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Abstract

Quantifying the reliability indices of structures under earthquake loading is traditionally considered to be challeng-
ing, especially when the nonlinear structural behaviour needs to be considered. With the increasing popularity of
high-performance computer clusters, it is feasible to use detailed numerical procedures to quantify seismic safety
margins of steel moment resisting frame (SMRF) structures under various sources of uncertainties. Two seismic
reliability methods are used to examine the interaction of uncertainty from ground motions and intensity. One
is a numerical integration procedure for the traditional method. The other is the Monte Carlo simulation. These
methods produce cumulative probability distribution curves that can retain the accuracy of results from nonlinear
dynamic analysis. These methods are applied to two SMRF structures to investigate their probabilistic behaviour
with their uncertainties from earthquake loads and seismic weights. The global reliability indices of the structures
are found to be between 2.5 and 2.1 under the maximum considered earthquake (MCE). When an MCE occurs, the
conditional reliability indices of the structures range between 1.4 and 1.0. The results indicate that both methods
can be used to accurately quantify the reliability of SMRF structures. The results also show that some conditional
probability distributions may not be well-represented by simple equations with their parameters calibrated from
data-fitting techniques. The results also prove that the discussed methods and numerical procedures can be further
used to accurately quantify probabilistic seismic behaviour of other structures toward the community resilience.
© 2024 University of West Bohemia.
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1. Introduction

Economic losses, injuries and casualties resulted from damaged and collapsed structures have
been reported after many earthquakes, such as the 1994 Northridge earthquake, the 1995 Kobe
earthquake and the 2011 Christchurch earthquake. Mitigating these losses and damages from
earthquakes is a primary goal to build earthquake resilient communities. In order to quantify
the losses and damages caused to buildings and other structures, predicting and quantifying
seismic behaviour of structures is essential. Seismic behaviour of structures is nonlinear and
related to many factors, such as structural configurations, material properties, occupancy loads,
earthquake hazards and incomplete knowledge of the system. Since these factors have their own
sources of uncertainties, seismic behaviour of structures is probabilistic in nature.

Accurately quantifying probabilistic seismic behaviour of structures provides designers and
stakeholders with insights toward strategies to build safer structures and better mitigate dam-
ages and losses in future events. In the past decade, many research works have been done to
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Nomenclature
CDF cumulative distribution function MCE maximum considered earthquake
HPCs high-performance computer clusters MCS Monte Carlo simulation
IDA incremental dynamic analysis NDA nonlinear dynamic analysis
IM intensity measure SDC seismic design category
LA3 three-story building (Los Angeles) SF2 secondary scaling factor
LA9 nine-story building (Los Angeles) SMRF steel moment resisting frame

examine probabilistic seismic behaviour of structures. In [24], Yun and Li reported a perfor-
mance prediction and evaluation procedure based on nonlinear dynamics and reliability theory
for steel moment resisting frame (SMRF) structures. Their work presented a method that cal-
culates the probability of exceedance using the weighted summation of conditional probability
distribution curves given the earthquake intensity [2]. In [20], Ribeiro et al. used this method
to examine the performance of steel moment frame structures. Kazantzi et al. [10] evaluated
a four-story SMRF building with a numerical model using the Monte Carlo simulation (MCS)
with Latin hypercube sampling. Their work also studied the comparison of interstory drift
obtained with and without the consideration of model parameter uncertainties. In [13], Li et
al. investigated the collapse probability of a mainshock-damaged four-story SMRF building
in aftershocks, as an essential part of developing a framework to integrate aftershock seismic
hazard into performance-based engineering. Liu et al. [16] investigated a four-story three-bay
SMRF to demonstrate their proposed performance based on robust design optimisation with the
consideration of cost, seismic demand, performance objectives and ground motion variability.
In [3], Fayaz and Zareian assessed the effect of the vertical component of ground motions on
SMRF structures and evaluated the current seismic design provisions of ASCE 7 on the basis
of structural reliability analysis. Mosallam et al. presented a probabilistic study [17] using the
fragility function method for the performance assessment of two moment-resisting frame struc-
tures representing rigid and flexible frame structures considering the impact of the uncertainties
in seismic loading and response of structures. They concluded that the adopted fragility method
can serve as an effective tool for assessing the performance and safety levels of structures, and
in decision making as well as financing for seismic protection. In [12], Lachanas and Vamvat-
sikos quantified the model-type uncertainty for a modern steel moment-resisting frame building
considering different types of geometrical features. They concluded that the uncertainty stem-
ming from 3D and distributed plasticity models is lower than the governing record-to-record
variability.

With the recently developed numerical procedures of seismic reliability methods and the
wide application of high-performance computer clusters (HPCs), seismic reliability analysis can
be performed numerically for SMRF structures with sophisticated modelling details. With the
numerical procedures, the probabilistic seismic behaviour of these buildings can be accurately
quantified to examine essential factors and other assumptions used in previous studies. In this
study, two post-Northridge SMRF buildings are used as examples, including one three-story
and one nine-story buildings. In order to capture the accuracy of results from nonlinear dynamic
analysis (NDA) for probabilistic analysis, two seismic reliability methods with their numerical
procedures are discussed. One is the traditional method developed by the SAC steel moment
frame project [2], with its numerical integration format. The other is to directly use MCS
to produce the cumulative probability distribution, without any intermediate calculation from
data-fitting techniques for probability distribution models. The examples show the feasibility
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to apply the numerical procedures of the reliability methods to the prediction of probabilistic
seismic behaviour of SMRF structures with sophisticated modelling details. The results of
the analysis can be further used to perform sensitivity analysis for different parameters and
configurations. The methods and procedures in this paper can be extended to calibrate seismic
design provisions toward the disaster resilient built environment in their design lifecycle.

2. Structural configurations and model

Two special SMRF buildings developed as a part of the SAC steel project [4, 5, 8] are inves-
tigated for their probabilistic behaviour under earthquake loading. The three- and nine-story
frames (denoted as LA3 and LA 9 in this study, respectively) were designed following the code
requirements for Los Angeles by using the post-Northridge design with reduced beam sections
(RBS). The failure of buildings following the post-Northridge design is very ductile and may
be well-represented by drift demand. Both buildings have a grid spacing of 9.14 m and typical
story height of 3.96 m, except for the basement and ground floor of the LA9. The details for
RBS connections are discussed in FEMA 355D [12] and the background documents [11, 21].

A two-dimensional frame analysis in one direction of the buildings is conducted. One addi-
tional bay of P-Delta leaning columns is used to investigate the geometrical nonlinearity from
gravity columns. The models incorporate panel zones (Model M2) with shear strength and stiff-
ness as illustrated in the original documents [4,8]. The open source software, OpenSees [18], is
used in this work to develop the frame analysis models. The panel zones are modelled with rigid
boundaries. The columns and beams are modelled with elastic elements with large strength
and stiffness over their clear span length. It is reported that the models with panel zones are
more realistic than a bare frame model [9]. The energy dissipation system relies on plastic
hinges, which are modelled with zero-length rotational springs placed away from the face of
the panel zones. The modified Ibarra-Krawinkler deterioration model with bilinear hysteretic
response [9, 15], ”Bilin” in OpenSees, is used to simulate the plastic hinges. All hinges are
assumed to have 3 % of strain hardening. Seismic masses and gravity loads are applied to the
joints adjacent to the panel zones. A viscous damping of 2 % is assigned to the first mode and
the mode at a period of 0.2 s, as specified in FEMA 355C [4]. The results of modal analysis
from OpenSees of this work (Table 1) match the data published in the original work [10] with
the results obtained from DRAIN-2DX [19]. With the structural models, drift demands are
recorded from NDA and subsequently used for probability analysis.

Table 1. Results of modal analysis

1st mode 2nd mode 3rd mode

LA3
OpenSees 1.02 s 0.31 s 0.19 s

DRAIN-2DX 1.02 s 0.30 s 0.14 s

LA9
OpenSees 2.23 s 0.84 s 0.47 s

DRAIN-2DX 2.21 s 0.82 s 0.46 s
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3. Reliability methods

3.1. Traditional reliability method

Structural dynamic response under extreme seismic loading is typically nonlinear, which needs
to be predicted using numerical methods, such as the finite element method. Since seismic de-
mands are nonlinear functions of many factors, the random variable for any structural demand
follows a multivariate probability distribution for all related factors over the integration domain
defined by the limit states. Examining probabilistic behaviour of structures under earthquake
loading has to examine the sources of uncertainties from essential factors, especially for earth-
quake loading. Two methods are discussed here to study seismic probabilistic behaviour from
these sources of uncertainties.

The traditional method developed by the Pacific Earthquake Engineering Research Center
determines the probability of exceedance from the weighted summation of conditional distribu-
tions given the intensity measure

FD(d) = P (D ≤ d) ≈
∞∫
0

P
[
D(a) ≤ d | IM = x

]
fIM(x) dx, (1)

where P [D(a) ≤ d |IM = x] is the conditional cumulative distribution function (CDF) of
demand D not exceeding the value d, given the intensity measure (IM) of IM = x, a is the
vector for all sources of uncertainties other than ground motions and intensity measure, and
fIM is the probability density function of the intensity measure. Unless noted otherwise, capital
letters in all equations refer to random variables.

This method is commonly used to derive a set of simplified algebraic equations to express
probabilistic behaviour. These algebraic equations use a mean value and dispersion to char-
acterise the probabilistic nature of involved random variables. The use of the mean and the
dispersion for related distributions simplifies the process of analysing the complicated proba-
bilistic behaviour under seismic loading. However, extracting the parameters of the mean and
the dispersion relies on data-fitting techniques applied to the results from incremental dynamic
analysis (IDA) [22]. The accuracy of the fitted parameters depends on whether the chosen
probability distribution can accurately represent the demand or capacity measure under consid-
eration. In order to improve the accuracy for the probability analysis, a numerical integration
procedure is introduced to solve the probabilistic behaviour expressed as

FD(d) ≈
M∑
i=1

P
[
D(a) ≤ d

∣∣∣ IM = xi

]
fIM(xi)∆xi , (2)

where M is the total number of intensity levels for numerical calculation. This equation can be
used to directly produce the probability distribution of demand, with which the probability of
structural failure can be evaluated. The conditional probability of exceedance of drift demand,
P [D(a) ≤ d |IM = xi] , describes the uncertainty from material properties and ground motions.
This distribution can be generated by ranking drift demands at certain intensity, IM = xi, as
shown in the fragility analysis. Using the numerical procedure expressed in (2) to directly per-
form reliability analysis does not involve any data-fitting technique, which retains the accuracy
of results from IDA. The accuracy of results from these equations only depends on the sample
number and sampling techniques for related random variables, and it is independent of their
certain distribution types or their intermediate numerical calculations [7].
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Fig. 1. Generation of samples for intensity measure

3.2. Monte Carlo simulation

In view of structural response under any loads, the demand of a structure is a function [g(·)]
of the intensity (im), ground motions (r) and other sources of uncertainty (a). This function is
determined by the dynamic analysis. In view of probability theories, the selected ground motion
records can be treated to follow a special distribution. Each record is a natural sample represent-
ing the ground motion characteristics, although the boundary of the characteristics is unknown.
Considering that the distribution of these variables can be defined with statistical data, the drift
demand follows a joint multivariate distribution of material and geometrical properties, motions
and intensity. If more uncertainty sources are considered, the joint distribution will have more
random variables. The joint distribution of the demand may not have any closed form solution
because the results of demand data are discrete as they are typically calculated from nonlinear
structural analysis. It would be practical to solve this equation using numerical procedures, such
as MCS.

Although MCS has been used by the fragility analysis, directly using MCS in seismic reli-
ability analysis is established on the nature of ground motions and related sampling strategies.
In the traditional MCS, samples are generated from pseudo random numbers as illustrated in
Fig. 1a, with two random variables X1 and X2 shown. This method may not be computationally
efficient as the sample size has to be great enough. In order to improve the efficiency of simula-
tion, the Latin hypercube sampling (LHS) technique [14] may be employed (Fig. 1b). For both
the traditional MCS and LHS techniques, the random variables must be able to be expressed
in mathematical equations, so that the samples can be determined from their corresponding
distribution functions. In seismic reliability analysis, it is implicitly assumed that all selected
motions contribute equally to the uncertainty of seismic demands. In the view of probability
analysis, ground motions are discrete samples in their representing ground vibrational charac-
teristics. Therefore, these discrete samples should be viewed as grid samples. The grid samples
have their implied probability values, as illustrated by the variable X1 in Fig. 1c, in which X2
is the same with that in Fig. 1a. Compared with commonly used random variables, the selected
motions are natural samples. Such samples do not need to and cannot be calculated from their
inverse functions. In order to combine this special random variable with other variables, the
scheme in Fig. 1c illustrates the sampling process.

3.3. Ground motions and scaling method

A set of 22 ordinary earthquake ground motions by FEMA P695 [6] is used as the input for
NDA. These ground motion records are scaled to multiple levels of IM using a scaling method
to account for the variation of earthquake loads. The scaling process has three steps: i) the
normalisation, ii) the basic scaling, and iii) the secondary scaling. The first two steps are defined
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by FEMA P695. During the normalisation, all records are scaled to their median peak ground
velocity. In the second step, all records are scaled to have a median spectral acceleration (Sa)
to match the targeted spectral acceleration for the maximum considered earthquake (MCE)
at the fundamental period. With the second step, the ground motion records are scaled to a
deterministic level of intensity. To ensure a probabilistic analysis, the targeted intensity level
should not be deterministic. The third step, the scaling factor for the second scaling (SF2) is
used to consider the uncertainty of intensity measure for reliability analysis with the SF2 scaling
factors dependent on the selected distribution types as discussed below.

3.4. Other sources of uncertainties and their distributions

The annual occurrence probability of intensity H(Sa) is traditionally assumed to be linear on a
log-log plot and given as [2]

H(Sa) = cS−b
a . (3)

Based on previous research [2, 6, 13], the parameters b and c are chosen to be 3.2 and 0.014 4,
respectively. These numbers correspond to the median peak spectral acceleration of normalised
records. With these parameters, SF2 is defined as the ratio of a sample for the distribution to
the median spectral acceleration for the Seismic Design Category (SDC) of Dmax as defined in
FEMA P695. This case is referred to as the ”extreme distribution” in the following discussion.

There is no doubt that this type of distributions is reasonable to describe the occurrence
probability of earthquakes for earth scientists. In terms of construction practice, most structures,
if not all, have been designed or proved to resist certain levels of earthquakes. Engineers, owners
and stakeholders may not be interested in the consequence of small earthquakes to structures.
Rather, they may be more interested in the consequence of reasonably large earthquakes within
the life period of structures. Their concerns to the performance at targeted intensity levels may
be described by this question: ”What are the consequences if a 7.0-magnitude earthquake hits
this region?” If the 7.0-magnitude earthquake is a fixed value, the problem becomes a fragility
analysis. Reliability analysis targeted at certain intensity levels with their uncertainties may
provide much information for disaster prediction and mitigation.

In terms of reliability analysis, the extreme distributions produce many samples at low in-
tensity levels. The engineering demand measures calculated from these low-intensity samples
may not exceed the threshold that contributes to damages or failure probabilities. Samples near
targeted design intensity levels may be scarce but useful for analysis. In order to address the
concerns of users of construction practice and reliability analysis, the log-normal or other dis-
tributions with a mean or median near the targeted intensity levels may be employed. Such
distribution types not only address the concerns about the risk conditioned on existing knowl-
edge, but also allow samples concentrating around the targeted intensity level for reliability
analysis. The variation for IM is used to consider the aleatoric and epistemic uncertainties as-
sociated with the targeted earthquake level. The probabilistic analysis conducted with this type
of distribution may be viewed as an extension of the fragility analysis. In this paper, a log-
normal distribution is used with the mean value set to the median spectral acceleration at the
fundamental period for the SDC of Dmax in FEMA P695. The coefficient of variation (COV)
is set to 0.3, which is chosen with the reference to typical live loads. This case is referred to
as the ”log-normal distribution”. The results from this distribution are cited as the conditional
probability of failure or the conditional reliability index in the following discussion.

Some other sources of uncertainties are also important. As an example of applications us-
ing the discussed numerical procedures, only the effect of seismic weights is considered here.
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A log-normal distribution with a COV of 0.1 is assumed for seismic weights of all floors and
roofs. This distribution avoids near-zero or negative samples for seismic weights. It is noted
that the floor assembly for one building is commonly identical or similar for all floors. The ma-
terials for all floors are, therefore, assumed to come from the same suppliers or perhaps even the
same shipment. Thus, it would be reasonable to assume that seismic weights at different floor
levels are highly correlated. It is practical and reasonable to assume the correlation coefficients
between any two floors as unity. Two types of analysis are conducted, one considering the un-
certainty from seismic weights and the other without. When the uncertainty of seismic weights
is considered, each NDA requires three types of random samples including one for ground mo-
tions, one for intensity levels and one for seismic weights. As the samples for ground motions
are viewed as special nature ones (represented by the variable X1 in Fig. 1c), only two other
types of samples need to be generated, both of which are represented by the variable X2 in
Fig. 1c. Strictly speaking, the variable X2 is a vector with two random variables for both in-
tensity levels and seismic weights together. Thus, Fig. 1c has been effectively expanded to a
three-dimensional case. When the uncertainty of seismic weights is not considered, each NDA
only requires two random samples including one for ground motions represented by the variable
X1 in Fig. 1c, and the other for intensity levels represented by the variable X2 in Fig. 1c.

3.5. Parallel computing using high performance clusters

Using the discrete format of the traditional method or MCS requires repeatable NDA. These
repeatable calculations are for the same system with different vector inputs to consider their
uncertainty sources. On one hand, the process of each NDA is performed step by step in the
time domain. In each time step, the iteration to achieve the convergence involves some algo-
rithms, such as the Newton-Raphson method. All these iteration steps are to be performed in
a serial manner, the order of which cannot be alternated easily. Therefore, each NDA is in
a sequence-based calculation, the efficiency of which is primarily dominated by the speed of
the processor. The parallel computing technology may not be directly applied to speed up the
computational process for typical individual NDA. On the other hand, all NDA are independent
from one another, every one of which does not need any communication with other NDA during
their execution. Since only the peak demand measure are needed for probabilistic analysis, the
demand for information sharing and communication within different NDA is minimised. There-
fore, these NDA can be viewed as parallel and easily executed by different processors on any
parallel computing system, regardless of whether the computer processors are located locally
or remotely. The parallel version of OpenSees streamlines the communication process among
multiple processors over the network in a convenient way, so that structural engineers can focus
on structural modelling, rather than on the network of the clusters. In this work, OpenSees are
executed on three HPCs with a maximum allocation of 450 processors each.

4. Results and discussions

4.1. Results from the traditional method for LA3

With the combination of samples from records, IM and seismic weights, IDA can be performed.
Since multiple levels of seismic weights are used in the analysis corresponding to the same
intensity level, the results of IDA may not be easily expressed and fairly compared as traditional
IDA curves that are only for a single source of uncertainty, i.e., records. Therefore, the analysis
results are normalised as conditional distributions, see Fig. 2. In this figure, each curve is a
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Fig. 2. All conditional distributions of LA3 for IM following (left) the extreme distribution and (right) the
log-normal distribution

conditional cumulative probability distribution for the traditional method given by (2) at one
level of IM with their uncertainties from records and seismic weights.

Since IM with a log-normal distribution used in the analysis represents earthquakes greater
than that of the extreme distribution, the demand for the log-normal distribution in Fig. 2 (right)
is greater than that of the extreme distribution in Fig. 2 (left). This figure also shows that a few
curves are overlapped in the left portion, while the curves in Fig. 2 (right) spread over the entire
region. This observation indicates that many samples at lower intensity levels are generated
only for the extreme distribution. The relatively steep slope of the curves within this overlapped
region indicates the structural response is not very sensitive to the variation from records and
seismic weights.

In order to further examine the results, four conditional distributions for the intensity follow-
ing the extreme distribution are shown in Fig. 3. They represent four levels of IM resulting from
different secondary scaling factors (SF2). The curve for ”fixed weights” means a result curve
for seismic weight without considering the uncertainty for weights. In this case, no variation for
seismic weights is considered. This curve has 22 squares, each of which represents one record.
This curve is similar to the traditional IDA curve, except with the CDF as the ordinate. The
curve for ”variable weights” means that the result curve has considered the uncertainty from
seismic weights. In this case, the seismic weight of each floor is correlated with the correlation
coefficient of 1.0. In different NDA, these seismic weights may be different, as they are random
samples following the probability distribution of the seismic weight as discussed above. The
curves for fixed weights generally match those for variable weights well, which indicates that
the uncertainty in seismic weights does not appear to contribute much to the results of proba-
bility analysis at low intensity levels. However, Fig. 3d shows that the uncertainty in seismic
weights does influence the resulted distribution curve at high intensity levels. This observa-
tion may be explained by the fact that significant structural nonlinearity at high intensity levels
”amplifies” the variation of seismic weights.

As a further illustration of Fig. 2 (right), four conditional distributions for IM following the
log-normal distribution are shown in Fig. 4. This figure further confirms that the uncertainty
from seismic weights does not affect the results significantly at their low intensity levels. It is
also noted that the curves in this figure are not as smooth as those in Fig. 3. Considering that
the major difference between the assumptions of the two figures is the secondary scaling factor,
one can conclude that, at high intensity levels, the probabilistic behaviour appears to be affected
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(a) SF2 = 0.371 (b) SF2 = 0.450

(c) SF2 = 0.554 (d) SF2 = 0.952

Fig. 3. Some conditional distributions of LA3 for IM following the extreme distribution

much by seismic weights. The shape of some curves at high intensity levels, such as in Fig. 4d,
is zigzagged, which indicates that CDF may not be fitted well with a normal or log-normal
distribution. With this type of CDF, a numerical procedure may be suitable to obtain accurate
results of the probability of exceedance.

With these conditional probability distributions, the probability of structural failure under
the extreme distribution and the conditional probability of failure under the log-normal distri-
bution is evaluated using the weighted summation, as shown in (2). The results are presented
in Table 2. The second row of this table shows the inter-story drift capacity. The inter-story
drift capacity of 2.5 % is chosen from ASCE 7 [1] and the 6.3 % is chosen from FEMA P695.
The numbers in the brackets are reliability indices or conditional reliability indices, defined as
Φ−1(1 − Pf ), where Φ(·) is the standard normal distribution. For the extreme distribution, the
probability exceeding the drift capacity of 2.5 % and 6.3 % is 14.6 % and 0.78 %, respectively.
For the log-normal distribution, the conditional probability of exceedance is 76.7 % and 16.5 %,
respectively.

4.2. Results from MCS for LA3

MCS generates a CDF of drift demand, as shown in Fig. 5. In this figure, the term ”extreme”
refers to the extreme distribution while the term ”log-normal” refers to the log-normal distri-
bution. The CDF curves for ”variable weights” incorporate uncertainties from IM and seismic
weights. It can be observed that both types of curves are very close, except for some difference
at the tails.
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(a) SF2 = 0.777 (b) SF2 = 1.02

(c) SF2 = 1.21 (d) SF2 = 1.62

Fig. 4. Some conditional distributions of LA3 for IM following the log-normal distribution

CDF in Fig. 5 can be used to determine the probability of exceedance for any drift capacity
directly. The results are also listed in Table 2. The results from two MCS curves with and
without the uncertainty from seismic weights are slightly different. The drift capacity of 2.5 %
appears to be very stringent, as the corresponding probability of exceedance for the extreme
and log-normal distributions ranges about 13–15 % and 76–78 %, respectively. This can be
explained by that this drift capacity is for life safety rather than for collapse prevention. With
the drift capacity of 6.3 %, the probability of exceedance for the extreme distribution is less than
1 % while the probability for the log-normal distribution is about 8–10 %. Considering that the

Table 2. The probability of failure and the conditional probability of failure for LA3

Probability of failure Conditional probability of failure
under the extreme distribution under the log-normal distribution

2.5 % 6.3 % 2.5 % 6.3 %
Traditional 14.6 % 0.780 % 76.7 % 10.5 %

method (1.06) (2.42) (– 0.729) (1.26)
MCS 13.4 % 0.671 % 77.6 % 8.46 %

(fixed weights) (1.11) (2.47) (– 0.733) (1.38)
MCS 14.6 % 0.766 % 76.8 % 10.5 %

(variable weights) (1.06) (2.42) (– 0.733) (1.25)
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Fig. 5. Probability distributions of LA3 from MCS

MCE of SDC Dmax is for extreme events, the probability of failure at 8–10 % may be judged
to be acceptable. Therefore, the drift capacity of 6.3 % appears to be acceptable for this SMRF
building.

4.3. Results from both methods for LA9

The conditional distribution curves used by the traditional method for LA 9 are shown in Fig. 6.
Similar to the results for LA3, the conditional distribution curves for the extreme distribution of
the intensity are concentrated around the lower region. Several conditional distribution curves
are shown in Figs. 7 and 8. The shapes of some curves appear to be zigzagged. Some curves,
such as in Figs. 8c–d, tend to have two distinct regions: the region at the lower and intermediate
portion, and the region at the upper tail. It is difficult to fit these curves with normal or log-
normal distributions. The CDF curves obtained from MCS are shown in Fig. 9. The probability
of failure under the extreme distribution and the conditional probability of failure under the
log-normal distribution exceeding the drift capacity of 2.5 % and 6.3 % are listed in Table 3.

Overall, the results for LA9 have similar features with those for LA3, except that LA9
has larger drift demand. These results further confirm some observations obtained from LA3.
The probability of LA9 exceeding 6.3 % for the extreme distribution ranges between 1–2 %.

Fig. 6. All conditional distributions of LA9 for IM following (left) the extreme distribution and (right) the
log-normal distribution
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(a) SF2 = 0.371 (b) SF2 = 0.450

(c) SF2 = 0.554 (d) SF2 = 0.952

Fig. 7. Some conditional distributions of LA9 for IM following the extreme distribution

The conditional probability of LA9 exceeding the drift capacity of 6.3 % for the log-normal
distribution is about 13–15 %. Under some large events, this conditional probability of failure
may be judged to be acceptable for ductile systems such as the considered SMRF building.

4.4. Discussion of results

Seismic reliability analysis is performed to investigate the interaction between ground motions
and intensity as well as the uncertainty from seismic weights. The results from LA3 and LA9

Table 3. The probability of failure and the conditional probability of failure for LA9

Probability of failure Conditional probability of failure
under the extreme distribution under the log-normal distribution

2.5 % 6.3 % 2.5 % 6.3 %
Traditional 32.4 % 1.32 % 88.4 % 13.4 %

method (0.456) (2.22) (– 1.19) (1.11)
MCS 33.7 % 1.63 % 86.3 % 14.6 %

(fixed weights) (0.420) (2.14) (– 1.10) (1.05)
MCS 32.5 % 1.32 % 88.6 % 13.4 %

(variable weights) (0.454) (2.22) (– 1.20) (1.11)
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(a) SF2 = 0.777 (b) SF2 = 1.02

(c) SF2 = 1.21 (d) SF2 = 1.62

Fig. 8. Some conditional distributions of LA9 for IM following the log-normal distribution

come from numerical procedures that retain the accuracy from nonlinear structural analysis.
These results enable us to investigate the details of seismic reliability analysis. The traditional
method determines the failure probability from the summation of conditional distributions from
ground motions. As the number of ground motions is typically limited, some errors to the
conditional failure probability are likely caused by the limited number of data points, as shown
in Figs. 3, 4, 7 and 8. Some of these figures are truncated for the comparison with the results

Fig. 9. Probability distributions of LA3 from MCS

145



J. Gu / Applied and Computational Mechanics 18 (2024) 133–148

of LA3. These errors are likely propagated to and accumulated in the final results of the failure
probability in (2). Meanwhile, the failure probability with MCS is directly determined from the
ranked results with the interaction between ground motions and intensity. Therefore, the results
with MCS are expected to be relatively accurate.

The effect of seismic weights to the final results of the probability of failure does not appear
to be significant in general. However, some conditional distribution curves show that seismic
weights do affect the results. This observation can also be seen from the results of MCS (Figs. 5
and 9), especially at the tail of the distribution curves. It can be explained by structural nonlin-
earity from plastic hinges and P-Delta effect that amplifies the uncertainty from seismic weights.
It also implies that the reliability of certain other structures with significant nonlinearity could
be affected by the uncertainty of seismic weights for large events.

The conditional probability distributions from the traditional method and the CDF from
MCS appear to have various shapes, some of which may not be fitted well with common distri-
bution types used in engineering analysis, such as the normal or log-normal distribution. There-
fore, using algebra-based equations with their parameters calibrated from data-fitting techniques
may not produce accurate results. It would be reliable to use the numerical procedures to de-
termine the probability of failure. Although the numerical procedures may need more NDA
compared to traditional analysis, the additional computational demand can be alleviated by the
use of advanced computing technology, such as HPCs.

It can be seen from Tables 2–3 that the conditional probability exceeding the drift capacity
of 2.5 % for log-normal distributions appears to be greater than 75 %. This large conditional
failure probability indicates that the 2.5% drift capacity is only for the purpose of reference and
may not be suitable to investigate collapse prevention. For the studied sample buildings, the
drift capacity of 6.3 % appears to be reasonable, as the drift is used as the demand measure to
study collapse safety. With the extreme distribution for IM, the calculated probability of failure
is between 0.67 % and 1.7 %, corresponding to the reliability indices of 2.5 to 2.1. This result
is interpreted as the global reliability of structures. As the occurrence probability of extreme
earthquake events is very low, this level of probability of failure can be judged to be sound con-
sidering the tremendous cost to increase the capacity for earthquake design of such structures.
With the log-normal distribution, the calculated probability of failure ranges between 8 % and
15 %, equivalent to the reliability indices of 1.4 to 1.0. This result is interpreted as the condi-
tional reliability of structures when MCE occurs. Although these reliability indices appear to
be lower, they should be interpreted as the safety margin at the targeted design earthquake, i.e.,
MCE, with its uncertainty associated with design intensity levels. It should be mentioned that
these results are based on two frame buildings with the intensity measure of spectral accelera-
tion scaled at the fundamental period.

5. Conclusions

Accurately quantifying seismic reliability of SMRF structures needs to incorporate the results
from nonlinear structural dynamic analysis with seismic reliability methods and their numerical
procedures. This paper presents the application of two seismic reliability methods, the tradi-
tional method and MCS. In order to capture the accuracy of results from NDA, numerical proce-
dures of these methods are introduced to quantify the probability of failure. A novel application
of these methods is to quantify seismic reliability with numerical procedures, which can provide
accurate information toward safe structures. These methods can also be used to perform sensi-
tivity analysis of various factors. The uncertainties from intensity, ground motions, and seismic
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weights are calculated for their contribution to seismic probabilistic behaviour of the buildings.
The random variables are sampled and combined to generate vector inputs, which are fed to
structural models for NDA on clusters. One three-story and one nine-story SMRF building are
used as archetype buildings with the consideration of plastic hinges and panel zones. Peak drift
demands of dynamic analysis from the structural models are extracted for seismic reliability
analysis.

The results of reliability analysis indicate that both the traditional method and MCS can be
used to numerically evaluate the reliability of structures. The results also indicate the probability
of failure of the structures ranges between 0.67 % and 1.7 % for MCE (or reliability indices
of 2.5 and 2.1). If an MCE does occur (corresponding to the log-normal distribution), the
conditional probability of failure would be between 8 % and 15 % (or conditional reliability
indices of 1.4 and 1.0). The results of the analysis reveal that algebra-based equations with
their parameters calibrated from data-fitting techniques may not be accurate. Such results can
be used to calibrate seismic provisions toward life-cycle design and management. The methods
and procedures discussed in the paper can be further extended to quantify other indices for
community resilience under earthquake disasters.
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