
Applied and Computational Mechanics 19 (2025) 21–48

A 3D lattice Boltzmann – phase-field model of three-phase
contact line dynamics on curved boundaries

M. Beniouga,b∗

aAnalysis and Modeling for Environment and Health (UMR-AMES), Nouakchott, Mauritania
bHigher Institute of Industrial Engineering, Nouakchott, Mauritania

Received 2 December 2023; accepted 27 May 2025

Abstract

In this paper, we present a three-dimensional multiphase fluid lattice Boltzmann model based on the phase-field
theory. The conservative Allen-Cahn equation was used to describe the interface dynamics between two differ-
ent fluids. The proposed model extends the model proposed in [Fakhari et al., Physical Review E 96 (2017)
No. 053301] to three space dimensions and we show how to improve the accuracy of the model at high den-
sity ratios by computing gradients more accurately. We also propose an accurate method for implementing the
three-phase contact angle on curved boundaries. Several benchmark test cases have been performed with realistic
parameters for a water-air system to demonstrate the improvement in accuracy of our model, compared to existing
methods. Specifically, flow in a cylindrical capillary has been simulated and the results have been compared to
previous methods and analytical solutions.
© 2025 University of West Bohemia in Pilsen.
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1. Introduction

Multiphase fluid interactions are almost ubiquitous in natural and industrial processes, for ex-
ample, in the food, pharmaceutical and personal care industries [3, 6]. Some practical exam-
ples of multiphase fluid problems are polymer processing [17], enhanced oil recovery [4], mi-
crofluidics [16] and high-performance heat exchangers [8]. Among the two common modeling
approaches—sharp-interface and diffuse-interface (phase-field) methods—the latter is widely
favored for problems involving complex interface dynamics (coalescence, phase change, mov-
ing contact lines) due to its ability to naturally capture topology changes [33]. In recent years,
the lattice Boltzmann method (LBM) has gained prominence as an efficient mesoscopic frame-
work for simulating multiphase flows [23], owing to its simplicity in handling interfacial physics
and excellent parallel scalability. Most multiphase LBM models fall into four main fami-
lies [39]: color-gradient, pseudo-potential, free-energy, and phase-field approaches. Table 1
summarizes the key characteristics of these approaches, including their strengths, limitations,
and typical capability for high-density-ratio flows.

Recent years have seen especially rapid development of phase-field LBM methods for mul-
tiphase flows. In this approach, the interface is evolved by a diffuse-interface equation (ei-
ther Cahn-Hilliard or Allen-Cahn), coupled to the LBM solver for hydrodynamics. The Cahn-
Hilliard formulation ensures global mass conservation but involves fourth-order spatial deriva-
tives and may suffer droplet mass loss below a critical radius [43]. The Allen-Cahn formulation,
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Table 1. Comparison of main multiphase LBM modeling approaches

LBM approach Key strengths Key challenges High-density ratio
capability

Color-gradient

– Physically intuitive
(“colored” fluids)
– Captures interface
morphology well
– Suitable for moderate
density/viscosity
contrasts [28]

– Limited to low
density ratios
– Anisotropic
surface tension
– Pronounced
spurious
currents [21]

Low (unstable
at high density
ratios) [2]

Pseudo-potential

– Simple to implement
(no explicit interface
equation)
– Effective for
droplet/bubble
dynamics
– Widely used and
validated [36]

– Thermodynamic
inconsistency
– Strong spurious
currents
– Limited stability at
high density
ratios [32]

Moderate
(improved with
MRT schemes) [12]

Free-energy

– Thermodynamically
consistent
– Explicit control over
surface tension
– Accurate interface
representation [35]

– Requires solving
Poisson’s equation
– Computationally
expensive
– Early models
lacked Galilean
invariance [19]

Moderate (possible
but rarely used due
to stiffness) [24]

Phase-field

– Physically grounded
(free energy-based)
– Naturally captures
moving contact lines
– Conservative models
support high density
ratios [27]

– CH-type: small
droplet loss
– AC-type: may
need mass correction
– Requires
parameter
calibration [27]

High (stable up to
∼1000:1) [31]

in contrast, uses only second-order derivatives and is easier to implement locally, but originally
allowed slight phase mass leakage [40]. To overcome this, conservative Allen-Cahn schemes
introduce a Lagrange multiplier or modified forcing to strictly conserve mass [11]. This class
of models has demonstrated improved stability for large density ratios [25, 31] and has been
applied to complex interface phenomena including droplet coalescence, breakup, and dynamic
wetting on flat surfaces [41]. However, handling three-phase contact line dynamics on curved
solid boundaries (e.g., droplets in non-flat geometries) remains challenging. Only a few stud-
ies have begun to address wetting boundary conditions on curved surfaces using phase-field or
related LBM models [1, 42], highlighting the need for further development in this area.

The aim of our work is to provide a stable and accurate phase-field lattice Boltzmann model
for simulation of high density ratio flows (typically water-air systems) in complex geometries
in 3D. In this study, we improve on existing conservative Allen-Cahn phase-field lattice Boltz-
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mann models in two ways. First, we improve the accuracy of the velocity-based model by
Fakhari et al. [10] for high density ratios by computing gradient terms more accurately. Second,
we extend the model to three space dimensions, including proposing a method to implement
boundary conditions for the conservative Allen-Cahn equation in 3D with different contact an-
gles on general curved boundaries. The proposed model was evaluated on several test cases and
compared to the previous momentum-based [9] and velocity-based [10] models.

2. Mathematical model

2.1. Phase-field equation

We introduce the phase-field ϕ(t,x) for time t and space-variable x = (x, y, z), which attains
the value zero in the light fluid and one in the heavy fluid. Following [11, 40], we let the
evolution of the phase-field be determined by the equation

∂ϕ

∂t
+∇ · (ϕu) = ∇ ·

{
M

[
∇ϕ− 4

ξ
ϕ(1− ϕ)

∇ϕ

|∇ϕ|

]}
. (1)

Mobility M represents the rate at which the interface between two fluids evolves under the
influence of the chemical potential. It dictates how quickly the phase-field variable ϕ adjusts to
changes in the chemical potential gradient. Generally, the value of M should be chosen based
on the balance between numerical stability and computational efficiency. The mobility M is
often set to a small value (e.g., approximately 0.01−0.1) to ensure stability without excessively
slowing down the simulation [44]. In (1), u is the fluid velocity vector, and ξ is the interface
thickness of the diffuse interface. The equation has the property that the right hand side becomes
zero for the one-dimensional (1D) phase-field profile given by

ϕ0(x) =
1

2

{
1− tanh

[
2
(x− x0) · v

ξ

]}
, (2)

which therefore, represents a stationary solution to (1) with u = 0, describing a flat interface
located at x = x0 and perpendicular to the unit vector v (which points from the heavy fluid to
the light one).

Although (2) describes a one-dimensional equilibrium phase-field profile, it remains valid in
three-dimensional simulations when interpreted along the local normal direction to the interface.
In our model, this direction is given by the unit vector n = ∇ϕ/|∇ϕ|, allowing the 1D profile
to be applied locally in any spatial dimension.

In the presence of solid boundaries, the boundary conditions for ϕ are determined by the
equilibrium contact angle θ. The boundary condition used is

∂ϕ

∂n
=

4

ξ
ϕ(1− ϕ) cos θ, (3)

where n is the unit normal to the surface, directed outward from the fluid domain. The boundary
condition can be derived from a free energy formulation [26], but it should also be noted that
the equilibrium profile (2) satisfies this boundary condition exactly when the phase interface
intersects a flat surface at an angle θ, i.e., when v · n = cos θ.
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2.2. Navier-Stokes equations

The fluid velocity u and the pressure p are determined by the incompressible Navier-Stokes
equations for multi-phase flow

∇ · u = 0, (4)

ϱ(ϕ)

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+∇ ·

[
η(ϕ)

(
∇u+ (∇u)T

)]
+ µ∇ϕ+ Fb, (5)

where ϱ(ϕ) = ϱHϕ + ϱL(1 − ϕ) is the local density and η(ϕ) = ηHϕ + ηL(1 − ϕ) is the local
dynamic viscosity of the fluid. Here, ϱH and ϱL are the densities of the heavy and light fluid,
respectively, and similarly for the viscosities ηH and ηL. The chemical potential µ is given by

µ[ϕ] =
3

2

σ

ξ

(
8f ′(ϕ)− ξ2∆ϕ

)
=

3

2

σ

ξ

[
16ϕ(1− ϕ)(1− 2ϕ)− ξ2∆ϕ

]
. (6)

The coefficients are chosen so that the equilibrium profile (2) yields µ[ϕ0] = 0 and so that the
surface tension σ equals the integral of the free energy density across the interface, i.e.,

σ =

∞∫
−∞

E[ϕ0(x0 + tv)] dt, (7)

where E[ϕ] = 12σ
ξ
ϕ2(1− ϕ)2 + 3

4
σξ|∇ϕ|2 is the total free energy density, and µ[ϕ] = δE/δϕ.

The surface tension force is chosen to be Fs = µ[ϕ]∇ϕ and Fb is a body force, for example,
a gravitational force. This formulation is the same as, e.g., in [9].

2.3. Lattice Boltzmann method

2.3.1. Lattice Boltzmann equations (LBE) for the phase-field equation

To solve the phase-field equation (1), we apply the method used in [9–11], but extended to three
space dimensions. Equation (1) is an advection-diffusion equation with an added non-linear flux
term, and the method is, therefore, rather straightforward although the non-linear term requires
some attention.

Given a velocity set {eq}Q−1
q=0 and corresponding distribution function {fq}Q−1

q=0 , the lattice
Boltzmann equation (LBE) using a single relaxation time collision is given by

fq(x+ eq, t+ 1) = fq(x, t) +
1

τϕ

(
f eq
q (x, t)− fq(x, t)

)
, (8)

where τϕ is the relaxation time for the phase-field LBE and we use the time-step ∆t = 1. The
equilibrium distribution is given by

f eq
q = ϕΓq + wqc

−2
s M

[
4

ξ
ϕ(1− ϕ)

]
eq ·

∇ϕ

|∇ϕ|+ ε
, (9)

where

Γq = wq

[
1 +

eq · u
c2s

+
(eq · u)2

2c4s
− u · u

2c2s

]
, (10)
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cs is the speed of sound in the system, and wq denotes the equilibrium weights associated with
the LB model. The mobility M is given by the relaxation time as

M = c2s

(
τϕ −

1

2

)
(11)

and ε = 10−16 is a small number to avoid division by zero. The value of the phase-field ϕ is
computed as

ϕ =

Q−1∑
q=0

fq. (12)

In this work, we use the D3Q19 LB model with Q = 19 velocities and corresponding
weights wq as given in [7], with cs = 1/

√
3. Equation (8) is solved using a standard collision-

streaming scheme.
The computation of the gradient ∇ϕ is discussed in Section 2.3.3.

2.3.2. LBE for the hydrodynamic equations

To solve the Navier-Stokes equations (4)–(5), we adopt a velocity-based lattice Boltzmann
method (LBM) originally proposed by Zu and He [45], which was further enhanced by Fakhari
et al. [10]. This method improves the representation of incompressibility and momentum con-
servation, especially for multiphase flows with large density and viscosity contrasts.

Momentum-based model [9]:
In traditional momentum-based LB models, the distribution function fα is designed so that its
first moment yields the momentum ϱu. These models typically require solving for pressure and
velocity simultaneously, and often suffer from challenges in numerical stability and efficiency
at high density ratios. They also frequently employ force coupling techniques (e.g., Guo forcing
scheme) and necessitate predictor-corrector steps.

Velocity-based model [10, 45]:
In contrast, the velocity-based model defines a modified distribution function gα, whose first
moment directly recovers the macroscopic velocity u (by normalizing with density ϱ). This
decouples pressure from velocity, simplifies the collision operator (especially in multiple relax-
ation time schemes), and significantly improves numerical stability. Fakhari et al. [10] intro-
duced further enhancements including:

• a conservative phase-field model for interface tracking,
• simplified nonlocal dependencies (only phase-field is nonlocal),
• avoidance of biased difference schemes, ensuring mass and momentum conservation.

Extension introduced in this work:
Building on this framework, we further enhance the model by adding forcing terms, see (14), to
recover the correct pressure and viscous stress components. Our approach also integrates addi-
tional correction terms to ensure that the pressure and stress tensors in the macroscopic Navier-
Stokes equations are accurately reproduced. Specifically, by scaling the distribution function g
with ϱ, the velocity becomes the first moment rather than momentum – this eliminates the need
for density normalization post-processing and facilitates handling of incompressible regimes
more accurately. This improved formulation, thus, bridges the benefits of velocity-based ap-
proaches with a more physically consistent force incorporation scheme, enabling robust sim-
ulations of complex multiphase systems with curved boundaries and high contrast in material
properties.
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Here, we present a scheme using a single relaxation time (SRT) model for the collision
operator, but in Appendix A, the method is extended to a multiple relaxation time (MRT) model
for improved accuracy and stability. The SRT model was used except where noted below.

The lattice Boltzmann equation for hydrodynamics is, thus, assuming ∆t = 1,

ḡq(x+ eq, t+ 1) = ḡq(x, t) +
1

τ

(
ḡeq
q (x, t)− ḡq(x, t)

)
+ Fq(x, t), (13)

where ḡq is the modified distribution function, τ is the local relaxation time, and the forcing
term is

Fq = wq
eq · F
ϱc2s

. (14)

The modified equilibrium distribution function is

ḡeq
q = geq

q − 1

2
Fq and geq

q = p∗wq + (Γq − wq), (15)

where p∗ = p/ϱc2s is the normalized pressure. The local fluid density ϱ is computed using the
phase-field as

ϱ = ϕϱH + (1− ϕ)ϱL, (16)

where ϱH and ϱL are the densities of the heavy and light fluid, respectively.
As remarked in [10], the implementation of the forcing term (14) is accurate to leading

order, while Guo et al. [15] and He et al. [18] give more accurate forcing schemes. However,
as in [10], we have also compared our results to results using higher-order forcing schemes and
noticed no difference.

For the velocity-based scheme, two additional force terms, Fp and Fη, are added in order to
achieve correct pressure and viscous forces [45]. The total force is, therefore,

F = Fs + Fb + Fp + Fη, (17)

where
Fp = −p∗c2s∇ϱ, Fη = ν

(
∇u+ (∇u)T

)
· ∇ϱ. (18)

The viscous force is implemented as in [10] as

Fη,i = − ν

τc2s

d∑
j=1

[
Q∑

q=1

eqieqj(ḡq − geq
q )

]
∂ϱ

∂xj

, (19)

where we note that the density gradient is computed according to (16) as

∇ϱ = (ϱH − ϱL)∇ϕ. (20)

The relaxation time τ is related to the local kinematic viscosity as

ν = c2s

(
τ − 1

2

)
(21)

and is determined locally by linear interpolation of the dynamic viscosity η = ϱν as

η(ϕ) = ϕηH + (1− ϕ)ηL, (22)
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and then using (21) to compute τ . In Section 3.5, we also compare different methods to inter-
polate and compute τ .

The hydrodynamic velocity and scaled pressure are calculated as

p∗ =

Q−1∑
q=0

ḡq, u =

Q−1∑
q=1

ḡqeq +
F

2ϱ
, (23)

where the pressure is computed first and used in the computation of F .

2.3.3. Computation of gradients

The gradient ∇ϕ in (9) and (20) is generally computed by an isotropic central finite difference
scheme (see, e.g., [22])

∇ϕ(x, t) ≈ 1

2c2s

Q−1∑
q=1

wqeq (ϕ(x+ eq, t)− ϕ(x− eq, t)) . (24)

However, when using the velocity-based approach for high density ratios, there is a problem
with this scheme to compute gradients. This is because the correct computation of the pressure
term in (5) depends on the cancellation of two terms, namely (after dividing the equation with ϱ)

−1

ϱ
∇p = −1

ϱ
∇(ϱc2sp

∗) = −p∗c2s∇ϱ

ϱ
− c2s∇p∗, (25)

where the first term is Fp/ϱ, which is the actual pressure force added to the scheme by (14), and
the second stems from the lattice Boltzmann scheme, see [45]. A similar situation holds for the
viscous force term (18)2. It is therefore important that the vector ∇ϱ/ϱ is computed accurately.
When using (24) to compute this quantity, ∇ϕ is multiplied with (ϱH − ϱL)/ϱ, which is large
where ϱ is small, which is the case in the light phase if the density ratio is high (regardless of the
value chosen for ϱH). Any numerical errors in the finite difference scheme (24) are therefore
amplified. In Fig. 1, the errors in ∇ϱ/ϱ across the phase interface at a density ratio of 1 000 are
clearly seen.

We therefore propose to instead use the fact that ∇ log ϱ = ∇ϱ/ϱ and use the scheme

∇ϱ

ϱ
(x, t) ≈ 1

2c2s

Q−1∑
q=1

wqeq [log ϱ(x+ eq, t)− log ϱ(x− eq, t)] . (26)

From Fig. 1, it is obvious that this approach improves the accuracy significantly. The difference
in maximum error is almost an order of magnitude. The gradient of the phase-field, needed in
(9) can then be computed as

∇ϕ =
ϱ

ϱH − ϱL
∇ log ϱ. (27)

Clearly, this equation can not be used if the density ratio is 1, and ϱH = ϱL, but then the common
gradient scheme (24) is accurate and should be used instead.

The Laplacian of the phase field is also needed in order to compute the chemical potential (6)
and can be computed from the relation

∆ log ϱ = ∇ ·
(
∇ϱ

ϱ

)
=

∆ϱ

ϱ
− |∇ϱ|2

ϱ2
(28)
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Fig. 1. The values for ϱ′/ϱ, where ϱ′ ≡ ∇ϱ, computed for the equilibrium profile (2) with a density ratio
of ϱH/ϱL = 1000 and interface width ξ = 5, using finite differences of log ϱ (marked as ”×”, equa-
tion (26)) and the phase-field ϕ (marked as ”◦”, equation (24)). The solid line shows values computed
with a high-resolution finite difference scheme

and of course, ∆ϱ = (ϱH − ϱL)∆ϕ. The Laplacian ∆ log ϱ is computed using isotropic finite
differences as [22]

∆ log ϱ(x, t) ≈ 1

c2s

Q−1∑
q=1

wqeq [log ϱ(x+ eq, t)− 2 log ϱ(x, t) + log ϱ(x− eq, t)] . (29)

Note that both finite difference formulas, (26) and (29), may be simplified to loop over only half
the velocities and to evaluate the central value only once, for speedup.

This optimization leverages the symmetry of the lattice directions (e.g., eq and −eq) to
reduce redundant computations. Each pair of opposite directions contributes symmetrically to
the gradient or Laplacian, allowing the loop to run over half the stencil without loss of accuracy.

The quantity log ϱ can therefore be chosen as the non-local quantity instead of ϕ for the pur-
pose of computing gradients. However, the value of ϕ may still need to be saved as an auxiliary
scalar for the purpose of implementing boundary conditions for the phase-field equation (see
Section 2.4). It should also be noted that computing the logarithm is a rather costly operation
and will affect the computational efficiency of the scheme. We have not performed a study of
this, as it will be implementation dependent, but we see a reduction in the number of lattice
updates per second by around 10 % when using the logarithm-based gradient, for a not very
optimized code.

2.3.4. Interpolation of viscosity

The choice of interpolation method for the phase-field dependent viscosity η(ϕ) is of major
importance for the accuracy of the numerical scheme, especially at high density ratios. This
is because the surface tension force Fs is significant only in the transition region between the
phases, which is also where the viscosity changes. Additionally, in the LBM setting, the dy-
namic viscosity η is determined through the kinematic viscosity, which is in turn related to

28



M. Benioug / Applied and Computational Mechanics 19 (2025) 21–48

the relaxation time τ through (21), which determines the stability of the simulation. Thus, the
relation

η(ϕ) = ϱ(ϕ)c2s

(
τ(ϕ)− 1

2

)
(30)

relates the interpolation schemes for η, ϱ and τ . It is obvious here why the density ratio influ-
ences the interpolation accuracy.

The natural choice for interpolation of ϱ is the linear interpolation (16) and we have not
considered other interpolation schemes. However, for the interpolation of η, several choices are
possible, in addition to the linear interpolation (22), which is our default choice. To get high
accuracy across the interface, a sharp jump in η may be considered, given by

η(ϕ) =

{
ηH ϕ ≥ 0.5,

ηL ϕ < 0.5.
(31)

However, this has the disadvantage of being unstable in many cases due to the sharp gradients.
Another possible scheme is the harmonic interpolation of η,

η(ϕ) =

[
1

ηH
ϕ+

1

ηL
(1− ϕ)

]−1

, (32)

which favors low viscosity values.
Through (30), it is also possible to instead interpolate the relaxation time τ , as has been

done in the literature, see, e.g., [22, 25]. One approach is to use a linear interpolation of the
relaxation time

τ = ϕτH + (1− ϕ)τL, (33)

while another approach is to use a harmonic interpolation of kinematic viscosity, which amounts
to

1

τ − 1
2

=
ϕ

τH − 1
2

+
1− ϕ

τL − 1
2

. (34)

While the effect of different choices have been discussed previously [10, 22, 25], all these
choices have not been compared for high density ratios. In Fig. 2, we therefore plot the resulting
dynamic viscosity and relaxation time for different interpolations, at density ratio 1 000 and
dynamic viscosity ratio 100, which is close to a water-air system. The effects on accuracy in
certain test cases is discussed in Sections 3.3 and 3.5.

It is clear from Fig. 2a that the linear interpolation of τ , see (33), creates a region of artificial
high viscosity across the interface. The harmonic interpolation of τ , see (34), does the same,
although less notably so, while harmonic interpolation of η results in lower viscosity over a
wide range. On the other hand, Fig. 2c shows that sharp and harmonic η interpolations (31)
and (32) result in very low values for τ at the interface (minimum value about 0.501 and 0.502,
respectively), which may cause stability problems.

2.4. Boundary conditions

For the hydrodynamic equations, we use simple bounce-back boundary conditions to implement
no-slip boundary conditions on the boundaries. It would be straight-forward to implement
any other standard boundary-conditions with higher accuracy, see, e.g., [14, 30]. Although
this would lead to consistent localization of the boundary in the hydrodynamic and phase-field
equations, which is desirable, it is not likely to influence the results presented here appreciably.
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(a) (b)

(c)

Fig. 2. (a) Dynamic viscosity η(ϕ), (b) reciprocal of dynamic viscosity 1/η(ϕ), and (c) relaxation time τ
across the phase interface assuming the equilibrium profile (9) using the different interpolation schemes:
equation (31) (thick solid), equation (21) (dashed), equation (32) (dash-dotted), equation (33) (dotted),
and equation (34) (solid). The x-axis represents the distance along the normal direction to the interface

For the phase-field equation, we need to implement the boundary condition (3), which is
a non-linear Robin-type boundary condition. The scheme is different from the one used by
Fakhari and Bolster [9] for the Allen-Cahn equation in 2D in that a central difference is always
used across the boundary to derive the boundary scheme and that there is an explicit equation
for the unknown quantity.

The problem, as always for lattice Boltzmann boundary conditions, is to assign proper val-
ues to the incoming populations coming from a lattice node located just outside the domain.
In Fig. 3, these nodes are marked as ”◦” and we refer to them as ghost nodes. In addition, the
boundary conditions need to supply values for the computation of the gradient and Laplacian
of the phase field across the boundary, which are computed by finite differences using (26) and
(29), respectively.

In order to preserve mass exactly, we use half-way bounce-back boundary conditions for the
incoming populations, i.e.,

f ∗
q (xg) = f ∗

q̄ (xf ), (35)
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(a) (b)

Fig. 3. Two examples of boundary configurations, shown in 2D for clarity. In (a), values in grid nodes
can be interpolated to the mirror point xm, while in (b), extrapolation is required as the interpolation
nodes would need to be outside the domain. One of the ghost nodes is denoted xg and is marked with
an empty circle. The corresponding mirror point, at a distance 2δ from xg, is marked with a filled circle,
and the grid nodes used for interpolation/extrapolation are marked with crosses

where the lattice velocity cq intersects the boundary from the ghost node xg, cq̄ is the opposite
grid velocity, xf = xg+cq and f ∗ is the post-collision distribution. It should be noted that while
for the diffusion equation, bounce-back conditions are inaccurate since they force not only a
zero normal flux but also a zero tangential flux [13], this is not a major issue here because the
flux is

j = M

[
∇ϕ− 4

ξ
ϕ(1− ϕ)

∇ϕ

|∇ϕ|

]
(36)

and is identically zero for the equilibrium profile (2).
However, to compute the finite differences correctly, an accurate value of the phase field

ϕ must be computed at the ghost node, using the boundary condition. Using the outward unit
normal n, the mirror image of the ghost node xg can be computed as

xm = xg − 2δn,

where δ is the distance from the ghost node to the boundary along the normal direction. The
normal derivative in (3) is now approximated by a central finite difference as

∂ϕ

∂n

∣∣∣∣
x=xb

≈ ϕ(xg)− ϕ(xm)

2δ
, (37)

which is second order accurate. The right hand side of (3) is evaluated at ϕ = ϕ(xb) ≈ (ϕ(xg)+
ϕ(xm))/2. Using these approximations yields a quadratic equation for ϕ(xg) with the solution

ϕ(xg) =
1

a

[
a− 1 +

√
(a− 1)2 + 4aϕ(xm)

]
− ϕ(xm), (38)

where a = 4δ/ξ.
All that now remains is to correctly estimate the value of ϕ at the mirror point xm, which

is done by interpolation. We can use four lattice nodes in a ”tripod” (three in 2D) for linear
interpolation, as indicated in Fig. 3. We label these x0 and xi = x0 + siei, i = 1, . . . , d, where
si ∈ {−1, 1}, depending on the orientation of the ”tripod” and d is the number of dimensions.
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The node x0 is chosen as the fluid node closest to xm and the xi are chosen as close as possible
to xm. The problem is that in some configurations, such as in Fig. 3b, we need to extrapolate to
get the value at the mirror point, which may cause instabilities because the extrapolated value of
ϕ may be below 0. To circumvent this, we use an additional quadratic term in the interpolation
polynomial, which becomes

h(x) = α0 +
d∑

i=1

αi(x− x0)i + αn [n · (x− x0)]
2 . (39)

As an extra condition to determine the coefficient αn, we use the boundary condition (3), in the
linearized form

∂nh(xb) = G
(
h(xb)

)
≈ G(h(x0)) +G′(h(x0)

)(
h(xb)− h(x0)

)
, (40)

where in our case G(ϕ) = 4
ξ
ϕ(1− ϕ). Inserting the polynomial (39) into the condition (40) and

using the natural interpolation conditions h(xi) = ϕ(xi), i = 0, . . . , d, we can solve for the
coefficients to get

α0 = ϕ(x0), (41)

αn =

G(α0)−
d∑

i=1

si(ϕ(xi)− ϕ(x0))vi

(2−G′(α0)n · x̂b) (n · x̂b)−
d∑

i=1

sin2
i vi

, (42)

αk = sk
(
ϕ(xk)− ϕ(x0)

)
− skαnn

2
k (43)

for k = 1, . . . , d, where we have set x̂b = xb − x0 and v = n−G′(α0) x̂b.

3. Numerical results

To illustrate and evaluate the accuracy and applicability of our model, several numerical tests
were performed. Unless otherwise noted, parameters corresponding to a water-air system at
20◦ C were used, namely ϱH/ϱL = 831 and ηH/ηL = 55. The mobility was M = 0.02 in all
cases. The value M = 0.02 was chosen to have a compromise between guaranteeing numerical
stability and obtaining a reasonable speed of evolution of the interface. This value guarantees
that the interface evolves neither too fast (which could cause instability) nor too slowly (which
would be inefficient) corresponding to the relaxation time τϕ = 0.56, and the interface width
was chosen to be ξ = 5. The parameters ϱH = 1 and τL = 1.0 were used (with τH com-
puted from the density ratio), and the surface tension was set to σ = 10−3 unless otherwise
stated. Note that the surface tension parameter used in the simulations is dimensionless and
defined in lattice units. Its physical counterpart can be recovered via the conversion relation
σ = CϱC

3
L/C

2
t σ̃, as detailed in Appendix B. For reference, the typical surface tension between

water and air under ambient conditions is σ̃ = 0.072N m−1.
Below, we first examine the volume preservation and accuracy of boundary conditions by

comparing to analytical steady-state solutions for droplets on a flat surface and a sphere. Then,
the accuracy of the present method is compared to previous velocity-based [10] and momentum-
based [9] methods for layered flows and a stationary meniscus in a cylindrical capillary. Finally,
the dynamics of capillary flows in a cylindrical capillary is studied.
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Fig. 4. The contact angle θ between a droplet and a flat surface as well as the height h and equilibrium
radius R = Req of the droplet

3.1. Case 1: Droplet on a flat surface

In this test case, a spherical droplet was placed on top of a flat surface with an initial contact
angle of 90◦, while the contact angle θ was set to a different value. The droplet then instantly
moves to balance the system by minimizing its energy to the solid-air, solid-liquid and liquid-air
interfaces. This is mainly achieved by minimizing the surfaces between the liquid and the other
phases, while keeping the correct contact angle. This state is reached when the forces acting on
the triple line solid-liquid-air are in equilibrium. In the absence of gravity, the only mobilizing
factor is interfacial tension. A computational domain 220 × 220 × 100 was used. The initial
radius of the droplet, on a neutrally wetting surface was R0 = 40 in lattice units. Periodic
boundary conditions were imposed in the x- and y-directions and a symmetry condition was
imposed in the z-direction. The bounce-back method was used to satisfy the no-slip boundary
condition at the wall solid surface and the boundary conditions described in Section 2.4 were
applied for the phase field.

In order to validate the numerical accuracy of our model, a comparison was made to the
analytical relationship between the contact angle θ and the height h, Fig. 4.

Consider the droplet shown in Fig. 5a. To minimize its surface energy, the droplet adopts a
shape of a spherical cap (since no gravitation is present), which can be seen as part of a sphere
of radius R, which is intersected by a plane. The height of the droplet is h = R− R cos θ. The
initial droplet is a half sphere, and thus, its volume is

V0 =
2

3
πR3

0. (44)

To determine R, a relation is needed to link the volume V of the spherical cap, the contact angle
θ and R, namely

V = π

R∫
R−h

(R2 − x2) dx = . . . = π

(
hR2 − h3

3

)
=

π

3
R3

(
2− 3 cos θ + cos3 θ

)
. (45)

Assuming the volume of the droplet is conserved, the radius R can be expressed in terms of the
volume V = V0 and the angle θ as

R =

[
V0

π
3
(2− 3 cos θ + cos3 θ)

] 1
3

=

(
2

2− 3 cos θ + cos3 θ

) 1
3

R0. (46)
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Fig. 5. (a) Initial position of the droplet, (b) at θ = 30◦, (c) at θ = 60◦, (d) at θ = 120◦, (e) at θ = 150◦,
(f) comparison between numerical and analytic relationships

Computations were performed at several contact angles as shown in Fig. 5b–e. Fig. 5e shows a
good agreement between the numerical results and the analytical solution for a large range of
contact angles from 15◦ to 170◦. The results are almost identical for both values of the surface
tension coefficient σ = 10−3 and σ = 10−2 except for the extreme values 15◦ and 170◦ where
the results are more precise for σ = 10−3. The maximum error is at θ = 15◦, where the relative
error is about 35 % for σ = 10−3. At θ = 30◦, however, the relative error is down to about 3 %.
In the rest of the simulations, we use the value σ = 10−3.

3.2. Case 2: Droplet on a spherical surface

In this test case, the accuracy of our model was investigated on a curved surface by placing a
droplet on a solid sphere. The computational domain was [0, L]× [0, L]× [0, 2L]. The center of
the solid sphere, which had a radius Rs = 0.3L, was located at (L/2, L/2, L/2) and the droplet
initially formed a sphere with radius R0 = Rs centered at (L/2, L/2, L/2+Rs). This means the
initial contact angle was 60◦. If a different contact angle θ is chosen for the boundary condition,
the droplet will move on the solid surface and stop when it reaches the state of thermodynamic
equilibrium. In its final state, the droplet can be represented as shown in Fig. 6. We assume that
the droplet is axisymmetric and we neglect the effects of external forces, such as gravity.

Since the droplet volume is conserved, the final radius R of the droplet changes as the
contact angle θ on the spherical substrate is altered. For a given spherical substrate with radius
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Fig. 6. Schematic illustration of the contact angle between a droplet and a solid sphere

Rs, the volume V of the droplet having a contact angle θ and a radius R is given by

V =
1

3
πR3

(
2 + 3 cos β − cos3 β

)
− 1

3
πR3

s

(
2− 3 cosα + cos3 α

)
, (47)

where from the geometric relations shown in Fig. 6, we have cosα = R2
s + c2 −R2/(2Rsc),

Rs sinα = R sin β, and cos β = R2 + c2 −R2
s/(2Rc) with c =

√
R2 +R2

s −RsR cos θ and
β + θ0 = π. By substituting the geometric relations into (4), the final droplet radius R can
be determined as a function of the droplet volume V and θ. First, the mesh dependency of
our numerical results was investigated. Three alternative meshes were considered for this pur-
pose L = 50, 100, and 200. Periodic conditions were introduced at the boundaries in x- and
y-directions. The results after reaching a steady state are illustrated in Fig. 7 for two con-
tact angles, corresponding to a hydrophilic (θ = 30◦) and a hydrophobic (θ = 150◦) surface.
As Fig. 7 shows, we can see that the interface of the droplet is almost identical for meshes
100× 100× 200 and 200 × 200 × 400. Therefore, we use the 100 × 100 × 200 mesh for the
rest of the simulations in this section. This choice is validated by the mesh convergence study
in Fig. 8, which involved the use of five mesh configurations of the type Nx×Nx× 2Nx, where
Nx takes the values 50, 100, 150, 200, and 250. The process entailed calculating the droplet
height for each mesh to ensure the accuracy and stability of the simulation. By analyzing the

Fig. 7. Grid independence of the results for a droplet on a spherical surface solid. Comparison be-
tween three resolutions for cross-sections through the center of the domain: 50× 50× 100 (blue curve),
100× 100× 200 (green curve), and 200×200×400 (red curve) with θ = 30◦ (left) and θ = 150◦ (right)
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Fig. 8. Grid independence of the results for a droplet on a spherical surface solid. Comparison between
five mesh at two contact angles θ = 30◦ and θ = 150◦

results, the appropriate mesh size was selected based on its ability to capture the droplet height
with minimal computational error and sufficient precision.

Fig. 9 shows results for several different contact angles. A comparison between the nu-
merical and analytical values of the maximum height of the droplet was made. The maximum
height of the droplet h is the distance between the top of the droplet and the center of the solid
sphere as shown in Fig. 6, h = c + R. The wetting/dewetting of the droplet was simulated at
seven different surface conditions ranging from hydrophilic to hydrophobic with contact angles
values from 15◦ to 150◦, as shown in Fig. 9a–e.

Fig. 9f shows the dimensionless value of the droplet height h/Rs depending on the contact
angle. These results show a good agreement with the analytical solution. The maximum error is
at θ = 30◦, and it is about 3 %, though at θ = 15◦ the contact line shows evidence of distortion
and local errors.

3.3. Case 3: Layered Poiseuille flow between parallel plates

The region between two parallel plates, y ∈ [0, L], was divided equally between the heavy
and light fluids by setting ϕ(y) = ϕ0(y − L/2), according to (2) (with v = ŷ). This results
in the heavy fluid occupying the lower half of the channel (y ∈ [0, L/2]) and the light fluid
occupying the upper half (y ∈ [L/2, L]). This setup corresponds to a classical gravity-driven
two-phase Poiseuille flow configuration, commonly used to assess the accuracy of multiphase
lattice Boltzmann models.

A body force was applied in the x-direction to drive the flow between the plates and periodic
boundary conditions were applied in the x- and z-directions. The simulations were run in a
2(L + 1) × (L + 1) × (L + 1) domain, with L = 84 and bounce-back boundary conditions
were applied on the parallel plates (the contact angle is not important here). Two options were
investigated for the body force: 1) Fb = F0x̂, with F0 = 5 × 10−8, similar to [25], and
2) Fb = ϱ(ϕ)F0x̂ with F0 = 10−6, similar to [10]. The density ratio is here ϱH/ϱL = 1000 and
the viscosity ratio is ηH/ηL = 100 to enable direct comparison with these references.

The velocity profiles for the first case are shown in Fig. 10. The numerical results using the
present method are compared to the velocity-based method from [10] and the moment-based
method from [9] as well as the analytical solution with a sharp change in dynamic viscosity,
see [25], and a reference high-resolution finite difference solution using the linear interpolation
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Fig. 9. The final position of a droplet on a spherical surface for different contact angles: (a) initial
position of the droplet with θ = 60◦, (b) with θ = 30◦, (c) with θ = 90◦, (d) with θ = 120◦, (e) with
θ = 150◦, (f) comparison between numerical and analytical values for the relative height h/R, defined
as shown in (a)

of η in (22). It is clear that the interpolation of the viscosity in the interface region has major
impact on the solution. In order to understand the results, it is useful to note that the analytical
solution for the velocity is

ux(y) =

y∫
0

C − F0ŷ

η(ϕ(ŷ))
dŷ, (48)

where C is an integration constant determined by the boundary conditions. Without computing
the integral, it is easy to see that the value of 1/η will determine the velocity profile. In Fig. 2b,
it is seen that when using linear interpolation of viscosity, the value of 1/η is too low in a wide
part of the low viscosity region. This is the cause of the deviation from the analytical solution
in Fig. 10. This can be partly remedied by using harmonic interpolation of η, which results in
more accurate results in Fig. 10, but using MRT collisions (see Appendix A) due to stability
problems with the low τ seen in Fig. 2c. The most accurate results are of course obtained with
a sharp interpolation, but as noted above, this causes stability problems.

In the region of light fluid it is clear that the present method performs better than the other
LB methods, while in the heavy fluid the moment-based method agrees best with the finite
difference solution. The present method performs better than the velocity-based method in both
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(a)

(b)

Fig. 10. Velocity profiles for flow between parallel plates driven by a constant body force Fb = F0x̂,
with density ratio 1 000 and viscosity ratio 100. The heavy fluid is on the left of the domain and the
light fluid on the right. The numerical results for the present and previous methods, using linear (21) and
harmonic (32) interpolation of viscosity, are compared to the analytical solution found in [25], using a
sharp jump in dynamic viscosity, (dashed) and a high resolution finite difference solution using harmonic
interpolation of viscosity (solid line). The whole domain is shown in the top figure, showing accuracy in
the light phase, while the bottom figure is zoomed in on the heavy fluid region. All profiles correspond
to the steady-state solution, after the velocity field has fully developed

regions, showing the importance of the improved accuracy in the gradient computations. The
present method agrees well with the analytical solution in the heavy fluid, but it is unclear if
this is a coincidence.

The velocity profiles for the second case with a density-dependent force are shown in Fig. 11
and are compared to a high-resolution finite difference solution using linear interpolation of
density and dynamic viscosity. As was also noted by Fakhari et al. [10], the moment-based
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Fig. 11. Velocity profiles for flow between parallel plates driven by a force proportional to the density
(like for example a gravitational force). The results from the lattice Boltzmann methods are compared
to a high-resolution finite difference solution. All results use the linear interpolation of viscosity (21),
except where the harmonic interpolation (32) is used (triangles). The fluid with high density and viscosity
is on the left. The density ratio is 1 000 and the viscosity ratio is 100

method computes an erroneous solution in the heavy fluid and in the interface region. The
present method and the velocity-based method [10] produce very similar results, which are very
close to the finite difference solution. Note that using the harmonic interpolation (32) results in
a bump in the solution due to mismatch between density and viscosity in the transition region.

In Fig. 12, the results of a convergence study for the two forcing cases are shown. The
number of grid points N was varied while keeping the Cahn number Cn = ξ/N constant. For
case 1 with constant force, the harmonic viscosity interpolation (32) and Cn = 5/42 were used
with an MRT scheme with τl = 2.0 (to avoid instabilities due to low values of τ in the transition
region). For case 2, the linear interpolation (21) and Cn = 4/42 were used with the SRT
scheme with τl = 1.0. The density ratio was 1 000 and the viscosity ratio 100. The resulting
velocities ux were compared to a very high resolution finite difference solution uFD

x and the
relative L2-norm of the error was computed as

||δu||2 =

√
N∑
i=1

(
ux(yi)− uFD

x (yi)
)2

√
N∑
i=1

(uFD
x (yi))2

. (49)

The present method using the gradient computations in Section 2.3.3 was compared to the orig-
inal velocity based method by Fakhari et al. [10]. The results show second-order convergence
in all cases (contrary to the results in [10]), but with significantly lower errors for the present
method (by a factor of 15 and 6, respectively, for the two cases). This shows the importance of
the logarithm-based gradient computations to improve the accuracy at high density ratios.
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Fig. 12. Convergence study for the flows between parallel plates with a constant force (squares, solid
lines) and density-dependent force F = ϱ(ϕ)F0 (circles, dashed lines), at density ratio 1 000 and viscos-
ity ratio 100. Results for the present scheme, using the gradient computations in Section 2.3.3, (hollow
markers) are compared to the original velocity-based scheme (filled markers). Lines are fits in log-log-
scale with indicated slopes. See text for more details

3.4. Case 4: Stationary meniscus in a cylindrical capillary

Next, we investigate the equilibrium shape of a capillary meniscus in a cylindrical tube. The
meniscus at the liquid front adopts a curved shape due to the contact angle θ = 30◦, resulting in
a pressure difference across the meniscus according to the Young-Laplace relation

∆pc =
2σ cos θ

R
, (50)

where σ is the surface tension (here, σ = 0.001) and R = 15 is the radius of the cylinder. In
order to make the meniscus stationary, a counter-acting body force Fb = −∆pc/L was applied,
where L = 100 is the length of the cylinder. A constant pressure, p = 0, was applied at
both ends together with boundary conditions ϕ = 1 and ϕ = 0 at the left and right ends of
the cylinder. To correctly simulate, this system requires accurate boundary conditions to get
the correct spherical shape of the meniscus, in combination with a correct computation of the
chemical potential and pressure gradient. An incorrect pressure drop or capillary force will
cause the interface to drift with time, and thus, this test case is an overall indication of the
accuracy of the simulation of capillary flows.

In Fig. 13a and 13b, the stationary pressure profiles and velocity profiles along a line through
the center of the cylinder are shown, respectively. The pressure profiles are compared to an an-
alytical profile with a slope given by Fb and a jump across the meniscus given by (50). The
momentum-based method produces the best results, with a very low spurious velocity, while
the velocity-based method deviates strongly in the pressure gradient in the heavy fluid, which
causes a high spurious velocity and makes the meniscus move with time, which is seen by that
the location of the pressure jump is to the right of the other profiles. The present method im-
proves the situation through a more accurate computation of forces, resulting in a more accurate
pressure profile and much lower spurious velocity, although the moment-based method is still
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(a) (b)

Fig. 13. Results for the simulation of a stationary meniscus in a cylindrical capillary: (a) the pressure
profiles along a line through the center of the cylinder, compared to the pressure profile computed with
a slope given by the body force Fb and a jump across the meniscus given by the Young-Laplace rela-
tion (50), and (b) the x-velocity profiles along the same center line (ideally, they should all be zero)

more accurate. Note that for all methods, there are local vortices formed close to the meniscus,
which cause the peaks in the velocity profiles along the center line.

What is not seen very clearly in the figure is that the moment-based method yields a different
average velocity in the light phase compared to the heavy phase, thus violating the incompress-
ibility condition (4). The velocity-based methods on the contrary yield similar velocities in
the two phases, except for a region close to the interface. This effect is also seen in dynamic
simulations.

3.5. Case 5: Capillary flow in a cylinder

Capillary rise of a liquid into circular cylindrical capillaries is a standard and widely studied
problem with very well documented experimental results [34,38]. Nevertheless, there are many
challenges for the correct simulation of this system, including dynamic contact angles depen-
dent on boundary conditions and velocity, initial effects, etc. The Poiseuille law expresses the
balance between viscous forces and capillary and hydrostatic forces (neglected inertial effects),
resulting in the equation

4

R
[ηlh+ ηg(L− h)]

dh

dt
= σcos(θ) (51)

for the height h reached by the liquid front at time t. L is the height of the cylinder, R is the
radius of the cylinder, ηl is the liquid viscosity, ηg the gas viscosity, σ is the surface tension, and
θ is the equilibrium contact angle. If the viscosity of the gas is neglected, integration of (51)
leads to the well-known Washburn’s equation

h(t)2 − h2
0 =

σR cos(θ)

2ηl
t (52)

with the initial height h0 = h(t = 0). In our case, with the viscosity ratio 55 and a rather short
cylinder, the gas viscosity can be safely neglected.
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Fig. 14. Geometrical set-up of the simulation. The 3D geometry is divided into three parts. The left
and right parts colored blue are filled by liquid and in the middle there is initially gas. The left and right
part has periodic boundary conditions at all sides. In the middle, there is the true capillary cylinder: The
boundary conditions are those of a solid wall with a given contact angle. Periodic boundary conditions
are also imposed at the inlet and outlet sides.

The experimental results do not correspond to those found by (52). This difference is due to
the assumption that the meniscus is spherical in shape and that the contact angle remains con-
stant during fluid penetration into the tube. Several experimental studies have been performed
to improve the prediction of the displacement of the liquid interface. All these studies show a
change in the contact angle during the process of displacement due to a change in the velocity
of the meniscus [5, 20, 34] and with a very different value compared to the static angle.

To validate the accuracy of our model, a comparison was made with the velocity-based
method [10] and the momentum-based method [9], as well as with (52). The geometry used
is depicted in Fig. 14. The computational domain was [0, 4l] × [0, l] × [0, l], where l = 50. A
horizontal cylindrical capillary of radius R = 0.3l was centered at x = 50, y = l/2, z = l/2
with height L = 2l. Initially, the region between x = 64 and x = 188 was filled with gas and
the rest was filled with fluid. At the walls of the capillary cylinder, no-slip boundary condi-
tions and a given static contact angle were imposed. Outside the cylinder, periodic boundary
conditions were imposed at the top, bottom and lateral surfaces in order to mimic an infinite
reservoir. Periodic boundary conditions were also imposed at the inlet and outlet to ensure total
conservation of mass inside the system.

Measurements of the meniscus dynamic contact angle were made by using the approach
from Siebold et al. [37]. In their experimental study, the authors assumed that the meniscus was
a portion of sphere and used the following equation to compute the contact angle:

θd =
π

2
− 2 arctan

(
2xm

d

)
. (53)

Here, xm is the height and d is the diameter of the meniscus (d = 2R). This method was used
to compute the dynamic contact angle from our numerical results.

Fig. 15a–c show the height h reached by the liquid front as a function of time. The present
method is compared with the velocity based and the momentum based methods for a range of
different equilibrium contact angles θd. The solid straight line shows the profile of the theoret-
ical solution (52), for a value of θ equals to the final value of θd calculated by (53). We can
see a good agreement with the theoretical results for all methods, for all the contact angles, at
late times. Many studies [29, 38] have reported that at the start of the wicking process, it takes
time to form the meniscus in a capillary tube and the inertial effects are important. Here, the
simulation is started with a flat surface, so the Washburn equation (52) is valid only after some
time. This may explain the deviations at early times.
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(a) (b)

(c) (d)

Fig. 15. (a)–(c) Comparison of the height of the meniscus in the cylindrical capillary between the nu-
merical solutions and the theoretical solution (solid lines): (a) θ = 30◦, (b) θ = 45◦, (c) θ = 70◦, and
(d) effect of the relaxation time using different interpolation schemes

The results for the capillary flow using different methods for interpolation of dynamic vis-
cosity (see Section 2.3.4) are shown in Fig. 15d. Both (33) and (34) yield an underestimation of
the velocity. In Fig. 2, the dynamic viscosity across the phase interface is plotted for the three
interpolation methods. It is clear that both (33) and (34) result in a region of high viscosity
which extends into the low viscosity region (x > 0). Especially using equation (33) results in
a region with an artificially high viscosity, several times higher than the viscosity of the most
viscous fluid, which implies, in agreement with (51), an underestimation of the liquid velocity.

4. Conclusions

In this work, we propose a phase-field lattice Boltzmann model for simulation of immiscible
fluids at high density ratios in three space dimensions. An accurate method has been proposed
for prescribing the three-phase contact angle on curved boundaries and improvements have been
made to the velocity-based model by Fakhari et al. [10] to achieve higher accuracy.
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The first two test cases of droplets on flat and curved surfaces show the accuracy of the
boundary conditions and the volume conservation of the model. Simulations are accurate at
least in a range of contact angles from 30◦ to 150◦. Outside this range the simulations are still
stable, but there seems to be room for improvement on the boundary conditions for the phase-
field equations. The simulations of flow between parallel plates show, as was known before,
that the momentum-based model performs very badly at high density ratios. Additionally, we
see improvements in accuracy using our model compared to the previous velocity-based model.

For the test case of a stationary meniscus, the moment-based method is most accurate in
computing the pressure jump across the meniscus, and therefore yields the most stationary
meniscus. While our proposed method improves the accuracy of the velocity-based model
significantly, it is still not as accurate as the momentum-based method for this test case. Finally,
for the dynamic capillary flow, the differences between the three methods are small and they all
agree with theory after some time, provided a suitable dynamic contact angle is chosen.

In summary, our proposed method increases the accuracy of the computation of force terms
and therefore improves the accuracy in all test cases compared to the previous velocity-based
model [10]. The momentum-based model [9] performs well in simulating the stationary menis-
cus, but our results confirm that the proposed velocity-based method yields improved accuracy
for layered flows and better consistency in dynamic capillary simulations. The proposed bound-
ary conditions perform well for a wide range of contact angles on flat and curved boundaries.
To conclude, our proposed method is a suitable method for high density ratio multi-phase flows
in general geometries with improved accuracy compared to existing phase-field models.

Future work may include multiple relaxation time variants of the method, higher accuracy
no-slip boundary conditions and investigation into more accurate boundary conditions for the
phase-field for small contact angles. We will also apply the method to problems like multi-phase
flow in porous media.
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Appendix A – MRT scheme for the fluid

The multiple relaxation time (MRT) scheme used here is similar to the scheme presented in [10],
but extended to three space dimensions. The collision operator

ΩSRT
q = −1

τ

(
ḡq − ḡeqq

)
(54)

in (13) is replaced with the MRT counterpart

ΩMRT
q = −[M−1ŜM(ḡ − ḡeq)]q, (55)

where g = (g0, . . . , gQ−1)
T . The matrix M is the transformation matrix into moment space, and

Ŝ is a diagonal matrix of reciprocal relaxation times. In this work, we have used the matrices
for the D3Q19 model described by d’Humieres et al. [7].

Additionally, the viscous force term Fη needs to be implemented differently in the MRT
setting. Equation (18)2 is therefore replaced by

FMRT
η,i = − ν

c2s

d∑
j=1

{
Q∑

q=1

eqieqj[M
−1SM(ḡ − ḡeq)]q

}
∂ϱ

∂xj

, (56)

where (20)–(22) are used to compute the required quantities.

Appendix B – Units Conversion

In lattice Boltzmann (LBM) simulations, the mesh size and time step are commonly set to unity

∆xLBM = 1 lu, ∆tLBM = 1 lu,

where ”lu” denotes lattice units. These differ from physical units (e.g., meters, seconds), and all
LBM quantities must be rescaled accordingly to ensure consistency with the underlying physical
model. We use the following convention: Physical quantities are marked with a tilde (e.g., x̃,
t̃, ϱ̃), while lattice-based quantities are left unmarked. The conversions between physical and
lattice units are defined as

∆x = CL x̃, ∆t = Ct t̃, ϱ = Cϱ ϱ̃,
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where CL, Ct, and Cϱ are the unit conversion factors for length, time, and density, respectively.
To determine the conversion of any derived physical quantity, one must express its SI units in
terms of the base dimensions. For example, the surface tension σ̃ has units

[σ̃] =
N
m

=
kg

m · s2
= kg · m−1 · s−2.

Therefore, the relation between the physical and lattice surface tension becomes

σ = Cϱ
C3

L

C2
t

σ̃, (57)

where σ is the surface tension in lattice units. This expression allows one to recover the physical
surface tension from simulation parameters.
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