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Linearization of friction effects in vibration of two rotating blades
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Abstract

This paper is aimed at modelling of friction effects in blade shrouding which are realized by means of friction
elements placed between blades. In order to develop a methodology of modelling, two blades with one friction
element in between are considered only. Flexible blades fixed to a rotating disc are discretized by FEM using 1D
Rayleigh beam elements derived in rotating space as well as the friction element modelled as a rigid body. The
blades and the friction element are connected through two concurrent friction planes, where the friction forces
arise on the basis of centrifugal force acting on the friction element. The linearization of friction is performed
using the harmonic balance method to determine equivalent damping coefficients in dependence on the amplitudes
of relative slip motion between the blades and the friction element. The methodology is applied to a model of two
real blades and will be extended for the whole bladed disc with shrouding.
c© 2013 University of West Bohemia. All rights reserved.
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1. Introduction

Blades are the common and the most important elements in turbine design. With the increase of
an energy consumption turbines are still innovated and the power of developed turbines is grow-
ing. On the other hand it brings the greater complexity of newly produced energy systems and
higher requirements on blades strength and fatigue. Even if a machine is properly designed with
respect to excitation frequencies and turbine eigenfrequencies, some excitation sources cannot
be included in preliminary developments. Therefore the blades should be designed in such a
way that they can absorb vibrations caused by unexpected or unusual excitation. Mathematical
and computational models of blades and their systems are suitable tools for the investigation of
their dynamical properties and for their optimization.

One of the most usual approaches to the suppression of undesirable blade vibrations is the
employment of various friction effects. Detailed investigation of influences of friction on dy-
namical response of a simplified mechanical system represented by a beam can be found in [4].
Mainly the microslip phenomenon is discussed. Another method, which is analytical one and
is connected with non-spherical geometries, is developed in [1]. Many publications deal with
the friction induced by means of underplatform (wedge) dampers. A method for the calculation
of static balance supposing an in-plane motion of the wedge dampers is developed in [6]. An
analytical approach is described in [2] and comparison of numerical simulation results with the
results obtained by linearization is shown in [5]. The harmonic balance method for the eval-
uation of friction effects in blade dynamics represented by a very simple discrete mechanical
system is discussed in [3]. Also experimental methods for the evaluation of friction significance
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Fig. 1. Two rotating blades with a friction element

in the problems of blade vibrations are very important. Some comparison of experimental and
theoretical analysis is shown in [15], pure experimental results are described in [14] and the
influences of temperature are experimentally investigated in [13].

This paper deals with the modelling and dynamical analysis of a spatial system of two adja-
cent flexible blades with rigid shroud and one friction element, which is placed in shroud. The
dynamic analysis approach is based on the harmonic balance method to replace the nonlinear
friction forces with linear viscous forces determined by equivalent damping coefficients.

2. Modelling of two blades with friction coupling in rotating space

Let us consider a rigid disc with flexible blades which rotates with constant angular velocity
ω in a fixed space xf , yf , zf . The blade foots are fixed to the disc and every two adjacent
blades are connected by means of a friction element which is wedged between the blade shrouds
(see Fig. 1). As the blades rotate, the centrifugal force pushes the element towards contact
surfaces a and b of the adjacent blade shroud and normal forces at the contact patches increase.
Consequently, larger friction forces act on shroud in case of slip motion between the shroud and
the friction element.

2.1. Rigid body

First, let us derive equations of motion of a rigid body in coordinate space x, y, z rotating with
constant angular velocity ω around fixed axis yf . The position of the body is described in
rotating coordinate space x, y, z by three displacements u, v, w of the gravity centre C and
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Fig. 2. Rigid body in rotating system space

three small Euler’s angles ϕ, ϑ, ψ (see Fig. 2). Then we can formulate the kinetic energy of the
body as

Ek =
1

2
mvT v +

1

2
ωTIω, (1)

where m is mass of the body, I denotes inertia matrix of the body with respect to the coordinate
system ξ, η, ζ which is fixed with the body. Vectors

v = [u̇ + wω, v̇, ẇ − (rC + u)ω]T and ω = [ϕ̇ + ωψ, ω + ϑ̇, ψ̇]T (2)

define the velocity of the gravity centre and approximated resulting angular velocity of the body.
Using the Lagrange’s equation we can derive conservative model of the body in the rotating
system in matrix form

MRq̈R + ωGRq̇R − ω2Kd,RqR = fω,R, (3)

where qR is the vector of the rigid body (subscript R) generalized coordinates qR =
[u, v, w, ϕ, ϑ, ψ]T . Matrix MR is mass matrix, GR is skew symmetrical matrix of gyroscopic
effects and Kd,R constitutes matrix of softening under rotation. Force vector fω,R expresses
effects of centrifugal forces.

2.2. Single blade with shroud

Further, we will deal with modelling of a single blade using one dimensional beam finite el-
ements in rotating system. Let us recall the mathematical model of a blade with shroud in
rotating space. Detailed description and matrix derivation can be found in [7, 8, 17].

The mere blade is divided into N − 1 beam finite elements using N nodal points. Let us
suppose, the blade foot is fixed to the rotating rigid disc at nodal point “1” (see Fig. 1). The
shroud, which is the blading equipped with, is supposed to be a rigid body whose center of
gravity is fixed to the last nodal point N placed at the free end of the blade (points C1 or C2 in
the Fig. 1). Mathematical model of a decoupled rotating blade (subscript B) with shroud can
be written in the matrix form [7, 17]

MBq̈B + (ωGB + BB)q̇B + (Ks,B − ω2Kd,B + ω2Kω,B)qB = fω,B, (4)
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where MB , BB , Ks,B are symmetrical mass, material damping and stiffness matrices, respec-
tively. Matrix GB is skew-symmetrical and expresses gyroscopic effects. These matrices are
assembled in local configuration space of the blade rotating around axis yf with longitudinal
axis xj (j = 1, 2) defined by vector of generalized coordinates qB ∈ R

6N having following
structure

qB = [. . . ui, vi, wi, ϕi, ϑi, ψi, . . . ]
T , i = 1, . . . , N, (5)

where ui, vi, wi are translational and ϕi, ϑi, ψi are rotational displacements of the blade in node i
(see Fig. 1). Matrix Kd,B is matrix of softening under rotation and Kω,B is matrix of bending
stiffening that expresses the influence of resistance in bending produced by centrifugal forces
acting on the blade. The force vector fω,B describes centrifugal forces acting on blade elements
at their nodes.

The model of the shroud is included in matrices MB, GB and Kd,B where mass, gyroscopic
and stiffness matrices of the shroud presented in (3) are added on positions corresponding to
coordinates of the nodal point N . Similarly, vector fω,B of centrifugal forces is modified and
the centrifugal force acting on the shroud modelled as a rigid body is added on position corre-
sponding to the mentioned nodal coordinates.

2.3. Model of blade couple with friction element

Here, the model of two adjacent blades interconnected by a friction element will be introduced
(Fig. 1). Based on previous sections, corresponding mathematical model can be written in
generalized rotating coordinate system defined by vector q = [qT

1 , qT
R, qT

2 ]T ∈ R
6(N1+1+N2) in

following form

Mq̈ + (ωG + B + BC)q̇ + (Ks − ω2Kd + ω2Kω + KC)q + h(q̇) = fω. (6)

Mass, damping and stiffness matrices are arranged using models of the blades and the rigid
body. Matrices in (6) are block diagonal and have this structure

M = diag (M1, MR, M2) , G = diag (G1, GR, G2) ,

B = diag (B1, 0, B2) , Ks = diag (Ks,1, 0, Ks,2) ,

Kd = diag (Kd,1, Kd,R, Kd,2) , Kω = diag (Kω,1, 0, Kω,2) ,

(7)

where indices 1 and 2 designate the first and the second blade, respectively. The index R
corresponds to the friction element, which is modeled as a rigid body. The vector of excitation
has the form fω = [fT

ω,1, fT
ω,R, fT

ω,2]
T . The mathematical model (6) includes moreover coupling

stiffness matrix KC and the vector h(q̇), which express stiffness effects and nonlinear friction
forces in friction couplings between the shroud of blade 1 and 2 and the friction element R,
respectively. Damping matrix proportional to contact stiffness matrix BC = βCKC comprises
the influence of contact damping in contact surfaces.

2.3.1. Coupling stiffness determination

Let us deal with force effects arising in contact patches between the shroud and the friction
element. The friction element has two contact surfaces a and b. At geometrical centers B1

and A2 of the surfaces, coordinate systems ξB, ηB, ζB and ξA, ηA, ζA are placed in such a way,
that planes ξBηB and ξAηA coincide with surfaces a and b, respectively, and axes ζB and ζA are
perpendicular to them (see Fig. 1, left bottom). In these coordinate systems, the forces acting
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Fig. 3. Forces acting on friction element

on the friction element at point B1 (A2) can be expressed using normal force NB1 (NA2) and
friction forces TB1ξ and TB1η (TA2ξ and TA2η). The resultant normal forces can be written as

NB1 = NB,0 − kb

(
ξT

B,C1
qC1 − ξT

B,DqD

)
, NA2 = NA,0 + ka

(
ξT

A,C2
qC2 − ξT

A,DqD

)
, (8)

where NB,0 and NA,0 are magnitudes of normal forces resulting from equilibrium conditions of
non-vibrating friction element

NA,0 = mrDω2 cos δb

sin(δa + δb)
, NB,0 = mrDω2 cos δa

sin(δa + δb)
. (9)

Angles δa and δb describe friction element skewing (see Fig. 3). Parameters kb and ka express
translational contact stiffnesses of contact patches and their linearized magnitudes are expressed
according to

ka =
NA,0

γa

· 106[N/m], kb =
NB,0

γb

· 106[N/m]. (10)

Symbols γa and γb designate surface contact deformation in micrometers and are defined as
follows [12]

γa = cσp
a, γb = cσp

b , (11)

where c is contact deformation coefficient, p is contact power index and σa, σb express average
contact pressure. According to contact pressure definition, in case of neglecting of vibration
influence it holds

σa =
NA,0

Aef,a

, σb =
NB,0

Aef,b

, (12)

where Aef,a = hefaef and Aef,b = hefbef designate supposed effective area of the correspond-
ing contact surface, whose size can be estimated based on its experimentally gained wear-
ing [10]. Vectors ξXY ∈ R

6,1 are geometric transformation vectors which transform the blade
displacements in nodal point Y described by vector qY to a normal displacement of the contact
point X at the contact surface. The terms in brackets in (8) express relative normal contact
deflection between the shroud and the friction element with respect to the contact surface.

Since the blade shrouds and the friction element can rotate about their gravity center axes,
it is necessary to include moreover the influence of torque in the contact surfaces. Under the
assumption of identical contact stiffness in whole contact areas, the resultant torque can be
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described by so called rotational contact stiffnesses of contact surfaces which are defined using
the translational contact stiffnesses in following way

k(a)
xx =

ka

12
cos2 δa h2

ef , k(b)
xx =

kb

12
cos2 δb h2

ef , k(a)
yy =

ka

12
a2

ef , k(b)
yy =

kb

12
b2
ef ,

k(a)
zz =

ka

12
sin2 δa h2

ef , k(b)
zz =

kb

12
sin2 δb h2

ef .

(13)

Used quantities ka and kb are defined above as well as the meaning of angles δa and δb. The
stiffnesses k

(a)
ax and k

(b)
ax of axial mounting of the friction element in the shroud of both blades

in direction of axis y depend on the structure design. These stiffnesses influence the blade
vibration very few and hinder friction element falling out. They are invariant with respect to all
used coordinate systems because the axial mounting is parallel with z axes which are mutually
parallel too.

Based on the above mentioned assumptions, we can express vectors of conservative forces
describing mutual acting of the friction element and the blade shrouds. Because of their as-
sumed linearity, the force vectors can be substituted by the coupling stiffness matrix presented
in (6) which can be written as a sum of

KC = K
(t)
C + K

(r)
C + K

(ax)
C , (14)

where matrices on the right hand side describe influence of translational, rotational and axial
coupling stiffnesses, respectively.

2.3.2. Friction effects determination

Now, let us deal with the nonconservative part of coupling forces. The friction forces acting on
the friction element concentrated into central contact points B1 and A2 are nonlinear and can be
expressed as

−→
T B1 = fbNB1

−→v s,B1

|−→v s,B1|
,

−→
T A2 = faNA2

−→v s,A2

|−→v s,A2|
, (15)

where fb (fa) is the friction coefficient of friction surface b (a) and −→v s,B1 (−→v s,A2) is slip velocity
of blade shroud “1” (“2”) with respect to friction element in point B1 (A1) expressed in ξBηB

(ξAηA) plane. The friction forces acting on the blade shroud have opposite direction.
To linearize the nonlinear friction forces (15) included in (6), the harmonic balance method

is used. There are many linearization techniques employed in nonlinear system investigation
[9]. It depends on which kind of parameters one needs to investigate and on the excitation
included in the system. The aim of the linearization technique is to replace the original nonlinear
system with a linear one. The method chosen here is based on following assumptions:

1. Both nonlinear friction torques and forces acting on a friction element interact mutually
very weak, therefore equivalent damping coefficients can be considered independently.

2. The slip motion of friction surfaces can be simply considered as one degree of freedom
motion in the direction of the slip.

3. Excitation is supposed to be a periodic function as well as the steady-state response.

4. The friction and excitation forces are expandable into a Fourier series.
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Based on this, the term for determination of equivalent damping coefficient for k-th harmonic
component with angular frequency ωk [16] can be derived in following form

be(ak, ωk) =
4T

πakωk
, (16)

where T is the magnitude of friction force, ak is the amplitude of steady slip motion and ωk

is excitation angular frequency. According to known experimental observations, the term (16)
does not fit real, measured amplitudes of slip motion. In [11], a modification of (16) is suggested

be(ak, ωk) =
4T

π(akωk)1.112
. (17)

Physically, the term akωk presents the amplitude of corresponding harmonic component of the
slip velocity. Using the modified equivalent damping coefficient (17), each harmonic com-
ponent of nonlinear friction forces (15) can be linearized and expressed by the coefficient of
equivalent viscous translational and rotational damping (e.g. for the point B1)

b(t)
e (a

(t)
B,k, ωk) =

4T

π(a
(t)
B,kωk)1.112

, b(r)
e (a

(r)
B,k, ωk) =

4M

π(a
(r)
B,kωk)1.112

. (18)

Variables a
(t)
B,k and a

(r)
B,k constitute translational and rotational slip amplitudes excited by k-th

harmonic component, respectively. The linearized friction forces in (15) and friction torque
MB1 acting on the friction element can be then rewritten using (16) into (again for the point B1)

−→
T B1 =

4T

π(a
(t)
B ω0)1.112

−→v s,B1, MB1 =
4M

π(a
(r)
B ω0)1.112

ψ̇B , (19)

where magnitude of friction force reads T = fbNB,0 and providing the same contact pressure on
a circular surface with radius ref , magnitude M of friction torque is M = 2

3
fbrefNB,0. Variable

ψ̇B designates relative rotational slip velocity of the blade “1” with respect to friction element
in ξBηB plane, i.e. about ζB axis (see Fig. 2).

For illustration, ξ-component of friction force expressed in coordinate system of the friction
element states as

TB1ξ = b(aBϕ)cBξ, (20)

where aBξ is the slip amplitude in ξ-direction and cBξ represents ξ-component of slip velocity
and can be expressed as

cBξ = τ T
B,C1

q̇C1 − τ T
B,Dq̇D. (21)

Quantities τ T
B,C1

and τ T
B,D are shown in (29).

Finally, the nonlinear mathematical model (6) can be equivalently replaced by linearized
one for each excitation harmonic component with frequency ω0

Mq̈+(ωG+B+BC +Be(a, ω0))q̇+(Ks−ω2Kd+ω2Kω+KC)q = fω+f (ω0)e
iω0t. (22)

Friction torques and forces are represented by equivalent damping matrix Be(a, ω0), where
a = [ a

(t)
A , a

(r)
A , a

(t)
B , a

(r)
B ]T is a vector containing steady slip amplitudes. Vector f (ω0) of

complex amplitudes represents external harmonic excitation with frequency equal to ω0.

11
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2.3.3. Equivalent damping calculation for steady-state response

Even if the terms in (18) hold, they depend on slip amplitude of the examined motion. For
this purpose, it is necessary to perform any estimation of this amplitude. To approach the
real slip amplitude as close as possible we use the linearized model neglecting the equivalent
damping matrix. Further, let us point out, that the force vector fω in (22) includes constant
centrifugal forces in the rotating coordinate system and therefore corresponding response is a
constant vector of displacements. This vector has also no influence on the equivalent damping
coefficients. In the next, the influence of centrifugal forces can be neglected and the equivalent
damping coefficients are calculated for harmonic excitation. To gain the global response to
harmonic and centrifugal (static) excitation the superposition law for linear systems can be
advantageously used.

Let us find the steady-state solution of (22) in rotating system space in complex domain in
this form

q(t) = q̃(ω0)e
iω0t, (23)

where q̃ is a vector of complex amplitudes of displacements and i =
√
−1. To determine the

complex amplitude, let us put (23) in (22) for fω = 0, Be = 0 and we obtain

q̃(ω0) =
[
−ω2

0M + iω0(ωG + B + BC) + (Ks − ω2Kd + ω2Kω + KC)
]−1

f (ω0), (24)

where f (ω0) is vector of complex amplitudes of harmonic excitation. Based on the vector of
complex amplitudes of displacements, the complex amplitudes of slip motion between contact
surfaces can be determined. Let us focus on contact point B1. The complex translational slip
amplitude in ξBηB plane can be defined as

ãB = ãBξ + i ãBη = aBξ + i aBξ + i(aBη + i aBη), (25)

where ãBξ and ãBη are complex slip amplitudes in the direction of ξB and ηB axis, respectively,
a and a denote real and complex part. The complex amplitudes are determined for contact point
B1 as follows

ãBξ = ξT
B,C1

qC1 − ξT
B,DqD, ãBη = ηT

B,C1
qC1 − ηT

B,DqD, (26)

for contact point A2

ãAξ = ξT
A,C2

qC2 − ξT
A,DqD, ãAη = ηT

A,C2
qC2 − ηT

A,DqD (27)

and complex rotational slip amplitudes

ãAϕ = τ T
A,C2

q
(r)
C2

− τ T
A,Dq

(r)
D , ãBϕ = τ T

B,C2
q

(r)
C2

− τ T
B,DqD. (28)

Transformation vectors ξX,Y (ηX,Y ) ∈ R
6,1 transform the blade displacements in nodal point Y

defined by vector qY to a translational displacement in ξ (η) direction of contact point X laying
in the contact surface. Vectors τX,Y ∈ R

3,1 transform rotational displacements in nodal point Y

described by vector q
(r)
Y to rotational displacements in contact point X . Transformation vectors

12
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have following structure

ξT
B,C1

= [sin δB, 0, cos δB, 0,−BC1 sin δB, 0],

ξT
B,D = [sin δb, 0, cos δb, 0, BD sin δb, 0],

ηT
B,C1

= [0, 1, 0, BC1, 0, 0],

ηT
B,D = [0, 1, 0,−BD, 0, 0],

ξT
A,C2

= [− sin δA, 0, cos δA, 0,−AC2 sin δA, 0],

ξT
A,D = [− sin δa, 0, cos δa, 0, AD sin δa, 0],

ηT
A,C2

= [0, 1, 0,−AC2, 0, 0],

ηT
A,D = [0, 1, 0, AD, 0, 0],

τ T
A,C2

= [cos δA, 0, sin δA, 0, AC2 cos δA, 0],

τ T
A,D = [cos δa, 0, sin δa, 0,−AD cos δa, 0],

τ T
B,C1

= [cos δB, 0,− sin δB, 0,−BC1 cos δB, 0],

τ T
B,D = [cos δb, 0,− sin δb, 0, BD cos δb, 0].

(29)

The subscripts of the contact point designation have been left out according to relations
(25)–(29).

Using the relations (25)–(28), equivalent damping coefficients (18) can be evaluated for
both contact surfaces and for each harmonic component of excitation. Instead of the amplitude
of corresponding slip motion, the absolute value of complex amplitudes (25) has to be used.
Expressing the vector of slip amplitudes a = [ |ã(t)

A |, |ã(r)
A |, |ã(t)

B |, |ã(r)
B | ]T we can determine the

equivalent damping matrix in (22) and evaluate the vector of complex amplitudes of displace-
ments taking into account the linearized nonlinear friction effects.

3. Application

The methodology of the modelling presented above is used for dynamic analysis of a real blade
couple (see Fig. 4). Although the real blade packet consists of five blades connected with four
friction elements, the methodology is proved on one blade couple connected with one friction
body. The blades are fixed to a rigid disc rotating with constant angular velocity. Detailed
geometrical description of the blades was gained from [10]. Based on the derived methodology,
in-house software for computational blade modelling was developed. Using this software, each
blade was divided by six nodal points into five finite beam elements. Final computational model
has 78 DOF (two blades and one friction body). Basic geometrical parameters (see Fig. 1) used
during numerical calculations are: b = 0.006 m, h = 0.02 m, l = 0.21 m, rD = 0.4655 m,
δa = 20◦, δb = 0◦, weight of friction element m = 0.008 6 kg. Parameters used for contact
stiffnesses calculations c = 3, p = 0.5. Dimensions of effective are contact surface are supposed
to be ha ef = hb ef = 0.016 m, aef = 0.005 1 m, bef = 0.004 8 m and the friction coefficient f
is varied from 0.1 to 0.3.

3.1. Modal analysis

The derived linearized model (22) is used as a first approximation of the nonlinear behaviour of
the blade packet. Performing the modal analysis, we can see the influence of friction damping
on the spectrum of natural frequencies.
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Fig. 4. Blade packet with friction elements

Table 1. Chosen natural frequencies of blade couple — conservative model

ν
Natural frequency [Hz] Mode shape

0 rpm 2 000 rpm 3 000 rpm

1 133.8 136.9 140.7 blade bending in xy plane
2 153.7 198.2 197.9 blade bending in xy plane, FE displacement
3 158.2 267.5 268.2 blade bending in xz plane
4 178.3 540.4 561.4 dominant blade torsion
5 266.8 955.8 959.7 blade bending in in xy plane
6 356.4 1 012.5 1 020.2 blade torsion
7 449.2 1 255.5 1 270.8 blade bending in xz plane
8 724.2 1 680.4 1 693.7 blade bending in xz plane
9 958.8 1 866.3 1 868.1 blade bending in xz plane
10 959.1 2 622.2 2 716.6 blade torsion
11 1 058.4 2 729.6 2 775.2 blade bending in yz plane, FE twisting about z axis
12 1 554.2 2 881.5 3 294.2 blade torsion, FE twisting about z axis

Abbreviation FE denotes Friction Element.

3.1.1. Conservative model

To gain natural frequencies and corresponding mode shapes of the conservative model, we per-
form the modal analysis of the model (22) where we put B = Be = BC = 0. Because of the
presence of matrices of softening and bending stiffening under rotation and of the matrix of gy-
roscopic effects in the model, natural frequencies depend on angular velocity ω = πn/30 rad/s,
where n designates rotational speed of the disc defined in revolutions per minute. The eigen-
values are complex conjugate with zero real part. Imaginary parts of chosen eigenvalues are
presented in the Table 1 along with the description of corresponding mode shapes. As the disc
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Table 2. Influence of friction on real parts of eigenvalues — nonconservative model

ν
Eigenvalues fν [Hz]

f = 0 f = 0.1 f = 0.2 f = 0.3 f = 0.4

1 −0.6 + 136.9i −0.002 −0.001 −0.000 7 −0.000 5
2 −1.2 + 198.8i −0.1 −0.05 −0.02 −0.01
3 −2.2 + 267.5i −2.7 + 188i −4.3 + 188.2i −0.1 −0.1
4 −9.1 + 540.2i −2.4 + 267.5i −2.5 + 267.5i −5.9 + 188.5i −7.5 + 188.9i
5 −28.5 + 955.4i −21.4 + 594.2i −31.4 + 595.5i −2.7 + 267.5i −2.8 + 267.5i
6 −32 + 1 012i −52 + 1 001i −72 + 1 008i −41 + 598i −50.5 + 601.4i
7 −49 + 1 254i −52 + 1 205i −59 + 1 207i −89 + 1 018i −102 + 1 031i
8 −88 + 1 678i −78 + 1 562i −77 + 1 562i −65 + 1 209i −71 + 1 213i
9 −109 + 1 863i −113 + 1 857i −117 + 1 857i −77 + 1 562i −77 + 1 562i
10 −215 + 2 613i −160 + 2 246i −161 + 2 247i −122 + 1 858i −126 + 1 856i
11 −233 + 2 719i −326 + 2 745i −411 + 2 764i −161 + 2 247i −161 + 2 248i
12 −260 + 2 870i −544 + 3 287i −545 + 3 459i −490 + 2 805i −552 + 2 868i

All presented eigenvalues has been calculated for 2 000 rpm and for nozzle excitation with thirty fold
times higher frequency than disc speed.

rotates, stiffening effects under rotation increase and values of natural frequencies increase too,
except the lowest one. Mode shapes and natural frequencies under rotation are moreover in-
fluenced by the lock-effect, which is caused by centrifugal forces acting on friction element.
After locking, blade shrouds are interconnected as if they are one rigid element and between the
friction areas the micro-slip motion appears only.

3.1.2. Nonconservative model

Taking into account the influence of contact and friction damping, number of complex eigenval-
ues vanishes and real eigenvalues appear instead. This is the desired positive effect of friction
damping because corresponding mode shapes are also super-critically damped. This effect can
be clearly seen in Table 2, where first twelve eigenvalues are presented for different contact fric-
tion coefficients. For example, if friction coefficient f = 0.2 and rotational speed is 2 000 rpm,
we have 47 complex conjugate eigenvalues and 62 negative real eigenvalues. The number of
complex and real eigenvalues changes slightly along with rotational speed of the disc. Fur-
ther, because of the influence of matrices of softening and bending stiffening under rotation
and because of the coupling friction effects, imaginary parts of eigenvalues depend not only
on rotational speed but also on excitation frequency. This effect can be clearly seen in Fig. 5,
where imaginary parts of first ten eigenvalues are plotted in dependence on rotational speed of
the disc. The straight line corresponds to dependence of excitation with frequency thirtyfold
higher than rotational frequency of the disc. This case corresponds to undermentioned consid-
ered excitation frequency. Further, it is worthy to be noticed here that the considered excitation
is defined in (30) and it acts in axial direction of the disc. Therefore, imaginary parts of eigen-
values corresponding to mode shapes dominantly vibrating in axial direction are influenced only
(i.e. the fourth, the sixth, the eighth and the tenth mode). As an illustration, in Fig. 6, chosen
mode shapes are plotted considering damped model (f = 0.2) rotating with rotational velocity
of 2 000 rpm.
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Fig. 5. Dependence of imaginary parts of eigenvalues on rotational speed of the disc and on excitation
frequency

(a) 1st mode (b) 2nd mode (c) 3rd mode

(d) 4th mode (e) 5th mode (f) 6th mode

Fig. 6. Chosen mode shapes corresponding to damped model

3.2. Steady-state response to external excitation

The model derived above was used for determination of steady-state response to arbitrary har-
monic component of periodic excitation with frequency corresponding to angular velocity ω of
the disc. The excitation considered here simulates electromagnetic pulses acting on the blade
shroud. The electromagnets are placed in the fixed nonrotating system and act on the blades
at an instant of blade passage around the electromagnet (see Fig. 4). Since the blades rotate
with constant angular velocity ω, the electromagnetic pulses acting on each blade are mutually
delayed by Δt = 2π

ωnB
, where nB denotes number of blades uniformly distributed around the

circumference of the rotating disc. By the reason that the excitation regarding bladed disc is
periodic with basic frequency equal to rotational frequency of the disc, the vector of complex
amplitudes of external periodic excitation in (24) can be determined using Fourier series with
the first K terms in following form

f (ω, t) = [. . . , 0, . . . , e−iωΔt, . . . , 0, . . . , 1, . . . , 0, . . . ]T
K∑

k=1

Fke
ikωt, Fk = F0/k, (30)
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where the two nonzero elements denote complex amplitudes of excitation with fundamental
frequency ω and correspond to coordinates describing axial displacements (in direction of ro-
tation axis) of and nodes C1 and C2 of both blade shrouds. The excitation of the first blade is
time-shifted about Δt which designates the time between passage of baldes around the electro-
magnet. Based on the periodic excitation (30), the steady state response can be calculated for
each harmonic component of excitation.

3.3. Steady-state calculation procedure

The calculation procedure of steady-state response of two blades with shroud can be summa-
rized as follows:

1. Creation of the model of blade couple with friction element considering material damping
only and neglecting both friction forces in contact planes (f = 0), i.e. determining the
matrices in (7).

2. Contact stiffness and damping matrices determination according to (8)–(14) and further
detail described in Appendices A and B.

3. Mathematical model creation without friction forces effects.

4. Steady-state response calculation for given harmonic excitation (24) without friction for-
ces effects.

5. Calculation of complex slip amplitudes of steady-state harmonic motion according to
(25)–(28) in contact points A and B.

6. Determination of coefficients of equivalent viscous translational and rotational damp-
ing (18) using absolute values of complex slip amplitudes in contact points A and B.

7. Composition of equivalent damping matrix based on equivalent viscous coefficients.

8. More accurate steady-state response calculation for given harmonic excitation consider-
ing the equivalent viscous friction damping.

Following above mentioned eight steps one can get steady-state response of a blade couple con-
sidering the friction effects in the blade shroud. Steps 4 to 8 can be used as an iteration process
when the steady-state response from step 8 is chosen to be an initial condition for the second
and the later iterations. In the next, presented results have been gained using the first iteration
only because the iteration process do not converge due to the equivalent damping coefficients
expression (18). The point is that taking into account the equivalent damping coefficient, the
steady-state response decreases along with slip amplitudes and therefore the equivalent damp-
ing coefficient increases. Also, this approach can serve as a first approximation of the nonlinear
model solution only.

As an illustration, in Fig. 7 absolute values of complex amplitudes of translational displace-
ments of the first blade shroud are plotted in dependence on rotational speed for k = 30 and
F0 = 100 N. The friction coefficients of both friction surfaces are equal fa = fb. The considered
harmonic part of excitation corresponds to nozzle frequency (k = nB). Then resonant speeds
nν,k = 60/kIm{fν} rpm in given speed range correspond to ν-th natural frequency excited by
k-th harmonic component of excitation.
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Fig. 7. Absolute values of complex amplitudes of translational displacement of the first blade shroud in
direction of rotation axis for different friction coefficients

One can see three resonant peaks in Fig. 7 corresponding to the fourth and to the sixth natural
frequency, n

(1)
4,30 = 980 rpm, n

(2)
4,30 = 1 150 rpm and n6,30 = 2 045 rpm. Taking into account

the mode shapes plotted in Fig. 6 and the axial direction of excitation, the resonant frequencies
coincide with natural frequencies corresponding to bending mode shapes in xy plane. The first
two peaks correspond to the fourth frequency because of the dependence of imaginary parts of
eigenvalues on rotational speed and on excitation frequency. Comparing Fig. 5 and Fig. 7 the
leading line intersects the fourth frequency in two points. Changing the friction coefficient, the
values of fourth frequency draw apart the leading line in the area of first resonant peak. And
that is the reason why the first peak is less dominant for higher values of friction coefficient.

4. Conclusion

This paper presents a method focused on modelling of friction effects in blade shroud which
are realized by means of friction elements placed in between the blade shroud. A model of
two rotating blades with shroud is derived and can be easily generalized for complete bladed
disc as well as the developed methodology for linearization of nonlinear friction forces acting
between the blades and the friction element. The first gained results confirm that the efficiency
of friction forces is dominant in resonant states. The linearization of friction forces is based on
the harmonic balance method which is used for equivalent damping coefficients determination
in dependence on the amplitudes of relative slip motion between blades and the friction element.
According to the methodology the in-house software in MATLAB was created and tested on a
model of two rotating blades with shroud.
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Appendix A — Contact stiffness

Let us summarize the determination of contact stiffnesses. The contact stiffnesses can be de-
termined based on expression of contatct forces and contact torques transmitted by contact
surfaces. As the first step, let us express the torques caused by contact forces, which are acting
at friction element by supposed centric placed rectangular effective surfaces a and b, can be ex-
pressed under assumption of constant surface stiffnesses κa = ka/(ha efaef ), κb = kb/(hb efbef)
along the whole contact area. Using this assumption, torques of contact forces, e.g. in surface b,
can be expressed in local coordinate system ξB, ηB, ζB (see Fig. 8) under assumption of relative
angular displacements ϕξB

, ϕηB
, ϕζB

of friction element (surface b) around axes ξB, ηB, ζB with
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respect to the shroud as

M
(b)
ξB

= 2

∫ hb ef /2

0

κb

dA︷ ︸︸ ︷
befdη︸ ︷︷ ︸
dN

ηϕξB︸︷︷︸
deformation

η =
1

12
κbbefhb ef︸ ︷︷ ︸

kζB

h2
b efϕξB

= k
(b)
ξB ξB

ϕξB
,

M (b)
ηB

= 2

∫ bef /2

0

κb

dA︷ ︸︸ ︷
hb efdξ︸ ︷︷ ︸
dN

ξϕηB︸︷︷︸
deformation

ξ =
1

12
κbbefhb ef︸ ︷︷ ︸

kζB

b2
efϕξB

= k(b)
ηB ηB

ϕηB
.

Based on the placement of the coordinate system ξB, ηB, ζB, there appears no contact force
by rotational motion around the ζB axis which is perpendicular to the surface b. Therefore,
corresponding contact torque is zero too

M
(b)
ζB

= 0.

Linearized rotational contact stiffnesses in surface b with respect to axes ξB, ηB, ζB of friction
element result from above given terms, i.e.

k
(b)
ξBξB

=
1

12
kζB

h2
b ef , k(b)

ηBηB
=

1

12
kζB

b2
ef , k

(b)
ζBζB

= 0.

Fig. 8. Friction element detail

Derived contact stiffnesses are expressed in coordinate systems connected with contact sur-
faces. To express contact forces acting on friction element and blade ends, these forces has to
be transformed in proper coordinate systems.

Appendix B — Contact forces and structure of contact matrices

In contact points B1, A2 placed between blade shrouds and friction element, contact elastic
forces and torques are acting. These force effects are transformed into blade end points C1 and
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C2 and into the center of mass D of friction element. In configuration space of generalized
coordinates q ∈ R

6(N1+1+N2), where N1 and N2 are numbers of blade nodes, vector of elastic
couplings forces can be expressed in the form

KCq =
[
. . . , fT

C1
, mT

C1
, fT

a + fT
b , mT

a + mT
b , . . . , fT

C2
, mT

C2

]T
. (31)

Vectors fC1 , fC2 and mC1 , mC2 represent forces and torques by which friction element acts on
blades in nodes C1 and C2. Vectors fa, fb and ma, mb express forces and torques, respectively,
by which the shrouds act on friction element in mass center D. Particular vectors have nonzero
components regarding axes xj , yj, zj (j = 1, 2) and x, y, z.

Let us express particular forms of force and torque vectors presented in equation (31). Vec-
tors fC1 and mC1 express effects of friction element on the blade in node C1. These vectors are
expressed in coordinate system x1, y1, z1 where the origin is identical to point C1. Vector fC1

includes effects of normal and friction forces acting at the blade in contact point B1 and have
following form

fC1 =

⎡
⎣ −NB1 sin δB + TB1ξ cos δB

TB1η

−NB1 cos δB − TB1ξ sin δB

⎤
⎦ .

Symbols TB1ξ and TB1η represent ξ- and η-components of friction force TB1 . Further, the vector
expressing the torque can be expressed as follows

mC1 = RB,C1fC1,

where RB,C1 ∈ R
3,3 is a matrix of vector product and has following antisymmetric structure

RB,C1 =

⎡
⎣ 0 −zB1 yB1

zB1 0 0
−yB1 0 0

⎤
⎦ . (32)

Nonzero elements in the term above represent coordinates of contact point B1 in coordinate
system x1, y1, z1. Let us follow next terms in equation (31). The vector fa represents force
effect of the blade shroud acting on friction element in the surface a with the centre A2 and it
has following form

fa =

⎡
⎣ −NA2 sin δa + TA2ξ cos δa

TA2η

NA2 cos δa + TA2ξ sin δa

⎤
⎦ .

Similarly, the vector fb has the form

fb =

⎡
⎣ −NB1 sin δb + TB1ξ cos δb

TB1η

−NB1 cos δb − TB1ξ sin δb

⎤
⎦ .

Corresponding torques acting on the friction element can be expressed similarly as above

ma = RA,Dfa, mb = RB,Dfb.

Matrices RA,D and RB,D have the structure as shown in (32). Vectors fC2 and mC2 are then
expressed following the same steps as above using corresponding values.
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It is efficient to split their expression to translational contact deformations in dependence on
translational contact stiffnesses ka, kb, rotational contact deformations in dependence on rota-
tional contact stiffnesses derived in Appendix A and to axial contact deformation in dependence
on axial mounting stiffnesses k

(a)
ax and k

(b)
ax of friction element in blade shroud. Therefore, the

vector of elastic coupling forces can be written in separated form

KCq =
(
K

(t)
C + K

(r)
C + K

(ax)
C

)
q,

to which the coupling matrix (14) corresponds. Structure of these matrices is given below,
where crosshatch blocks designate nonzero block matrices of order 6 as well as the dimension
of vectors of generalized coordinates of corresponding nodes.

Fig. 9. Coupling stiffness matrices

22


