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Abstract

In the current paper, we investigate the effect of spin slip conditions for the Couette-Poiseuille flow of a couple
stress fluid between two parallel plates. In the study, the motion of the fluid is considered to be steady, incompress-
ible and unidirectional. At the interface between the fluid and the plates (both the upper and lower), we consider
the non-zero tangential and couple stress spin slip relationships as boundary conditions. We present analytical
expressions for the velocity profile, volume flow rate, vorticity, and couple stresses. This paper discusses the nu-
merical influence of the spin slip parameter, velocity slip parameter, couple stress parameter, and pressure gradient
on the velocity, vorticity, couple stresses, and volume flow rate. Our results show that the presence of the spin
slip parameter reduces the velocity, couple stress and volume flow rate of the fluid, while it enhances the vorticity.
The limiting cases for each problem align well with previously published results regarding the vanishing of couple
stresses at the boundaries. This research helps both researchers and engineers in understanding how to control the
conditions to achieve an efficient fluid flow, particularly in applications involving couple stress effects, such as
microfluidics systems, lubrication technology, and polymeric suspensions.
c© 2024 University of West Bohemia.
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1. Introduction

A fluid that opposes the Newton’s law of viscosity is commonly referred to as a non-Newtonian
fluid and has a wide range of usage in the industrial and technological sectors. Custard, sham-
poo, blood, paint, starch, cornstarch, ketchup and other substances are non-Newtonian fluids.
One specific type of non-Newtonian fluids is called a couple stress fluid, which illustrates the
influences of body couples and couple stresses in a fluid medium. This theory was proposed by
Vijay Kumar Stokes in the 20th century. Over the past 50 years, it has captured the interest of
several fluid mechanics researchers. According to this theory, the stress tensor is antisymmetric
and the rotation vector is defined as half of the curl of the velocity vector. There are numer-
ous scientific and industrial applications for this concept. Modelling the flows of manufactured
fluid, animal blood, liquid crystals, lubrication, and polymer-thickened oils can be done using
the couple stress theory [9, 21].

Many researchers have applied the tangential slip conditions to investigate the various fluid
flow problems. In [5], Ashmawy examined the unsteady problem of a micropolar fluid flow
confined between two parallel plates by implementing slip boundary conditions at the lower and
upper plates. He observed that the velocity, microrotation, and total flux increase with higher
slip parameters. Using the homotopy analysis method, Ellahi [12] studied the impact of slip
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conditions on the fundamental flows of an Oldroyd 8-constant fluid. In [17], Navier provided a
velocity slip boundary condition that establishes a proportional relationship between the shear
rate and the tangential velocity at the solid surface of the fluid. In recent years, significant
interest has arisen in determining approximate boundary conditions for fluid flow in complex
geometries, largely due to advancements in microelectromechanical systems. Neto et al. [18]
proposed an experimental study of Newtonian fluid slip at solid surfaces, which enhances our
understanding of hydrodynamic boundary conditions that can be used to actively control fluid
slip.

The study of classical flow problems is crucial in understanding biophysical and technolog-
ical flows. Examples of fluid flow applications can be found in the cosmetic industry, transpira-
tion cooling, and inkjet printers. The classical flows serve as benchmarks to compare outcomes
from flow problems with complex geometries and to provide precise solutions to the governing
equations. Numerous researchers have analyzed the fundamental fluid flow problems in light
of broader applications. For instance, Ramesh [19] derived analytical solutions for the classi-
cal problem of incompressible Jeffrey flow using parallel plate geometry, by considering the
effects of magnetohydrodynamic (MHD) and radiation. In [13], Hayat et al. found both numer-
ical and analytical solutions for the Couette and Poiseuille flows of an Oldroyd 6-constant fluid
under electric and MHD effects. Chain and Zhu [8] examined the Couette and Poiseuille flow
problems of Bingham fluids between porous plates, utilizing the Beavers and Joseph’s model.
Devakar et al. [10] derived analytical solutions for various classical flows of an incompress-
ible couple stress fluid. Zeeshan et al. [22] addressed the flow of nanofluids through porous
wavy channels, considering the effects of temperature and magnetic and electric fields. Alamri
et al. [3] studied the impact of velocity slip on the nanofluid flow between two parallel plates
under Stefan blowing and MHD effects. Additionally, many interesting problems related to the
unsteady flow of micropolar and couple stress fluids can be found in [1, 2, 6, 7, 15].

This paper examines the impact of spin slip conditions for three fundamental flows. The
conditions allow for the consideration of slip in rotational motion, which is helpful for under-
standing flow near porous or rough surfaces, as well as in microscale flows, where boundary
interactions can be complex. To the best of authors’ knowledge, this study has not been con-
ducted before. The tangential and spin slip conditions are applied at both plates. Here, three
cases are analyzed:

1. In the first case, both stationary plates move with various translatory constant velocities
while the fluid particles rotate. Additionally, the pressure gradient is zero in this case.

2. In the second case, fluid flow occurs due to a pressure gradient, with fluid particles rotat-
ing around their positions.

3. The third case considers a pressure gradient that induces flow, with the upper plate trans-
lating at a constant velocity. However, the lower plate remains stationary and all fluid
particles are rotating.

This research extends the work of Devakar et al. [10] by applying the spin slip conditions
in couple stress fluid flows between two parallel plates. These classical flow problems are
fundamental to various applications, including microfluidics, industrial processes, and fluid flow
in pipes, such as fuel dispersion in engines. In all these applications, viscosity, pressure and slip
parameters directly affect the velocity and volume flow rate, influencing the overall efficiency
of the fluid flow process.
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2. Mathematical model and solution

The governing equations for an incompressible and steady couple stress fluid flow in the absence
of body couple and body forces are given as [21]

∇ · v = 0, (1)
∇p+ µ∇2v + η∇4v = 0, (2)

where v, p, µ, and η denote the velocity, the pressure, the classical fluid viscosity coefficient
and the first couple stress viscosity coefficient, respectively. The stress tensor tij and the couple
stress tensor mij of the fluid are given as [16, 21]

tij = −p δij + 2µdij −
1

2
εijkmsk,s , mij = mδij + 4 η ωi,j + 4 η′ ωj,i , (3)

where m, ωi,j , di,j , εijk, δij , and η′ denote the trace of the couple stress tensor, the spin tensor,
the deformation rate tensor, the alternating tensor, the Kronecker delta and the second viscosity
coefficient of a couple stress fluid, respectively. The material constants satisfy the following
inequalities [16, 21]:

µ ≥ 0, η ≥ 0, η ≥ η′ ≥ −η.

The Kronecker delta δij , the deformation rate tensor dij , and the alternating tensor εijk are
defined as [16, 21]

δij =

{
0 for i 6= j,

1 for i = j,
dij =

1

2
(vi,j + vj,i), εijm =


1 for ε123, ε231, ε312,

−1 for ε132, ε321, ε213,

0 otherwise.

The vorticity vector ω is defined as [21]

ω =
1

2
εijkvk,j. (4)

For the problem under the consideration of unidirectional steady flow, we assume a velocity
field in the following form:

v = (u(y), 0, 0). (5)

Then, equation (2) reduces to

η
d4u

dy4
− µd

2u

dy2
+
dp

dx
= 0. (6)

To obtain (6) in dimensionless form, we used the following non-dimensional variables [10,14]:

ỹ =
y

l
, x̃ =

x

l
, ũ =

u

u1

, s2 =
η

µl2
, p̃ =

p l

µ u1

.

After dropping the symbol (˜), equation (6) becomes

s2d
4u

dy4
− d2u

dy2
= G, (7)

where s =
√
η/ (µl2) is the couple stress parameter and G = − dp

dx
is the pressure gradient. If

s→ 0, the case of a classical fluid is obtained.
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Fig. 1. Three types of flow between two parallel plates

The general solution of the fourth order differential equation (7) is given as

u = Ai +Bi y + Ci e
y/s +Di e

−y/s − Gy2

2
. (8)

The formulas for the shear stress, the vorticity, the couple stress and the volume flow rate
are [10, 21]:

tyx =
du

dy
− s2d

3u

dy3
, ωz = −1

2

du

dy
, myz = 4η

dωz
dy

, Q =

l∫
−l

u dy.

2.1. Boundary conditions

To find the solution of the above described problem, we need four boundary conditions to obtain
the arbitrary constantsAi,Bi, Ci, andDi for the plane Couette flow (i = 1), the plane Poiseuille
flow (i = 2), and the generalized Couette flow (i = 3), Fig. 1. In this analysis, we applied two
hypotheses: (i) tangential slip boundary conditions and (ii) mixed type boundary conditions,
which were firstly assumed by Navier [17] and Stokes [21], respectively. The inclusion of spin
slip conditions enhances the realism and practicality of the flow model and should be used
with tangential slip conditions. The concept of spin slip is often utilized in studying fluid flow
models that involve microstructures, such as polymers, biological fluids, and liquid crystals. In
these cases, the internal rotations and couple stress effects are crucial for analysis. Since the
couple stress fluids allow for the consideration of both shear stress and rotational effects, the slip
influences the effective viscosity and boundary layer properties in the fluid flow models, where
the influence of couple stress effects is significant. The slip arises from the characteristics of
both the surface and the fluid. The spin slip conditions along with tangential slip conditions are
used to solve the problem for the present investigation. Recently, several researchers [4, 11, 21]
have implemented spin slip conditions on solid surfaces.
(i) The tangential slip boundary conditions – the relative velocity between the plates and the
fluid is proportional to the shear stress at the plates [10]:

u(−l)− u2 = α

(
du

dy
− η

µ

d3u

dy3

)∣∣∣∣
y=−l

, u(l)− u1 = −α
(
du

dy
− η

µ

d3u

dy3

)∣∣∣∣
y=l

. (9)

(ii) The couple stress spin slip conditions – vorticity at the boundary is directly proportional to
the rate of rotation of the boundary [4, 11, 21]:

4 η
d2u

dy2

∣∣∣∣
y=−l

= γ
du

dy

∣∣∣∣
y=−l

, 4 η
d2u

dy2

∣∣∣∣
y=l

= −γ du
dy

∣∣∣∣
y=l

, (10)
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where α and γ are the velocity and couple stress spin slip parameters, respectively. The param-
eters depend on nature of plate surface and fluid. In both engineering and biological contexts,
the slip parameters are crucial for accurately predicting flow behavior near interfaces. This
accuracy is essential for designing systems that involve microstructured fluids. For α → 0,
equations (9) denote the no slip conditions and if α → ∞, they represent perfect slip condi-
tions. Also, for γ → 0, equations (10) indicate the vanishing couple stress at the boundaries, it
indicates the mechanical interactions of fluid particles at the plates surface are equivalent to a
force distribution, while γ →∞, there is no relative rotation of fluid particles.

2.2. Plane Couette flow (CF)

Let us consider steady flow of an incompressible couple stress fluid between two parallel plates
that are situated at y = −l and y = l. In this case, there is no pressure gradient (G = 0) for the
fluid flow between the plates. The flow is caused by plates motion. The lower and upper plates
are thought to be moving at constant translational rates u2 and u1, respectively. The boundary
conditions for the plane Couette flow are

u(−1)− δ
(
du

dy
− s2d

3u

dy3

)∣∣∣∣
y=−1

= σ, u(1) + δ

(
du

dy
− s2d

3u

dy3

)∣∣∣∣
y=1

= 1, (11)

d2u

dy2

∣∣∣∣
y=−1

= ξ
du

dy

∣∣∣∣
y=−1

,
d2u

dy2

∣∣∣∣
y=1

= −ξ du
dy

∣∣∣∣
y=1

, (12)

where δ = α/l and ξ = γ/ (4µ s2) are the non-dimensional velocity slip and couple stress spin
slip parameters, respectively, and σ is the velocity ratio between the lower and upper plates, i.e.,
σ = u2/u1. The solution of (7) is

uCF = A1 +B1y + C1e
y/s +D1e

−y/s, (13)

where
A1 =

1

2
(σ + 1) ,

C1 =
1

∆

[
s2ξe1/s(σ − 1)

]
,

B1 = − 1

∆

[
σ(G1e

2/s +G2)−G1e
2/s −G2

]
,

D1 = − 1

∆

[
s2ξe1/s(σ − 1)

]
.

After substituting the values ofA1,B1, C1,D1 in (13), we get the velocity uCF , the volume flow
rate QCF , the vorticity ωCFz , and the couple stress mCF

yz for the plane Couette flow as follows

uCF =
y G5 + ey/sG4 − e−y/sG4

∆
+
σ + 1

2
, (14)

QCF = σ + 1, (15)

ωCFz = −1

2

(
sG5 +G4 e

y/s +G4 e
−y/s

∆s

)
, (16)

mCF
yz = −2 η G4

(
ey/s − e−y/s

∆s2

)
, (17)

where

∆ = 2
(
δG3 +G8e

2/s + s ξ G7 − 1
)
,

G3 = G1e
2/s +G2,

G6 = 1− s,

G1 = s ξ + 1,

G4 = s2 ξ(σ − 1)e1/s,

G7 = 1 + s,

G2 = s ξ − 1,

G5 = G2 − σG3 + e2/sG1,

G8 = s ξ G6 + 1.
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2.3. Plane Poiseuille flow (PF)

This flow is carried by a constant pressure gradient G in positive x-direction with the assump-
tions of both plates are at rest (u1 = 0, u2 = 0). The boundary conditions for the plane
Poiseuille flow are

u(−1)− δ
(
du

dy
− s2d

3u

dy3

)∣∣∣∣
y=−1

= 0, u(1) + δ

(
du

dy
− s2d

3u

dy3

)∣∣∣∣
y=1

= 0, (18)

along with the spin slip boundary conditions (12) and (18), the solution of (7) is

uPF = A2 +B2y + C2 cosh(cy) +D2 sinh(cy)− Gy2

2
, (19)

where

A2 =
2GδH1 +G(H1 − 2H2)

2H1

, B2 = 0, C2 =
GH2

H1

, D2 = 0.

After substituting the values of A2, B2, C2, D2 in (19), we get the velocity uPF , the volume
flow rate QPF , the vorticity ωPFz , and the couple stress mPF

yz for the plane Poiseuille flow as

uPF =
2GH2 cosh(cy) +GH1H3 − 2GH2 cosh(c)

2H1

− Gy2

2
, (20)

QPF =
(6GH2(sinh(c)− c cosh(c)) + (3GH1H3 −H1)c

3 cH1

, (21)

ωPFz = −1

2

(
GH2c sinh(cy)

H1

−Gy
)
, (22)

mPF
yz = −2 η

(
GH2c

2 cosh(cy)

H1

−G
)
, (23)

where
H1 = ξc sinh(c) + c2 cosh(c), H2 = ξ + 1, H3 = 1 + 2 δ, c =

1

s
.

2.4. Generalized Couette flow (GCF)

In this flow problem, the lower plate is assumed to be at rest (u2 = 0), while the upper plate is
moving at a constant speed u1. The pressure gradient G is constant. The boundary conditions
for the generalized Couette flow are

u (−1)− δ

(
du

dy
− s2d

3u

dy3

)∣∣∣∣
y=−1

= 0, u (1) + δ

(
du

dy
− s2d

3u

dy3

)∣∣∣∣
y=1

= 1, (24)

along with the spin slip boundary conditions (12) and (24), the solution of (7) is

uGCF = A3 +B3y + C3 cosh(cy) +D3 sinh(cy)− Gy2

2
, (25)

where

A3 =
(2Gδ + 1)H1 +G(ξc sinh(c) + c2 − 2H2)

2H1

,

C3 =
GH2

H1

,

B3 =
F1

2(δF1 + F1 − ξ sinh(c))
,

D3 = − ξ

2(δF1 + F1 − ξ sinh(c))
.
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After substituting the values of A3, B3, C3, D3 in (25), the velocity uGCF , the volume flow rate
QGCF , the vorticity ωGCFz and the couple stress mGCF

yz for the generalized Couette flow are

uGCF =
yF1 − ξ sinh(cy)

F3

+
2G cosh (cy)H2 + 2G F 5 + F4F2

2F 2

− Gy2

2
, (26)

QGCF =
6H2G sinh (c) + [(6F5 − F2)G+ 3F2F4]

3cF2

, (27)

ωGCFz = −1

2

(
F1 − ξc cosh(cy)

F3

+
GH2c sinh(cy)

F2

−Gy
)
, (28)

mGCF
yz = −2 η

(
GH2c

2 cosh(cy)

F2

− ξc2 sinh(cy)

F3

−G
)
, (29)

where

F1 = ξc cosh (c) + c2 sinh (c),

F3 = 2F1 (δ + 1)− 2ξ sinh (c),

F2 = ξc sinh (c) + c2 cosh (c),

F4 = 1 +G, F5 = δF2 −H2 cosh(c).

3. Results and discussion

In this analysis, we have derived the analytical solutions for couple stress fluid flow between
parallel plates, utilizing spin slip conditions at the upper and lower plates. Tables 1–3 present
the velocity profile, skin friction and volume flow rate for the various cases involving the spin
slip parameters. The quantities used in these tables are defined as follows:

X1 = e2/s + 1,

X2 = s+ 1 + (1− s) e2/s,

X3 = e2/s − 1,

X4 = 1− σ,
X5 = σ + 1,

Y1 = c sinh (c) ,

Z1 = c cosh (c)− sinh (c),

Z2 = δc cosh (c) + Z1,

Z3 = cosh(c) sinh(c),

Z4 = c sinh (c) ,

Z5 = 2Gc cosh (c) ,

Z6 = (3G+ 1) c2Z3,

Z7 = 2GZ3c
2δ2,

Z8 = (G+ 1)Z4Z1 − 2GZ1 cosh (c),

Z9 = Z5 (cosh (cy)− cosh(c)) .

The variations of the following different parameters on the velocity profile, volume flow
rate, vorticity, and couple stresses for each problem are analyzed:

1. couple stress spin slip parameter (0 < ξ <∞) [10, 11],
2. pressure gradient (0 ≤ G <∞) [10],
3. velocity slip parameter (0 < δ <∞) [10, 11, 20],
4. couple stress parameter (0 ≤ s <∞) [10, 16, 20].

A demonstration of the influence of the spin slip parameter ξ on velocity profiles for the Couette,
Poiseuille, and generalized Couette flows can be seen in Fig. 2. In Fig. 2a, we have noticed that
as the spin slip parameter increases for the plane Couette flow (σ = 0), the fluid velocity rises
near the lower plate, whereas the trend reverses near the upper plate. Fig. 2b depicts the velocity
profile for the Poiseuille flow (σ = 1), which is parabolic and symmetric. This graph indicates
the fluid velocity is at its maximum at the center between the plates and decreases progressively
toward the plates, where fluid particles are in contact with the plates having zero velocity. In
Fig. 2c, we examine the variation of fluid velocity for the generalized Couette flow (σ = −1).
Here, we see that as the spin slip parameter increases, velocity of the fluid grows, and reaches
its maximum at the center between the plates. The fluid velocity is zero at the stationary plate
(bottom) because the lower plate does not slip at the surface of the fluid particles. Conversely,
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Table 1. Velocity profiles for (I) plane Couette flow (CF), (II) plane Poiseuille flow (PF), (III) generalized
Couette flow (GCF)

Velocity profile for a
non-zero couple stress slip
parameter ξ (new result)

Velocity profile for ξ = 0,
i.e., zero couple stress
spin slip parameter [10]

Velocity profile when
ξ →∞, i.e., zero vorticity
(new result)

I yG5+ey/sG4− e−y/sG4

∆
+ σ+1

2
1
2

(
1 + y

δ+1

)
+ σ

2

(
1− y

δ+1

) X1X5ey/sδ−X4se(2y+1)/s

2X1ey/s(s+1)−2X3sey/s

+ (X1X4+X2X5)ey/s−X5sey/s

2X1ey/s(s+1)−2X3sey/s

II
2GH2 cosh(cy)+GH1H3

2H1
−2GH2 cosh(c)

2H1
− Gy2

2

G
2

(1 + 2δ − y2)

− G
c2

(
1− cosh(cy)

cosh(c)

) 2G(Y1δ+cosh (cy))+GY1
Y1

− GY1y2−2G cosh(c)
Y1

III
yF1−ξ sinh(cy)

F3
− Gy2

2

+ 2GH2 cosh(cy)+2GF5+F4F2

2F 2

G
2

(1− y2)
+ 1

2

(
1 + 2δG− y

α+1

)
− G

c2

(
1− cosh (cy)

cosh(c)

)
Z7−Z4 sinh (cy)+2GZ1 cosh (cy)

2Z4Z2
+

[Z9 δ−GZ4(cy2 cosh(c)+2 sinh(c))]δ
2Z2 Z4

+ Z6δ+c2Z3y−GZ4Z1y2+Z8

2Z4Z2

Table 2. Non-dimensional skin friction for (I) CF, (II) PF, (III) GCF

Non-dimensional skin friction
(t∗yx = ltyx/µu1) for non-zero
couple stress spin slip
parameter ξ

Skin friction t∗yx
when ξ = 0, i.e., zero
couple stress spin slip
parameter

Skin friction t∗yx when
ξ →∞, i.e., zero vorticity

I e2G1(σ−1)+G2(σ−1)

2e2/s[G1(δ+1)−s2ξ]+2[G2(δ+1)+s2ξ]
σ−1
2δ+2

X1X5ey/sδ−X4se(2y+1)/s

2X1ey/s(s+1)−2X3sey/s

II Gy Gy Gy

III Gy −
ξc cosh(c)+ c2 sinh(c)

2ξc(δ+1) cosh(c)+2[c2(δ+1)−ξ] sinh(c)

2Gy(δ+1)−1
2(δ+1)

c[2Gy(δ+1)−1] cosh(c)−2G sinh(c)
2(δ+1) cosh(c)

Table 3. Volume flow rate for (I) CF, (II) PF, (III) GCF

Volume flow rate for
non-zero couple stress
spin slip parameter ξ

Volume flow rate when
ξ = 0, i.e., zero couple
stress spin slip parameter

Volume flow rate for
ξ →∞, i.e., zero vorticity

I σ + 1 σ + 1 σ + 1

II
6GH2(sinh(c)−c cosh(c))

3cH1

+ c(3GH1H3−H1)
3cH1

6G(sinh(c)−c cosh(c))
3c3 cosh(c)

+ (3GH3−1)
3

6G(sinh(c)−c cosh(c))
3c2 sinh(c)

+ (3GH3−1)
3

III
6GH2 sinh(c)

3cF2

+ [3F2F4+G(6F5−F2)]
3cF2

6G sinh(c)+3F2c2 cosh(c)
3c3 cosh(c)

+ G(6δc2−6−c2)
3c3

6G sinh(c)+3cF4 sinh(c)
3c2 sinh(c)

+ G[c sinh(c)(6δ−1)−6 cosh(c)]
3c2 sinh(c)

the fluid velocity is non-zero near the upper plate, so the upper plate slips at fluid surface leading
to an increase in velocity near the upper plate. Additionally, we note that the spin effect of
particles on the surface of stationary plates is negligible, while this effect is maximized in the
middle between the plates. In fluid flows, particles can partially rotate independently of the
boundary, as controlled by the spin slip parameter.
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(a) CF when s = 0.5, δ = 0.1 (b) PF when s = 0.5, δ = 0.1, G = 10

(c) GCF when s = 0.5, δ = 0.1, G = 10

Fig. 2. Analysis of velocity profile for the spin slip parameter ξ

For the Poiseuille and generalized Couette flows, Fig. 3 illustrates the relation between the
volume flow rate and the pressure gradient G for various values of the spin slip parameter. In
Fig. 3a, we observe that the volume flow rate increases as the pressure gradient grows. This
phenomenon occurs because an increase in the pressure gradient indicates a greater force ex-
erted on the fluid particle per unit area (wall shear stress), which subsequently enhances the
fluid flow of the particles. Hence, the volume flow rate increases. Similarly, Fig. 3b shows that
as the pressure gradient grows, the volume flow rate also grows. The identical reason for this
behavior is consistent with our observation in Fig. 3a. Additionally, it is noteworthy that the
volume flow rate exhibits more variation at lower values of the spin slip parameter. The reason
behind is the fact that the spin slip contributes to the energy dissipation in fluid by allowing
rotational energy to be lost through slippage.

Fig. 4 illustrates the effect of the spin slip parameter on the volume flow rate Q with the
velocity slip parameter. In Fig. 4a, it is shown that as the velocity slip parameter increases, the
volume flow rate also rises. A non-zero velocity slip parameter indicates reduced resistance be-
tween the fluid particles and the plates, so the volume flow rate increases when the velocity slip
parameter grows. The same trend is observed in Fig. 4b, as seen in Fig. 4a for the generalized
Couette flow. It has been found that at low values of the spin slip parameter, the volume flow
rate is significantly higher.
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(a) PF (b) CGF

Fig. 3. Analysis of volume flow rate for ξ when s = 0.5, δ = 0

(a) PF (b) CGF

Fig. 4. Analysis of volume flow rate for ξ when s = 0.5, G = 2

Fig. 5 reveals the description of the link between the volume flow rate, the couple stress
parameter, and the spin slip parameter. From Fig. 5a, it is evident that the volume flow rate
decreases with increasing couple stress parameter. This decrease occurs because the viscosity
(or thickness) of a couple stress fluid shows higher values compared to the Newtonian fluid. It
is more evident in the generalized Couette flow compared to the Poiseuille flow, as shown in
Fig. 5b. Also, it is observed that the volume flow rate is a decreasing function of the spin slip
parameter.

The vorticity vector describes the rotation of fluid particles. In couple stress fluids, this
rotation is significant because it contributes directly to the shear stress due to couple stresses.
As shown in Fig. 6, the variation of the non-dimensional vorticity for a variety of spin slip
parameters is presented. Fig. 6a demonstrates that the vorticity is the highest at the center
between the plates and displays the greatest variation for the highest value of the spin slip
parameter. Fig. 6b shows that for larger values of the spin slip parameter, the changes of fluid
vorticity are more prominent, with vorticity decreasing from the lower plate to the upper plate.
In Fig. 6c, we observe similar curve patterns as in Fig. 6b. Notably, the variation of vorticity for
the generalized Couette flow is greater than that of the Poiseuille flow due to the motion of the
upper plate.
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(a) PF (b) CGF

Fig. 5. Analysis of volume flow rate for ξ when δ = 0, G = 2

(a) CF when s = 0.5, δ = 0.1 (b) PF when s = 0.5, δ = 0.1, G = 2

(c) GCF when s = 0.5, δ = 0.1, G = 2

Fig. 6. Analysis of non-dimensional vorticity for ξ

The formulas (17), (23), and (29) for the couple stress refer to a specific type of stress in the
fluid that takes impact of moment or torque with shear and normal stresses. Fig. 7 illustrates the
variation of the non-dimensional couple stress for different values of the spin slip parameter. In
Fig. 7a, it is observed that as the spin slip parameter increases, the couple stress on the lower
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(a) CF when s = 0.5, δ = 0.1 (b) PF when s = 0.5, δ = 0.1, G = 2

(c) GCF when s = 0.5, δ = 0.1, G = 2

Fig. 7. Analysis of non-dimensional couple stress for ξ

plate also increases, while the opposite effect occurs on the upper plate. The couple stress
represents a form of stress that arises not only from shear stress but also from local rotations
of fluid particles. These rotational stresses are captured by the couple stress tensor, which
describes the fluid’s resistance to rotational deformations. In Fig. 7b, we see that the couple
stress increases with decreasing values of the spin slip parameter, showing maximum couple
stress at the center between the plates. A similar pattern of curves can be noted in the case of
the generalized Couette flow, as represented in Fig. 7c. For further details on the impact of the
tangential slip on the velocity and the volume flow rate, one can refer to the work by Devakar
et al. [10].

4. Conclusions

The primary goal of this paper is to explore the effect of couple stress and spin slip on the cou-
ple stress fluid flow between two parallel plates. The boundary conditions at the solid surface
include non-vanishing tangential and couple stress spin slip conditions. The expressions for
the velocity profile, volume flow rate, vorticity and couple stress are obtained. The impact of
various parameters, such as the couple stress spin slip parameter, velocity slip parameter, pres-
sure gradient, and couple stress parameter, on the velocity profile, volume flow rate, vorticity,
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and couple stress is analyzed from the presented figures and tables. We draw the following key
conclusions:

1. It is found that the fluid velocity, couple stress, and volume flow rate decrease with an
increase in the spin slip parameter.

2. The volume flow rate grows with the higher pressure gradient and the velocity slip pa-
rameter, while it diminishes as the couple stress parameter increases.

3. The vorticity of the fluid particles increases alongside the spin slip parameter.
4. We have observed that the spin slip parameter has no impact on the volume flow rate for

the Couette flow.
Notably, the limiting solutions as ξ → 0 are in agreement with those published by Devakar et
al. [10], which addressed the case of vanishing couple stress at the boundary. The present work
has various applications in industrial and biological processes because the spin slip conditions
provide a more accurate representation of micro-scale flow properties and wall boundary re-
sponses, making them essential for predicting flow characteristics and stress distributions. For
future research, non-Newtonian fluid flow with various geometries under spin slip effect can be
considered.
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