notably, this parameter offers
insight into the manner in which gravitational acceleration modulates inertial forces.

118



A. S. Rana et al. / Applied and Computational Mechanics 18 (2024) 111–124

Fig. 3. Effect of the Atwood number

In Fig. 5, a comprehensive illustration is presented, elucidating the impact of magnetic field
strength H̄ on the interface of the viscoelastic fluid. Notably, as the intensity of the magnetic
field H̄ is heightened, a concomitant increase in perturbation growth becomes evident. This
phenomenon underscores the stabilizing role of the magnetic field on the nanofluid-viscous
fluid interface. This stabilization phenomenon is attributed to the emergence of the Lorentz
force, engendered by perturbations in both velocity and magnetic fields. This counteracting
force hampers the motion of the interface, effectively impeding the propagation of disturbances
at their intrinsic pace. Hence, the velocity of disturbances diminishes, compelling the interface

Fig. 4. Effect of the Froude number
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Fig. 5. Effect of magnetic field strength

to transition towards a state of stability.
Fig. 6 illustrates growth curves depicting the influence of varying nanofluid thicknesses

hn on the interface. Notably, a discernible trend emerges, wherein higher thicknesses of the
nanofluid result in augmented perturbation growth. This trend signifies that the thickness of the
nanofluid layer contributes to the initiation of instability within the interface. The augmenting
nanofluid thickness leads to an elevation in gravitational acceleration. Therefore, this inten-
sified gravitational force accelerates the interface in a downward direction, culminating in the
destabilization of the system. Therefore, the thickness of the nanofluid layer exerts a notable
destabilizing impact on the interface.

Fig. 6. Effect of nanofluid thickness
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Fig. 7. Effect of magnetic induction

Fig. 7 shows the variation of the growth rate J across diverse magnetic permeability ratio
values µ̄m for a specific magnetic field intensity H̄ = 2 and volume fraction ϕ = 0.05. Evi-
dently, the depicted trend unveils an initial augmentation in the growth of disturbance waves as
the ratio of magnetic permeability between the two fluids increases, followed by a subsequent
decline. This progression indicates that the magnetic permeability ratio µ̄m exhibits a stabilizing
nature in the context of the stability analysis.

In Fig. 8, growth curves are plotted to elucidate the impact of the non-dimensional Reynolds
number (Ren). An elevation in the Reynolds number correspondingly yields an augmentation
in the growth curves. This phenomenon underscores a context, wherein disturbance growth

Fig. 8. Effect of the Reynolds number
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Fig. 9. Effect of the Weber number

escalates at the interface of the nanofluid. The non-dimensional Reynolds number Ren is fun-
damentally indicative of the ratio of inertial to viscous forces, designated as Ren ∝ ρn and
Ren ∝ 1/µn, respectively. This distinction imparts significant influence on perturbation growth.
Notably, the augmentation of the nanofluid density ρn contributes to the amplification of the per-
turbation growth, driven by heightened inertial forces. Therefore, an intensified gravitational
pull ensues due to increased density in the upper fluid, leading to a more pronounced downward
force on the interface. This cascade of effects culminates in interface destabilization. Con-
versely, an elevation in the nanofluid viscosity µn operates in an opposing manner, dampening
the surge in disturbances. This is attributed to the resistive nature of fluids with elevated vis-
cosity. As a result, the interface is imbued with heightened stability, as the increased viscosity
inherently curtails the escalation of disturbances.

Within Fig. 9, a graphical representation unfolds, wherein the non-dimensional wavenumber
is charted across discrete values of the Weber number (Wen). Notably, the visual representation
delineates an augmentation in the growth curves corresponding to increasing Weber numbers,
indicative of a destabilizing tendency attributed to the Weber number. The Weber number,
established as the ratio of inertial to surface forces Wen ∝ ρn/σ, holds significance in this
context. Evidently, surface tension emerges as a pivotal factor, exerting a stabilizing impact
due to its reciprocal relationship with the Weber number. This interdependence stems from the
fact that higher surface tension entails a stronger influence of intermolecular cohesive forces.
Consequently, this enhanced cohesion mitigates disturbance growth, ultimately fostering the
stabilization of the nanofluid interface.

6. Conclusions

The investigation has been performed to the analysis of perturbation growth at the interface of a
nanofluid with a viscous nature, subjected to a tangential magnetic field. The analytical frame-
work rests upon the principles of the viscous irrotational flow theory, employing the normal
mode procedure. A dispersion relation is deduced in terms of the perturbation growth rate and

122



A. S. Rana et al. / Applied and Computational Mechanics 18 (2024) 111–124

subsequently scrutinized. The density of the nanofluid serves to disrupt the interface stability,
while the stabilizing influence exhibited by the density of the viscous fluid. The interplay of sur-
face tension and nanofluid viscosity steers the interface towards a state of stability, whereas the
viscosity inherent to the lower fluid engenders an opposing destabilizing effect. Additionally,
the interface thickness of the nanofluid is observed to impose a propensity towards destabi-
lization upon the perturbation growth of the interface. Further findings elucidate the favorable
impact of the magnetic field strength on the interface stabilization, while the magnetic perme-
ability similarly exerts a stabilizing influence on the interface dynamics.
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