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Vibration of imperfect rotating disk
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Abstract

This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk.
The main focus of this study is to elaborate the basic background for diagnostic and identification methods for
ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of
undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine
disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection
in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties
than those of a perfect disk. Calculation of FEM model and analytic — numerical solution of disk behaviour in the
limited (two modes) frequency range shows the splitting of resonance with an increasing speed of disk rotation.
The spectrum of resonance is twice denser than that of a perfect disk.
c© 2011 University of West Bohemia. All rights reserved.
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1. Introduction

The vibration of a turbine bladed disk is undesirable and highly dangerous, as it can lead to a
failure by fatigue and may cause serious accidents. In order to quench these vibrations, various
types of dampers are used. Even a small imperfection makes the vibration analysis more com-
plicated. Large-scale research of these problems has been carried out in many institutes and
laboratories in the world (e.g. [2–5,9–11]). Experimental model investigated in the laboratories
of the Institute of Thermomechanics (IT AS CR) consists of a steel disk with prismatic models
of blades fastened on the perimeter of the disk. The disk is fixed in its centre either to the steel
plate, or it is overhung on the rotating shaft. On the opposite ends of the disk’s diameter, there
are several blades equipped with damping heads.

2. FEM model

For a theoretical solution of deformations and stress, a three dimensional FE-model has been
developed. The mesh structure is shown in Fig. 1. The eight-node hexagonal elements were
used. Numerical method LANCZOS was applied for calculations of eigen-values and modes of
vibrations. For modal analysis [6,7], the damping elements were fixed to the ends of the blades.

Due to the added masses on the ends of selected blades, the bladed disk losses its perfect cir-
cular properties having infinite number of symmetry axes and therefore, becomes an imperfect
disk with limited 2n number of axes. FEM solution enables to calculate all interested eigenfre-
quencies and modes of vibrations in very wide range of frequencies. This paper investigates the
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Fig. 1. Mesh structure of FE-model

eigenfrequencies of the two lowest modes of nodal diameters (n = 1 and n = 2) and no nodal
circle (l = 0).

FEM calculated the lowest pairs of eigenfrequencies of a perfect, non-rotating bladed disk
without any damping elements. The results are: f1 = 59.21 Hz and f2 = 78.60 Hz. Due to
small masses added to the ends of five blades of selected groups, the bladed disk lost its perfect
circular properties and became imperfect with a countable number of axes in this case two or
four symmetry axes. The perfect disk has double eigenfrequencies f1, f2, which split into two
pairs of close eigenfrequencies at the imperfect disks: f1a = 59.02 Hz and f1b = 45.81 Hz for
n = 1 and f2a = 77.98 Hz and f2b = 72.70 Hz for n = 2.

Fig. 2. Split modes with 1 and 2 nodal diameters

The imperfection of the bladed disk, caused by the addition of damper heads, results in free
oscillations of two different orthogonal shape modes with the same number of nodal diameters,
first ones (f1a, f2a) with one node line going through this imperfection (see full diameters in
Fig. 2) and other ones (f1b, f2b) with this imperfection lying on one anti-node line (see dashed
diameters in Fig. 2). For FEM modal analysis, the damping elements were stiff connected with
the blade ends and created elastic shroud over five blades bundles. Therefore, no damping is
present in the system calculated by FEM.
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3. Experimental bladed disk model

The damping elements were attached to the real experimental bladed disk. These damping el-
ements were formed as small masses among top-heads and were connected with them only by
friction contacts. They allow the axial relative motion of heads, but suppress their relative turn-
ing and increase the bending stiffness, similar to the elastic shroud. Therefore these dampers
are modelled for computation procedure not only by added masses Δm at the ends of the cor-
responding diameters, but also by increased damping Δb and stiffness Δc. These additional
magnitudes must be multiplied twice, as there are two groups of damping heads.

3.1. Free vibrations of non-rotating disk

Free vibrations of the real experimental bladed disk can be investigated by means of four dif-
ferential equations of the imperfect non-rotatig disk in the excitation frequency range ω near
to the lowest eigenfrequencies f1, f2, i.e. approximately in f ∈ (0, 100) Hz, or Ω = 2πf ∈
(0, 630) 1/s. These equations are in generalized coordinates qan, qbn (n = 1, 2) as follows:

mrednq̈an + (bredn + 2Δb)q̇an + crednqan =0,
(mredn + 2Δm)q̈bn + brednq̇bn + (credn + 2Δc)qbn =0, n = 1, 2,

(1)

where mredn, bredn, credn are reduced values of perfect disk masses, damping and stiffness for
the first (n = 1) or second (n = 2) mode of vibrations and are ascertained from the kinetic,
potential energy and Rayleigh dissipative function of deformed bladed disk at corresponding
modes [1, 8, 9].These values can be ascertained either from drawings by numerical calculation
by means of some FE packages (e.g. ANSYS, CONSOL, etc.) or from data gained by measure-
ments on a real structure or on its physical model.

Values qan, qbn are generalized coordinates belonging to the a – sine modes, b – cosine
modes of stationary or rotating disk vibrations with n nodal diameters n = 1, n = 2, see Fig. 2.
General coordinate system is connected and rotates together with the disk.

Additional damping 2Δb is added to the sine modes qan, because this modes have the great-
est shear deformations on the nodal diameter, i.e. in the damping heads position. Added mass
and stiffness 2Δm, 2Δc is zero in this position. On the contrary, the additional mass 2Δm and
stiffness 2Δc strongly influence the vibrations of cosine modes qbn, as they are in the anti-mode
position.

3.2. Free un-damped vibrations

The various forms of vibrations of an un-damped disk bred1 = bred2 = Δb = 0, with amplitudes
ana, anb are described by

qan = zna(r, φ) = anag0(r) sinnφ, qbn = znb(r, φ) = anbg0(r) cosnφ, (2)

where ϕ is the circumferential angle, connection of radius r and rectangular coordinates x, y
is r =

√
x2 + y2, g0(r) denotes the form of vibration in the radial direction; it depends on

the structure and mass distribution of the disk vibrating with the mode of one or two nodal
diameter and without any nodal circle. This function g0(r), which can be gained for given type
of bladed disk either by FE solution, or by a measurement on real structures, is here supposed
for simplicity to be equal for both n = 1, 2.

Indexes a, b ascertain the position of nodal diameters in relation to the position of the im-
perfection. Sinus forms correspond to the nodal diameters drawn by full lines at frequencies
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f1a, f2a, in Fig. 2, cosine forms correspond to positions of nodal lines at frequencies f1b, f2b, in
Fig. 2. The proper initial conditions in time t = 0 produce the general vibrations as combination
of eigenmodes with common eigenfrequencies Ωna = 2πfna, Ωnb = 2πfnb of the un-damped
disk:

z(r, φ, t) =

2∑

n=1

(anag0(r) sinnφ cos(Ωnat+ φna) + anbg0(r) cosnφ cos(Ωnbt+ φnb)) . (3)

This expression contains eight free constants a1a, φ1a, a1b, φ1b, a2a, φ2a, a2b, φ2b, which can
be determined by proper initial conditions. If the imperfection limits to zero, Ωna ≈ Ωnb and
travelling waves which rotate on the disk by angular frequencies

dφ

dt
=

Ωnl

n
or

dφ

dt
= −Ωnl

n
for n = 1, 2 (4)

can arise at appropriate initial conditions. However, damping in a real disk makes a quick decay
of these free travelling wave oscillations.

The travelling waves exist in a non-rotating damped disk with imperfections when it is
excited by a non-rotating harmonic force F0 cosωt acting in a point between nodal (a) and anti-
nodal (b) diameters as shown in Fig. 3. The strongest travelling waves appear if the frequency
of exciting force lies in one of these intervals: ω ∈ (Ω1a,Ω1b) or ω ∈ (Ω2a,Ω2b) corresponding
to the inter-resonance ranges. Differential equations of such system are derived in [6, 7, 9, 10]
and are:

mrednq̈an + (bredn + 2Δb)q̇an + crednqan = g0(rF ), sinnφF0 cosωt sinnλ,
(mredn + 2Δm)q̈bn + brednq̇bn + (credn + 2Δc)qbn = g0(rF ) cosnφF0 cosωt cosnλ,

n = 1, 2.
(5)

Here the left sides are identical with equations (1), qn are generalized coordinates belonging to
the eigen-forms at n = 1, n = 2. Radius rF corresponds to the position of excitation force.

More detailed analysis of the stationary vibrations and travelling waves is presented in the
publication [7].

Fig. 3. Harmonic excitation of standing imperfect disk
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4. Rotating imperfect disk

Dynamical properties of rotating imperfect disk with constant angular speed ν and modes of
vibrations having n nodal diameters and no nodal circles are similar to those of stationary disk.
However, one of the main differences observed are eigenfrequencies of the rotating disk which
are increasing with increasing angular velocity ν:

Ωn = Ωn,0 + cnν
2.

Because revolutions of experimental equipment in IT ASCR are comparatively low, this change
of frequency can be neglected in the following analysis.

Two coordinate systems are used to describe the investigated system:

1. A fixed one r, φa connected with the standing space,

2. Another coordinates r, φ connected to the rotating disk. Relation φ = φa− νt is valid for
the initial situation φ = φa at t = 0.

Let in the fixed coordinate system 1) a harmonic force F0 cosωt at φa = λ and at radius rF
near to the ends of blade acts on an imperfect disk, rotating with speed ν. In the disk coordi-
nates 2), this force moves linearly with time in the negative direction φ and excites all modes
of vibrations. Point of action of F0 cosωt is given in rotating coordinates x′, y′ (see Fig. 4)
by angle φF = λ − νt, and a general point P of the disk has in the non-rotating coordinates
increasing angle position φa = φ+νt. Vibrations of the rotating imperfect disk with one or two
nodal diameters (n = 1, 2) are described by equations

mrednq̈an + (bredn + 2Δb)q̇an + crednqan= g0(rF ) sinnφF0 cosωt sinn(λ− νt),
(mredn + 2Δm)q̈bn + bredndotqbn + (credn + 2Δc)qbn = g0(rF ) cosnφF0 cosωt cosn(λ− νt),

n = 1, 2.
(6)

Fig. 4. Harmonic excitation of rotating imperfect disk

Simple arrangement of equations (6) by introducing expressions

uan =
qanmredn

g0(rF )F0
, ubn =

qbn, mredn

g0(rF )F0
, Ω2

an =
credn
mredn

, Ω2
bn =

credn + 2Δcb
mredn + 2Δm

,

βan =
bredn + 2Δb

mredn
, βbn =

bredn
mredn + 2Δm

, n = 1, 2 (7)
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gets equations

üan + βanu̇an + Ω2
anuan = cosωt sinnφ sinnνt,

übn + βbnu̇bn + Ω2
bnubn = cosωt cosnφ cosnνt,

n = 1, 2. (8)

The dynamical parameters Ωan,Ωbn, . . . etc. of bladed disk can be ascertained either from
working drawings by numerical calculation using some professional FE packages (e.g. ANSYS,
COMSOL, etc.) or by measurements on a real structure or on its physical model. Values used
in examples in this article are based on data gained from experiments carried out on simplified
model of bladed disk in Dynamical Laboratory of Institute of Thermomechanics, ASCR.

The functions on the right sides of equations (8) are complicated functions of time — prod-
uct of two harmonic functions. For a simple solution of forced vibrations it is convenient to
transform these expressions into a sum of terms containing no more than one harmonic func-
tion of time:

cosωt sinnνt = [sin(ω + nν)t− sin(ω − nν)t] /2,
cosωt cosnνt = [cos(ω + nν)t + cos(ω − nν)t] /2, n = 1, 2.

(9)

It is shown that one in space-fixed harmonic force F0 cosωt acts on the rotating disk as two
harmonic forces with different frequencies (ω+nν) and (ω−nν). These force-decompositions
at appropriate values ω and ν cause travelling waves. Results of our analysis show that the
response curves of a disk rotating at constant speed ν can have twice as many resonance peaks
as the non-rotating disk.

Solution (8) after introduction (5) gives

uan =
sinnφ sin [(ω + nν)t − ψan1]

2
√
(Ω2

an − (ω + nν)2)2 + β2
an(ω + nν)2

+
sinnφ sin [(ω − nν)t− ψan2]

2
√
(Ω2

an − (ω − nν)2)2 + β2
an(ω − nν)2

,

ubn =
cosnφ cos [(ω + nν)t− ψbn1]

2
√
(Ω2

bn − (ω + nν)2)2 + β2
bn(ω + nν)2

+
cosnφ cos [(ω − nν)t− ψbn2]

2
√
(Ω2

bn − (ω − nν)2)2 + β2
bn(ω − 2ν)2

,

n = 1, 2. (10)

The corresponding phase angles are

ψan1 = arctg
βan(ω + nν)

Ω2
an − (ω + nν)2

, ψbn1 = arctg
βbn(ω + nν)

Ω2
bn − (ω + nν)2

,

ψan2 = arctg
βan(ω − nν)

Ω2
an − (ω − nν)2

, ψbn2 = arctg
βbn(ω − nν)

Ω2
bn − (ω − nν)2

,
n = 1, 2. (11)

Dynamical coefficients in expressions (10)

1√
(Ω2

an − (ω + nν)2)2 + β2
an(ω + nν)2

,
1√

(Ω2
an − (ω − nν)2)2 + β2

an(ω − nν)2
,

1√
(Ω2

bn − (ω + nν)2)2 + β2
bn(ω + nν)2

,
1√

(Ω2
bn − (ω − nν)2)2 + β2

bn(ω − 2ν)2

(12)

reach their maximum values at excitation frequencies

ω = Ωa1 + ν, ω = Ωa1 − ν, ω = Ωb1 + ν, ω = Ωb1 − ν,
ω = Ωa2 + 2ν, ω = Ωa2 − 2ν, ω = Ωb2 + 2ν, ω = Ωb2 − 2ν,

(13)

at which the resonance peaks in response curves occur.
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5. Response curves of rotating imperfect disk

The graphical representation of these properties for the first mode with one nodal diameter
(n = 1, l = 0) is shown in Fig. 5 in the form of frequency-speed diagram [9].

The response curve of a stationary disk (disk speed υ = 0) has two resonance peaks at
ω = Ωb1 and ω = Ωa1, determined by the intersections of a vertical line A with the oblique
thick lines. The thick lines correspond to equations in the first row (13). The response curve is
drawn in Fig. 6.

Rotation at low revolutions, as observed in Fig. 5 line B at 200 rpm, causes that the two
resonance peaks split into four, as seen in Fig. 7. The split resonances have lower height (ap-

Fig. 5. Frequency-speed diagram of imperfect disk

Fig. 6. Response curve of standing imperfect disk
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Fig. 7. Response curve of rotating (200 rpm) imperfect disk

Fig. 8. Response curve of rotating (382 rpm) imperfect disk

proximately half) then those in Fig. 6. In both figures are dimension u [s2] and ω [rad/s]. The
same dimensions are used in Fig. 8, 9, 11, 12.

Line C in Fig. 5 at ν = 40 rad/s goes through the point of intersection of lines given by
equations ω = Ωa1 − ν and ω = Ωb1 + ν.

Response curve of this case (shown in Fig. 8) has only three peaks. The combined resonance
is higher then the neighbouring peaks at ω = Ωb1 − ν and ω = Ωa1 + ν.

At a higher disk speed up to 800 rpm (ν = 83.81 rad/s), represented by the line D in Fig. 5,
the number of interactions increased to four again. Corresponding response curve is shown
in Fig. 9. It is similar to Fig. 7 (200 rpm) except that the sequences of resonance peaks are
different; the peaks with the mode b alter with a at increasing frequency of excitation ω.
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Fig. 9. Response curve of rotating (800 rpm) imperfect disk

Fig. 10. Frequency-speed diagram of two lowest modes of imperfect disk

Results based on the analysis of disk vibrations when considering only one isolated mode
(n = 1) cannot describe the full dynamic behaviour of the real rotating imperfect disk as it
presents the rich spectrum of modes with various nodal diameters and nodal circles.

As an example of the increasing complications due to mutual interactions of disk modes
with different number n of circumferential waves Fig. 10 shows frequency-speed diagram of
rotating imperfect disk, where two basic modes n = 1 and n = 2 are considered. The thick
full inclined lines correspond to the equations in the first row of (13) and illustrate the dynamic
behaviour of n = 1 mode of disk vibrations. The thick dashed inclined lines belong to the
second row of equations (13) and graphically demonstrate the dynamical properties of n = 2
mode of vibrations. Due to different gradient of lines for n = 1 and n = 2, ten points of
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Fig. 11. Four resonance peaks of standing imperfect disk

Fig. 12. Eight resonance peaks of rotating (573 rpm) imperfect disk

interaction are present in this diagram. They are marked by vertical lines, which, in general,
intersect the thick inclined lines in points, giving the positions of resonance peaks of response
curves.

The simplest response curve belonging to the standing non-rotating disk (υ = 0) is shown
in Fig. 11. There are four resonance peaks at ω = Ωb1; Ωa1; Ωb2; Ωa2.

Rotation of disk (υ > 0) causes the split of resonances again. Example of such response
curve is shown in Fig. 12 for υ = 60 rad/s. There are eight resonance peaks, but four of them
are very close and form in the range ω ∈ (300, 400) rad/s a strong common resonance peak
with four local peaks.
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Similar, but in sequence of modes very different response curves are obtained at various
speeds of a disk rotation. It is evident that the analysis of experimentally gained resonance
curves of a rotating imperfect disk is extremely difficult without any detailed theoretical inves-
tigation.

6. Conclusion

This paper presents computational methods for the analysis of dynamic properties of a non-
rotating or rotating disk. The circular disk fixed in its centre has many double eigenfrequencies,
each one described by different numbers of nodal diameters and of nodal circles. Positions of
nodal diameters are arbitrary at perfect disks, but they are fixed with respect to the position of
imperfection at imperfect disks.

Investigated imperfection was formed by the attachment of two groups of vibration-damping
heads on simplified model of an experimental bladed disk. Detail analysis was focused on the
modes with one and two modal diameters and on the frequency range containing corresponding
split resonance peaks. Analysis of dynamic properties of a rotating imperfect disk excited by
an external single in space-fixed harmonic transversal force F0 cosωt shows the existence of
travelling waves, and split of eigenfrequencies depending on the rotation speed.

The response curves of the imperfect disk rotating with speed ν have twice as many reso-
nance peaks than the same non-rotating disk.

This study is a contribution to the theoretical support of experimental research of a rotating
model of a bladed disk carried out in Institute of Thermomechanics AS CR with the aim to
investigate the influence of elastic, mass and damping imperfections on the dynamic behavior
of turbine disks.
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[6] Půst, L., Pešek, L., Traveling waves in circular disk with imperfections, Proceedings of the 10th
Conference on Dynamical Systems – Theory and Applications, Vol. 1, Lodž, Poland, 2009,
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