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Abstract

The objective of this paper is to evaluate the dynamic stress intensity factors (DSIFs) of a cracked body using
the bond-based peridynamics (BBPD) formulation. The peridynamics theory offers advantages over the classical
continuum theory for solving partial differential equations in fracture mechanics. Nevertheless, some problems
remain, such as its dispersion characteristics and constant micromodulus used in the classical BBPD. In this study,
a Gaussian function is used to define the non-constant micromodulus. A wave dispersion analysis for a 1D problem
was carried out and the influence of the horizon, mesh size and the kernel function on the dispersion properties
were analyzed. On the other hand, a new approach to evaluate the DSIFs of a cracked body using the BBPD
coupled with the displacement extrapolation technique is presented. Parameters that reduced the wave dispersion
were kept for the DSIFs estimation. The proposed method is applied to analyze some benchmark examples. The
obtained results are compared with the exact ones and they showed that the proposed approach can be used as an
alternative method to evaluate DSIFs.
© 2024 University of West Bohemia.
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1. Introduction

Understanding the behavior of a cracked structure under dynamic loading is very important
in many engineering problems. Dynamic stress intensity factors (DSIFs) are one of the most
important parameters in the analysis of dynamic fracture mechanics. Determination of this
parameter is fundamental to check if the crack is stable or not. Some analytical methods have
been introduced to compute the DSIFs. Nevertheless, the exact solution can be used only for
a simple geometry. Therefore, in the past, several numerical methods have been developed for
the evaluation of DSIFs. The most popular one is the finite element method [25], the boundary
element method [6] and the extended finite element method [3].

However, mesh-based methods have faced challenges, particularly when dealing with large
deformations or discontinuities. To overcome these difficulties, numerous meshfree methods
have been developed for fracture simulation in cracked solids, such as the smoothed parti-
cle hydrodynamics [9], reproducing kernel particle method [16] and the element-free Galerkin
method [4]. Nevertheless, all the numerical methods cited above are based on the local partial
differential equations obtained from the classical continuum mechanics (CCM). However, for
problems involving discontinuities, spatial derivatives of the displacements are undefined. To
extend the classical formulation of CCM to problems with discontinuities, Silling introduced
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in [23] the peridynamics theory to model discontinuities without using the spatial derivatives.
The peridynamics theory is a nonlocal extension of CCM for problems involving discontinuities
or other singularities. In peridynamics, the spatial derivatives of the stress tensor in the equa-
tion of motion deduced from CCM are replaced with a nonlocal integral operator that does not
require any spatial differentiability. This integral is based on the interaction between the ma-
terial point and neighboring points inside a compact domain defined by its length scale called
“horizon”. The theoretical basis and numerical implementation of the peridynamics equations
are presented in [17]. In [11], peridynamics has been successfully applied for modeling crack
growth and crack branching in brittle materials. Recently for the treatment of wave propaga-
tion in unbounded domains, Dirichlet absorbing boundary conditions have been developed for
BBPD in 2D elastic [21] and viscous [12] materials.

However, the nonlocal characteristics of peridynamics result in a dispersive dynamic re-
sponse of the medium [2]. Thus, the propagation of elastic waves can undergo distortions and
variations in the speed of harmonics which can lead to unreal crack behavior of solids under
impact loading. Therefore, the wave dispersion problem should be addressed before applying
the peridynamics to a dynamic fracture.

Wave dispersion in peridynamics has been investigated over the past decades and techniques
have been proposed to reduce the dispersion phenomena [10]. The dispersion of the numerical
scheme depends on the choice of the peridynamics parameters. To take into account the effect
of the distance between particles in the horizon, different kernel functions have been proposed
and used for BBPD formulation [15]. An appropriate choice of the kernel function can reduce
the wave dispersion.

In this paper, a Gaussian function is used as a kernel function to define the non-constant mi-
cromodulus in the BBPD formulation. Dispersion properties in a 1D wave propagation will be
investigated. We derive the dispersion relation and we analyze the effect of horizon size, mesh
size and the effect of weighted function on the dispersion properties. We propose to minimize
wave dispersion in elastic solids by choosing a combination of the shape of the kernel function,
the size of the horizon and the particles density, so that the peridynamics solution approaches
the classical continuum (non-dispersive) solution. In case of heterogeneous materials, the peri-
dynamics model parameters must be calibrated using the experimental dispersion curve in order
to minimize numerical dispersion [22].

On the other hand, the evaluation of dynamic stress intensity factors is important in analyz-
ing fracture problems. Many techniques based on the peridynamics theory have been introduced
to estimate static and dynamic stress intensity factors. In [13], Hu et al. developed an algorithm
to compute the nonlocal J-integral in the BBPD model. Panchadhara et al. [18] estimated the
stress intensity factors using peridynamics and they analyze the effect of loading rate on fracture
initiation and propagation. In [26], Zhu and Oterkus estimated the stress intensity factors using
displacement extrapolation method and the BBPD approach.

The objective of this paper is (i) to analyze the wave dispersion problem using the Gaussian
kernel function. The dispersion relation is derived and the effects of the horizon size, mate-
rial point size, and kernel functions on the dispersion properties are discussed; (ii) to propose
an efficient algorithm to estimate DSIFs using the displacement extrapolation method com-
bined with the BBPD theory. The spatial discretization is carried out using the particle-based
meshfree method [24]. After computing the displacement field, DSIFs are evaluated using the
displacement extrapolation method. To show the performance and the accuracy of the proposed
approach, some examples are analyzed.

This paper is organized as follows. An overview of the BBPD theory is given in Section 2.
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Numerical discretization of the governing equations is presented in Section 3. Dispersion analy-
sis is performed in Section 4. In Section 5, extrapolation displacement technique for estimating
DSIFs and numerical examples is presented. Conclusions are summarized in Section 6.

2. Overview of the BBPD model

The peridynamics theory, introduced by Silling in [23], is based on a nonlocal interaction con-
cept where pairs of particles exchange internal forces within a specific radius δ called ”horizon”.
In BBPD, the governing equation at the particle x is expressed by

ϱü(x, t) =

∫
Hx

f
(
x′ − x,u(x′, t)− u(x, t)

)
dVx′ + b(x, t) , (1)

where ϱ is the density, u(x, t) is the displacement at point x and time t, ü(x, t) is the acceler-
ation, f is the pairwise force density function, b is the body force, and Hx is the neighborhood
of x defined by

Hx = {x′ ∈ Ω : ∥x′ − x∥ ≤ δ} , (2)

where δ is the horizon, i.e., the radius of the compact domain Hx.
As shown in Fig. 1, the relative position ξ between two particles x and x′ in the reference

configuration and the relative displacement η in the deformed configuration are as follows

ξ = x′ − x, η = u(x′, t)− u(x, t) (3)

and ξ + η is the current relative position vector between the particles. For a linear microelastic
material, the BBPD function f can be expressed as [23]

f(ξ,η) =
∂w(ξ,η)

∂η
, (4)

where the micropotential function w is defined as [23, 24]

w(ξ,η) =
1

2
c(ξ, δ)s2ξ , (5)

Fig. 1. Reference and current configurations of BBPD
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where ξ = ∥ξ∥ is the magnitude of the bond in its initial configuration, c(ξ, δ) is the mi-
cromodulus function which represents the bond stiffness, and s is the relative elongation of a
peridynamics bond defined as

s =
∥ξ + η∥ − ∥ξ∥

∥ξ∥
. (6)

Equations (4) and (5) lead to the pairwise force function f

f(ξ,η) = c(ξ, δ)s
ξ + η

∥ξ + η∥
for ξ ≤ δ ,

f(ξ,η) = 0 for ξ > δ ,

(7)

where ∥ξ + η∥ is the magnitude of the bond in its deformed configuration.
To take into account the effect of the distance between particles on the stiffness of the bond,

a kernel function is introduced in the expression of the micromodulus function

c(ξ, δ) = co(δ)W (ξ, δ) , (8)

where co(δ) is the stiffness of the bond and W (ξ, δ) is the kernel function. In the classical
BBPD, the kernel function is given by

W (ξ, δ) =

{
1 for ξ ≤ δ,
0 for ξ > δ.

(9)

This kernel function assumes equal contributions from all the material points in Hx and the
internal length effect is ignored. To take into account the effect of the distance between particles,
the following p-dependent kernel function is used:

W (ξ, δ) =

{
e−(

pξ
δ )

2

for ξ ≤ δ,
0 for ξ > δ,

(10)

where p is an integer. The micromodulus co(δ) can be determined by equating the strain energy
density obtained from BBPD with the strain energy density based on CCM at the material
point x

V PD(x) = V CCM(x) . (11)

In a 2D plane stress problem, the strain energy density based on CCM is expressed as

V CCM(x) =
1

2
εTDε , (12)

where the strain vector ε and the plane stress elastic matrix D are given by

ε =

 ε11
ε22
2ε12

 and D =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 , (13)

where E is the Young’s modulus and ν is the Poisson’s ratio. Substituting (13) into (12), we
obtain the expression for the strain energy density

V CCM(x) =
E

2 (1− ν2)

[
ε211 + ε222 + 2νε11ε22 + 2(1− ν)ε212

]
. (14)
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In BBPD, the strain energy density at point x can be calculated as

V PD(x) =
1

2

∫
Hx

w(ξ, η) dVx =
1

2

∫
Hx

cs2

2
ξ dVx . (15)

The bond stretch s is given by the normal strain component in the n direction

s = εn = nTεn , (16)

where ε is the strain tensor in 2D plane stress and n is the unit vector given by

n = cos θe1 + sin θe2 , (17)

where (e1, e2) are the unit vectors of the coordinate system in the initial configuration and θ is
the angle between the normal n and the unit vector e1. Taking into account (8), (16) and (17),
the strain energy density (15) is written as

V PD(x) =
1

4
h

δ∫
0

2π∫
0

c0(δ)W (ξ, δ)ε2nξ
2 dθ dξ , (18)

where h is the unit thickness of the material.
In the following, we determine the micromodulus function for both the constant and Gaus-

sian kernels.
Constant kernel:
Using the constant kernel function, equation (18) becomes

V PD(x) =
hco(δ)πδ

3

48

(
3ε211 + 3ε222 + 2ε11ε22 + 4ε212

)
. (19)

To determine co(δ), we consider two types of deformations:
(1) Isotropic tensile deformation (ε1 = ε2 = εo and ε12 = 0): In this case, equations (14) and

(19) yield

V CCM =
E

1− ν
ε2o , V PD =

hco(δ)πδ
3

6
ε2o . (20)

By writing (20)1 equal to (20)2, we obtain the bond stiffness function for the constant kernel

co(δ) =
6E

(1− ν)hπδ3
. (21)

(2) Pure shear deformation (ε1 = ε2 = 0 and ε12 = εo): In this case, equations (14) and (19)
become

V CCM =
E

1 + ν
ε2o , V PD =

hco(δ)πδ
3

12
ε2o . (22)

By equalizing (22)1 and (22)2, we obtain the following expression for the bond stiffness:

co(δ) =
12E

(1 + ν)hπδ3
. (23)
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Equations (21) and (23) lead to the fixed Poisson’s ratio ν = 1/3 for 2D plane stress problems.
Therefore, the expression of the micromodulus function is written as

co(δ) =
9E

hπδ3
. (24)

In the case of plane strain analysis, a similar calculation results in a limited Poisson’s ratio
ν = 1/4 when the constant kernel is used. The function co(δ) is expressed as

co(δ) =
48E

5hπδ3
. (25)

In a 1D problem, writing the strain energy density leads to the expression

co(δ) =
2E

Aδ2
. (26)

Gaussian kernel:
Similarly, inserting the kernel function (10) into (18), we obtain the strain energy density

V PD(x) =
1

4
h

δ∫
0

2π∫
0

co(δ)e
−( pξ

δ )
2

ε2nξ
2 dθ dξ . (27)

The integration by parts of (27) gives

V PD(x) =
hco(δ)π

16

(√
πδ3erf(p)
4p3

− δ3e−p2

2p2

)(
3ε211 + 3ε222 + 2ε11ε22 + 4ε212

)
. (28)

Solving the equation V CCM = V PD leads to the expression

co(δ) =
12E

hπδ3
p3√

πerf(p)− 2pe−p2
, (29)

where erf(.) is an error function. With p = 2, equation (29) gives

co(δ) =
96e4E

(e4
√
πerf(2)− 4)hπδ3

. (30)

Therefore, the micromodulus function c(ξ, δ) is written as

c(ξ, δ) = co(δ)W =
96e4E

(e4
√
πerf(2)− 4)hπδ3

e−( 2ξ
δ
)2 . (31)

For a 1D analysis, the strain energy density is given by

V PD =
A

4

δ∫
−δ

cs2|ξ|dξ =
Aco(δ)s

2δ2

4p2
(1− e−p2) . (32)

Setting (32) equal to V CCM = 1/2Eε2o with εo = s leads to

co(δ) =
2E

Aδ2
p2

1− e−p2
. (33)

Therefore, the expression of c(ξ, δ) is given by

c(ξ, δ) = co(δ)W =
2E

Aδ2
p2

1− e−p2
e−( pξ

δ
)2 . (34)

The normalized micromodulus function with different values of p is presented in Fig. 2. As we
can observe, the interactions become more local with increasing the p value.
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Fig. 2. Normalized micromodulus function for the constant and Gaussian kernel functions

3. Numerical model

3.1. Spatial discretization

Different methods can be used to discretize the peridynamics governing equation in space. The
most common approach is the meshfree scheme [24]. Using this approach, the domain Ω is
discretized with a number of nodes as shown in Fig. 3. In Ω, each node xi ∈ Ω is associated
with a certain finite volume in the reference configuration, such that the set of nodes forms a
uniform grid with grid spacing ∆x, as shown in Fig. 3. For 2D problems, the volume associated
with the node xi is given by Vj = ∆x2h, where h is the thickness of the domain.

Fig. 3. Peridynamics 2D spatial discretization
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The discretized form of the BBPD governing equation for any node xi ∈ Ω at time tn is
obtained by approximating the integral term in (1) into a summation over all the bonds within
the horizon region using one Gauss point. The discretized motion equation is written as

ϱün
i =

NHx∑
j=1

f
(
xj − xi , u

n
j − un

i

)
CvjVj + bni , (35)

where NHx is the total number of particles within the horizon region of the particle i, Vj is the
volume of the j-th particle, and Cvj is the volume correction factor and it is used to approximate
the portion of Vj covered by the neighborhood Hx (see Fig. 3) defined by [5]

Cvj(ξ) =


1 for ∥ξ∥ ≤ δ − 0.5∆x,
δ + 0.5∆x− ∥ξ∥

∆x
for δ − 0.5∆x < ∥ξ∥ < δ + 0.5∆x,

0 for ∥ξ∥ ≥ δ + 0.5∆x.

(36)

Equation (35) can be written as

ϱün
i =

N∑
j=1

fn
ijCvjV j + bni , (37)

where the pairwise interaction force is given by

fn
ij = f

(
ξij,η

n
ji

)
= csnij

ξij + ηn
ij∥∥ξij + ηn
ij

∥∥ , (38)

where ξij = xj−xi and ηn
ij = un

j −un
i are the relative position and displacement, respectively.

The stretch between two material points is written as

snij =

∥∥ξij + ηn
ij

∥∥− ∥ξij∥
∥ξij∥

. (39)

3.2. Time discretization

The time integration of the semi discretized form (37) is performed using the central finite
difference scheme. The acceleration at time tn = n∆t is approximated by

ün
i =

un+1
i − 2un

i + un−1
i

∆t2
. (40)

Inserting (40) into (37) gives the displacement at time tn+1

un+1
i =

∆t2

ϱ

[
N∑
j=1

fn
ij CvjVj + bni

]
+ 2un

i − un−1
i . (41)

Stability condition: Using the von Neumann stability analysis of (41) written in 1D, the follow-
ing stability condition is obtained [24]:

∆t ≤ ∆tcr =

√
ϱ∑

j VjCij

, (42)

where Vj is the volume corresponding to the node j and Cij is a scalar given by

Cij = |C(ξij)| =
c(ξij)

|ξij|
. (43)

Note that the stability condition (42) is a necessary condition.
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4. Wave dispersion analysis

4.1. Wave dispersion in a 1D bar

In this section, wave dispersion relation is derived for 1D BBPD. The effects of different pa-
rameters on the wave dispersion are investigated.

The constant and Gaussian kernels are used to analyze the numerical dispersion of a 1D
elastic wave. Neglecting the body forces, the equation in 1D BBP is written as

ϱü(x, t) =

∫
Hx

co(δ)W (ξ, δ)
u′ − u

|x′ − x|
dx′ . (44)

To obtain the dispersion relation for an elastic media, it is sufficient to analyze one harmonic
wave component which can be expressed as

u(x, t) = u0e
i(kx−ωt) , (45)

where uo is the amplitude, i is the imaginary unit, k is the wave number, and ω is the angular
frequency. Substituting (45) into (44) leads to the following dispersion relation:

ω2 =

∫
Hx

co(δ)W (ξ, δ)

ϱ|ξ|
(1− cos kξ) dx′ . (46)

In the discrete form, the horizon size δ and the relative position ξ are expressed in terms of the
mesh spacing ∆x as

δ = m∆x , ξ = j∆x . (47)

Therefore, the discretized form of (46) becomes

ω2 =
∑
j ̸=0

co(m∆x)W (j∆x,m∆x)

ϱ|j|
(1− cos jk∆x) . (48)

For the constant kernel function, the dispersion relation ω(k) is as follows

ω2 =
2v2

m2∆x2

∑
j ̸=0

1

|j|
(1− cos jk∆x) , (49)

where the cross-sectional area A is taken equal to unity. When the Gaussian kernel is used, the
dispersion relation is written as

ω2 =
2v2

m2∆x2

p2

1− e−p2

∑
j ̸=0

1

|j|
(1− cos jk∆x)e−(p

j
m)

2

, (50)

where v is the classical wave speed given by v =
√
E/ϱ.

From (49) and (50), we observe that the dispersion of the elastic wave depends on the grid
spacing, the number of material points inside the compact domain and the shape of the kernel
function. Next, we analyze the variation of the normalized frequency ω̃ = ω/v as a function of
wavelength k for different values of m, ∆x and p.

Figs. 4 and 5 show the dispersion curves ω̃(k) using the Gaussian kernel function with
p = 1, p = 2 and m = 3. Different values of grid spacing ∆x have been used. The increase
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Fig. 4. Dispersion curves using the Gaussian kernel (p = 1) for different grid spacing ∆x

Fig. 5. Dispersion curves using the Gaussian kernel (p = 2) for different grid spacing ∆x

in ∆x, i.e., the increase in δ = m∆x, causes an increase in wave dispersion. For a large value
of the wave number k, the dispersion significantly intensifies with the increasing grid spacing
∆x. As ∆x or δ → 0, the peridynamics numerical solution converges to the corresponding
CCM solution (i.e., local theory). For comparison, the dispersion curve for the constant kernel
function is plotted in Fig. 6. Using the constant kernel function, the interaction force between
particle I and all the other particles J within its horizon is constant. However, when using the
Gaussian kernel, the interaction forces decrease with an increase in the distance between the
particles inside the horizon. Therefore, the wave dispersion is larger with the constant kernel
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Fig. 6. Dispersion curves using the constant kernel for different grid spacing ∆x (FD – finite difference
dispersion curve)

than that obtained with the Gaussian kernel, as can be seen by comparing Figs. 4–6.
We observe that when ∆x = 0.002m, the dispersive curves ω̃(k) diverge from the local

dispersion curve for high wavenumbers, see Figs. 4–6. To clarify this point, we discretize the
wave equation using the finite difference method. The dispersive relation for the central finite
difference scheme is given by

ω =
2

∆t
sin−1

(
C sin

k∆x

2

)
, (51)

where C is the Courant number given by

C =
v ∆t

∆x
. (52)

In Fig. 6, the finite difference (FD) dispersion curve is plotted with ∆x = 0.002m and
C = 0.5. As observed, both the dispersion curves for FD and peridynamics exhibit similar
behavior for high wavenumbers. With the FD discretization, the shortest wavelength that can
be represented on the mesh with spacing ∆x is λmin = 2∆x, which corresponds to the maximum
wavenumber kmax = π/∆x. Values of k greater than kmax are irrelevant since these correspond
to wavelength values whose waves are too short to be represented on a mesh with spacing
∆x. Therefore, the peridynamics dispersion curve ω̃(k,∆x = 0.002m) diverges from the local
solution for k > kmax = 1570.79m−1 regardless of the kernel function used in the model.

Another interesting test involves the variation of the number of points in the horizon while
keeping the horizon δ constant (δ = 4mm). The results are shown in Figs. 7, 8 and 9 for
p = 1, 2 and the constant kernel, respectively. As m = δ/∆x increases, the peridynamics
approximation converges to the nonlocal peridynamics solution, which can be highly dispersive
depending on the size of the horizon δ. It is important to note that when increasing m and
keeping δ constant, the method does not provide more accurate numerical solutions, as shown
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Fig. 7. Dispersion curves using the Gaussian kernel with p = 1 for various values of m

Fig. 8. Dispersion curves using the Gaussian kernel with p = 2 for various values of m

in Figs. 7–9. For m = 2, the solution deviates from the nonlocal peridynamics solution. This
case corresponds to ∆x = 0.002m, and as mentioned above, the dispersion curve diverges from
the local dispersion solution for k > kmax = 1570.79m−1. Hence, a minimum value of m = 3
is required for convergence.

Finally, Fig. 10 shows a comparison of the dispersion curves for the constant kernel and the
Gaussian kernel with p = 1 and p = 2. Parameters m = 10 and δ = 4mm are used in this
analysis. As expected, we observe that as p increases, less dispersion appears.

In conclusion, when analyzing problems involving wave propagation, it is important that
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Fig. 9. Dispersion curves using the constant kernel for various values of m

Fig. 10. Dispersion curves for different kernel functions

the horizon size, the material point size and the p-parameter should be chosen according to the
dispersion curve.

4.2. Wave propagation in a 1D bar

In this section, we analyze the convergence of the peridynamics model to the classical solution
of the 1D wave propagation problem using the constant and Gaussian kernel functions. Let
us consider a uniform bar of length L = 1m, density ϱ = 7850 kg m−3, cross-sectional area
A = 1mm2 and elastic modulus E = 200GPa, fixed at the left end and free at the other one, as
shown in Fig. 11. The bar is subjected to an intial force Fo = 200N. The boundary and initial
conditions can be specified as follows:
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Fig. 11. Spatial discretization of the 1D bar subjected to an axial force

Boundary conditions

u(0, t) = 0,
∂u

∂x
(L, t) = 0. (53)

Initial conditions
u(x, 0) =

Fox

EA
= 10−3x, u̇(x, 0) = 0. (54)

The peridynamics simulation is performed using the constant kernel and the Gaussian func-
tion with p = 2, the grid spacing ∆x = 1.25mm and the horizon size δ = m∆x = 6.25mm.
The time step used in this analysis is ∆t = 10−8 s. The exact displacement solution of this
problem is given by [19]

u(x, t) =
8FoL

π2AE

∞∑
n=0

(−1)n

(2n+ 1)2
sin

(
(2n+ 1)πx

2L

)
cos

(
(2n+ 1)πct

2L

)
, (55)

where c =
√

E/ϱ is the classical wave speed. The exact strain is expressed as

ε(x, t) =
4Fo

πAE

∞∑
n=0

(−1)n

2n+ 1
cos

(
(2n+ 1)πx

2L

)
cos

(
(2n+ 1)πct

2L

)
. (56)

Fig. 12 shows the strain time curves at x = 50 cm calculated using the constant kernel and
the Gaussian kernel with p = 2. To verify the convergence of the numerical results based on
the peridynamics, the exact strain history is also plotted. As we can observe, the numerical
strains of the two cases converge to the exact solution. However, oscillations appear in the

Fig. 12. Comparison between the exact solution and the BBPD results using the constant and Gaussian
kernels
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peridynamics simulation at the wave discontinuities. As expected, using the constant kernel,
the oscillations are higher than those obtained with the Gaussian kernel.

5. Evaluation of DSIFs

5.1. Displacement extrapolation method

Different methods have been used for the evaluation of dynamic stress intensity factors (DSIFs),
we can cite the path-independent J-integral [20] and the extrapolation method [1]. In this pa-
per, the displacement extrapolation method is used to estimate DSIFs. The displacement field
around the crack tip under Mode-I and Mode-II loading conditions for linear elastic materials
is given by [8]

• Mode-I:

u1 =
KI

2µ

√
r

2π
cos

θ

2
(κ− cos θ) , u2 =

KI

2µ

√
r

2π
sin

θ

2
(κ− cos θ) . (57)

• Mode-II :

u1 =
KII

2µ

√
r

2π
sin

θ

2
(2 + κ+ cos θ) , u2 =

KII

2µ

√
r

2π
cos

θ

2
(2− κ− cos θ) (58)

with

κ =


3− 4ν for plane strain,
3− ν

1 + ν
for plane stress.

(59)

From (57)2 and (58)1, expressions of DSIFs for the Mode-I and Mode-II are obtained{
KI

KII

}
= lim

r→0

2µ

κ+ 1

√
2π

r

{
u2(r, π)
u1(r, π)

}
, (60)

where r denotes the radial coordinate with the origin at the crack tip, µ is the shear modulus
at the crack tip, and u1(r, π), u2(r, π) are the crack surface displacements computed using the
BBPD model.

Along the crack surface near the crack tip, it can be assumed that

u2(r) r
− 1

2 = A1 +B1r, (61)

where A1 and B1 are constants that can be determined using the displacements of points B, C,
D, E as shown in Fig. 13. Therefore, the DSIFs for the Mode-I can be evaluated as

KI(t) =
2µ

√
2π

κ+ 1

uB
2 (t)

r2√
r1
− uD

2 (t)
r1√
r2

r2 − r1
(62)

and the DSIFs for the Mode-II can be estimated as

KII(t) =
2µ

√
2π

κ+ 1

uB
1 (t)

r2√
r1
− uD

1 (t)
r1√
r2

r2 − r1
. (63)
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Fig. 13. Nodes close to the crack tip

5.2. Numerical examples

Two examples of the Mode-I and Mode-II loading are analyzed and DSIFs are estimated using
the displacement extrapolation method coupled to the bond-based peridynamics. The Gaussian
and the constant kernels are used in the BBPD approximation.

5.2.1. Stationary Mode-I semi-infinite crack

The displacement extrapolation method coupled to BBPD is used to compute DSIFs for a semi-
infinite lateral crack in an infinite plate, as shown in Fig. 14. The Gaussian and constant kernels
W (ξ, δ) are used in the computation under plane stress conditions. To assess the effective-
ness of the proposed method in determining DSIFs, the numerical results are compared to the
analytical solution published in [7].

The plate dimensions are: length L = 10m, height 2H = 4m and crack length a = 5m.
The material properties are: Young’s modulus E = 210GPa, Poisson’s ratio ν = 0.3 and
density ϱ = 8000 kg m−3. The grid space ∆ = 0.05m is used with a uniform distribution of
material points and the total number of particles used is 200 × 80. A value of δ = 3∆ was
selected for the horizon. The time step used in the computation is ∆t = 5× 10−6 s.

The ramp loading applied traction

σ(t) =

 σ0
t

td
for t ≤ td,

σ0 for t ≥ td,
(64)

where td is the rise time of the ramp load. In this example, td = 3.36 × 10−4 s. For t ≤ tc, the

Fig. 14. Geometry and loading of the semi-infinite plate
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Fig. 15. Normalized Mode-I DSIFs for ramp loading with different kernel functions

analytical solution is given by [7]

KI(t) =


4

3π

√
1− 2ν

1− ν
σo

√
πCdtd

(
t

td

) 3
2

for 0 ≤ t ≤ td,

4

3π

√
1− 2ν

1− ν
σo

√
πCdtd

[(
t

td

) 3
2

−
(

t

td
− 1

) 3
2

]
for t ≥ td,

(65)

where t = t − tc, tc = H/Cd is the time required for the stress wave to propagate to the tip of
the crack, and Cd is the velocity for the longitudinal wave. The normalized DSIF is given by

K̃I(t) =
KI(t)

σo

√
H
. (66)

The normalized Mode-I DSIFs evaluated using (62) are shown in Fig. 15 for the constant and
Gaussian kernel functions. The exact solution is also plotted for comparison. Displacements are
determined using BBPD under plane stress conditions. As we can observe, there is an excellent
agreement between the numerical results with kernel function W (ξ, δ, p = 2) and the analytical
solution. For W (ξ, δ) = 1, the numerical solution deviates from the exact solution. The same
example is analyzed with the step loading function σ(t) = σoH(t), where H(t) is the Heaviside
function. In this case, the exact solution is given [7]

KI(t) =


0 for t < tc,
2σ0

1− ν

√
cd
π
(1− 2ν) (t− tc) for t ≥ tc.

(67)

Fig. 16 plots the normalized Mode-I DSIFs for different kernel functions. Close to the time
tc, a deviation of the three curves from the exact solution is observed. This deviation is due to
the discontinuity of the applied loading at t = 0. However, the Gaussian kernel function with
p = 2 converges better to the analytical solution.
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Fig. 16. Normalized Mode-I DSIFs for step loading with different kernel functions

5.2.2. Mode-II example

In this example, the proposed method is used to compute the Mode-II DSIFs of a cracked
rectangular plate subjected to a uniform shear loading τ , as shown in Fig. 17.

The plate dimensions are: length L = 104mm, height H = 40mm and the crack length
2a = 24mm. The material properties are: Young’s modulus E = 73.5GPa, Poisson’s ratio
ν = 0.25 and density ϱ = 2450 kg m−3. The grid spacing used in this example is ∆ = 0.26mm
and the horizon δ = 3∆. Fig. 18 shows the normalized Mode-II DSIFs K̃II(t) = KII(t)/(τ

√
πa)

for the Gaussian and constant kernel functions. KII(t) are computed using the extrapolation
technique (63) combined with BBPD. The results calculated using the J-integral [14] are also
plotted. As we can observe, the Gaussian kernel with p = 2 shows a good agreement with the
obtained results reported in [14].

6. Conclusions

In this paper, two points have been discussed utilizing the BBPD theory: the analysis of elastic
wave dispersion in a 1D problem and the evaluation of dynamic stress intensity factors using
displacement extrapolation. The results demonstrate that BBPD with the Gaussian kernel re-
duces the numerical dispersion compared to the classical BBPD model. Moreover, to show the

Fig. 17. Plate subjected to shear loading
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Fig. 18. Normalized Mode-II DSIFs for different kernel functions

performance of the proposed approach to estimate DSIFs, two examples of Mode-I and Mode-II
are analyzed. A good agreement is observed between the numerical results obtained with the
Gaussian kernel and the analytical and numerical results obtained by other numerical methods.
Finally, the proposed approach can be used as an alternative technique for estimating dynamic
stress intensity factors.
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