§i§ Applied and
Computational
Applied and Computational Mechanics 19 (2025) 195-208 Mechanics

Prediction of flutter onset by an LSTM neural network from
measured time-variable responses of a randomly-tested airfoil
using Lyapunov exponents for flutter classification

L. Pesek®*, W. Schumann“

aDepartmem of Dynamics and Vibration, Institute of Thermomechanics, Czech Academy of Sciences,
Dolejskova 5, 182 00 Prague, Czech Republic

Received 18 November 2024; accepted 2 September 2025

Abstract

Flutter, a self-excited oscillation due to energy transfer from the flow to the structure, can cause catastrophic failures
in many aerospace structures if uncontrolled. Mostly, predictions of flutter states rely on model-based evaluations
under restrictive conditions, such as constant Mach numbers and altitude, which are challenging to replicate outside
laboratories. To counter this problem, we investigated flutter prediction using artificial intelligence, specifically
long short-term memory (LSTM) neural networks on dynamically varied operational data to simulate real-world
conditions. A novel test rig of wing model in a closed circular wind tunnel with controlled airflow velocity was used
for flutter simulations under variable conditions. Hundreds of vibration records, captured at critical trigger levels,
formed a robust dataset for flutter classification and prediction. Average divergence and Lyapunov largest exponent
methods were used to classify stability and chaos in the system, which provided valuable input data for training
artificial intelligence. Analysis of results demonstrated the efficacy of neural networks in rapidly identifying flutter
onset, which could contribute to advancements in flutter monitoring airborne structures under diverse operational
conditions.

© 2025 University of West Bohemia in Pilsen.

Keywords: flutter, prediction, neural network, largest Lyapunov exponents

1. Introduction

Aeroelasticity is a field of engineering that deals with the interaction between aerodynamic
forces and the structural dynamics of an object. This field focuses on the study of how aero-
dynamic loads affect the deformation, vibration, and overall behavior of structures, particularly
those used in aerospace engineering, such as aircraft wings, rotor blades, and control surfaces.
This interaction can lead to various phenomena, including flutter and divergence, which can
affect the stability, performance, and safety of the object.

Engineers use advanced computational models, experimental testing in wind tunnels, and
flight testing to design structures that can withstand aerodynamic loads without experiencing
detrimental effects such as excessive deformation, vibration-induced fatigue, or structural fail-
ure. Nevertheless, in the practice some situations and operational conditions can arise that could
lead to dangerous conditions in structural integrity and stability.

In the context of a wing, the overall behavior of the wing is affected by static and time-
variable aerodynamic lift and drag forces. The static loads can lead to divergence-type instabil-
ity and variable forces to flutter-type instability. In the latter case, under certain conditions due
to phase lag of the aerodynamic forces on the movement of a structure, the flow gives energy

*Corresponding author. Tel.: +420266 053 083, e-mail: pesek @it.cas.cz.
https://doi.org/10.24132/acm.2025.941

195

https://doi.org/10.24132/acm.2025.941

L. PeSek et al. / Applied and Computational Mechanics 19 (2025) 195-208

Fig. 1. Half-aircraft model exhibit with wing vibrating in a closed circle wind tunnel

to the structure, resulting in self-excited oscillations called flutter. These oscillations can lead
to rapid and potentially catastrophic structural failures if not under control and surveillance.
Therefore, predictions of these states are still a focus of vibration monitoring of the airborne
objects. The predictions have been mostly made on model-based evaluation, e.g., [2, 8], and
more recently, there has been a study of flutter speed prediction using deep learning [13]. The
prediction models are quite complex but under several restrictions, e.g., constant Mach, altitude
and mean air speed, which are not easy to fulfill outside of laboratory conditions.

In our approach, we wanted to study flutter prediction on randomly-generated data of wing
response typical for variable operational conditions. We choose artificial intelligence (AI) with
an LSTM neural network for rapid prediction of the onset of flutter under these assumptions.
For testing this algorithm, we needed a large amount of data with proper classification of the
flutter states for the training period. So, in the first part of the paper, the dynamic analysis
of non-stationary response data by the average divergence and the largest Lyapunov exponent
methods is carried out.

A new test rig developed at the Institute of Thermomechanics, Czech Academy of Sciences
(IT CAS) provided the opportunity to measure and collect data of the dynamic behavior of an
aircraft wing in a closed circular wind tunnel, see Fig. 1. During the Science Fair 2024 in
Prague, where the test rig was demonstrated, visitors were able to control the change of airflow
velocity in the tunnel up to a critical value, at which the wing started to flutter, by the manual
regulation of the speed of the axial propeller. Consequently, each run was unique, which was
desirable for our purpose of obtaining operational data. Vibration and fan data were monitored
and measured in a loop and recorded when the vibration trigger level was reached. Hundreds
of valuable records were collected. Based on these records, both the possibility of classifying
the vibration signals by the largest Lyapunov exponent methods and use of neural network
algorithms for fast flutter onset prediction were explored.

196

L. PeSek et al. / Applied and Computational Mechanics 19 (2025) 195-208

2. Description of the test rig — wing model in tunnel

The half model of a trainer aircraft .39 Albatros at a scale of 1:21 (tapered wing shape: length
0.17 m, airfoil spans: root 0.125 m, tip 0.074 m) was modified for demonstrating aeroelastic
coupling of a wing in airflow. Since this exhibit was only for demonstration purposes, several
simplifications were made to the wing design:

* The simple closed circle wind tunnel was used. Due to the impaired wind tunnel aero-
dynamics, i.e., higher turbulence and pulsations, the flow was non-homogeneous, and
therefore the gusts caused wing oscillations even at lower speeds.

* The maximum flow velocity was around 13 m/s. The velocity was regulated by the speed
of the axial propeller.

* To prevent wing damage, the wing was elastically clamped into the torsional hinge made
of flat springs. The dynamics of real wings is more complicated since the vibration con-
sists both of torsional and flexural eigen-vibrations of the wing.

The flat springs of the hinge were designed so that the torsional eigenfrequency of the wing
motion was about 12 Hz. The fluttering started at about 8 m/s, which corresponds to the non-
dimensional criterion of reduced frequency 0.35-0.59.

3. Classification of the non-stationary signals by Lyapunov exponents and average
divergences

The concept of evaluating Lyapunov exponents in phase space is particularly well suited for
autonomous dynamic systems. In these systems, the behavior is determined solely by the sys-
tem’s initial conditions and the underlying dynamics. Tracking how the distance between a
point in a state-space and its nearest neighbor evolves helps in understanding the sensitivity of
the system to initial conditions. In an autonomous system, this tracking reveals how trajectories
diverge or converge over time based on their initial conditions. In unstable systems, small dif-
ferences in initial conditions lead to exponentially growing divergences, which is reflected in a
positive Lyapunov exponent, while a negative or zero exponents indicate stability or periodic-
ity. Fully capturing the behavior of the system means that the reconstructed state space is using
an appropriate number of dimensions (embedding dimension) accurately reflecting all relevant
dynamics of the original system without losing any critical information. This concept is central
in understanding and analyzing the dynamics of a system, particularly in the context of chaos
theory and nonlinear dynamics.

The largest Lyapunov exponents (LLEs) [5, 7] are designed for analyzing the stability and
predictability of nonlinear dynamic systems from measured signals. It also involves phase space
reconstruction, determining the nearest neighbors, and then calculating the divergence of nearby
trajectories over time. Taking the logarithm of these divergences, then averaging them over a
certain time interval, the logarithmic average divergences (LADs) and LLEs are evaluated by
the most frequently used algorithms by Kantz [7] or Rosenstein [9].

In our study case of a wing in airflow with random flow velocity settings, we get non-
stationary responses of the wing—mnot only due to the changes in the wing-flow interaction and
the system behavior—but also due to time-variable external forces coming from the changing
airflow in the channel. So, besides the wing-flow interaction, the input flow velocity and the
aerodynamics of the channel also play important roles in the dynamic response of the wing. To
reduce these external influences on the study of the wing-flow stability, we divided the time of
the signal into short window intervals where the external changes were not large. We examined

197

L. Pesek et al. / Applied and Computational Mechanics 19 (2025) 195-208

C’: 5F T T T T]
a ————— ittt bt ol e Q
N NN AN e S
(@ =
25t | | I I]
® 0 5 10 15 20 25
. time [s]
‘é15 .
510— .
(b) % 5[i
Z | | | |
§ % 5 10 15 20 25
_ time [s]
% 0 | T
2
o1 oo o POy 50 o) y
(c) _’g 2 |
-O' | | | |
%'30 5 10 15 20 25
time [s]
- 0.01F T T T]
ooob 6 M% ¢—o—o— @O i
@ = g0l i
0 é 1|o 1% 25 25
time [s]

Fig. 2. Time characteristics (a)—(b) and processed window diagrams (c)—(d) for the record “dataset_
2024-06-1_12-36-52”

the wing dynamics by LLEs in these intervals where the external conditions were relatively
stable. As a result, we could observe the changes of LLEs over the entire time interval of the
signal.

The concept of dividing a time series into windows and analyzing each segment in order to
study the dynamics (e.g., by Lyapunov exponents) can be found in various works on nonlinear
time series analysis [9].

Two records, i.e., “dataset_212024-06-1_12-36-52” and “dataset_2024-05-31_15-41-21", are
shown as examples in Figs. 2 and 3, respectively. The number of samples was 25402 with a
sample rate of 1 000 Hz.

The diagrams at the top of Figs. 2 and 3 display time characteristics of the wing torsional
displacement measured by strain gauges and also the flow velocity in the channel, evaluated
from the control signal of the propeller converter. At the bottom are LAD and LLE diagrams
evaluated from the angular displacements of the wing. For evaluation, the time series of the
data was split into 26 windows (duration 1 s) with a 10% overlap.

Consequently, the diagrams (c¢) and (d) of Figs. 2 and 3 are stair diagrams. The shaded areas
in diagram (c) reflect the interval with lower LAD values and in (d) a negative value zone. For
early tracking of the onset of flutter by LLE, the threshold for the flutter condition was shifted
from zero to —0.1. The MATLAB function lyapunovExponent.m [9] based on the Rosenstein

198

L. Pesek et al. / Applied and Computational Mechanics 19 (2025) 195-208

o & ot Lo -
~ 0 5 10 i [s] 15 20 25
g 15_] .]] _

® 8 4 |
: : : o 25
. time [s]

(c)

avg.divergence [1]

2% _

3 \ \ \ l
0 5 10 15 20 25

time [s]

T T T T
‘%;‘ 0l01(;_®_(£—9—@—\ (ﬁj [Ceee & ?M% i
E or < G—6—7, © - — —

- !
(d) — 001} \ \ \ \ |
0 5 10 15 20 25
time [s]

Fig. 3. Time characteristics (a)—(b) and processed window diagrams (c)—(d) for the record “dataset_2024-
05-31_15-41-21”

method was used for the evaluation of both characteristics. Similar results were achieved also
by the programs Lyap_r and Lyap_k of the library TISEAN [5].

From the different flow velocity diagrams (Figs. 2b and 3b), we can see the different runs of
velocities and different responses of the wing in both cases. Red rectangle domains (Figs. 2a and
3a) indicate time intervals where flutter (including its onset and reverberation) was observed.

From the evaluation of the LLE (Fig. 2d), it can be seen that the flutter was quite precisely
detected both at the beginning and at the end of the record. The exponent at 9s turned from
negative to positive and is linked to the instability and chaos in the system. However, the LLE
values are variable since they are sensitive to uncertainties due to the time-variable conditions
in the channel. Besides that, in some cases, LLEs oscillate between positive and negative val-
ues even for small amplitudes of the wing response (Fig. 3d), probably due to signal noise.
Therefore, for evaluation of flutter states, the LADs provide meaningful information about the
system dynamics and signal amplitudes. When the signal amplitudes increase, the LAD values
increase, so for tracking flutter state of time-varying and noisy data, besides inspection of the
LLEs, the LAD values are also needed. As shown in Fig. 3c—d at the interval of 0.9 s, there are
several positive LLEs, but low levels of LADs; therefore, it was not classified as flutter. The
limit value of LAD_limit = —1.3 was estimated for our case empirically through observation
of the average divergence (AD) characteristics.

199

L. Pesek et al. / Applied and Computational Mechanics 19 (2025) 195-208

O T T T T T T T T T |
—~-1
[0)
o
S
92 |
0]
=
a-3 —a— window 12 |]
8’ Linear Fit
- -4 window 13 |
Linear Fit

1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time Steps

!
[&)]

Fig. 4. LAD characteristics versus time steps with the linear fits (blue — window No. 12, green — window
No. 13)

Parameters of the LLEs functions were: time delay = 1, embedding dimension = 2,
number of time steps = 100, average interval = (20, 80). The examples of time LAD char-
acteristics of two time windows (No. 12 and 13) of the record ’dataset_2024-05-31_15-41-21”
can be seen in Fig. 4. The linear fits of LADs were used for LLE estimations. The logarithmic
course of LAD over time for the case of window No. 12 is typical to evaluate the LLE. The
LAD course of window No. 13 is wavier due to time-variable external forces in the channel,
contributing to the errors and uncertainties of the LLE evaluation.

4. Neural networking model description

Given the quality of data collection that is possible, plus the relative simplicity of the usual data
(linear wing displacement, wind velocity, angle of attack), it seems likely that a neural network
should be able to produce accurate predictions within a time frame that would allow automated
preventive measures to be taken, such as reduction of speed. This basic problem was handled
as a binary classification — flutter or not. The model outputs the probabilities of both cases.

Time series forecasting with LSTM [6] was the selected algorithm for flutter prediction. The

model is depicted in Fig. 5. A flowchart showing all operations for a single LSTM cell is shown
in Fig. 6.

During the processing of a single LSTM cell, the following three values pass through the

following gates on their way to a new cell state and a hidden state:

1. In the forget gate, it is decided what current and previous information is retained. This
includes the hidden status from the previous pass and the current input. These values
are passed into a sigmoid (o) function, outputting values in the range of (0,1). A value
of zero means that previous information can be forgotten because there is possibly new,
more important information. A value of one indicates that the previous information is
to be preserved. The results from this are multiplied by the current cell state so that
knowledge that is no longer needed is forgotten since it is multiplied by zero and thus
drops out.

2. In the input gate, it is decided how valuable the current input is to solve the task. The
current input is multiplied by the hidden state and the weight matrix of the last run. All
information that appears important in the input gate is then added to the cell state to form
the new cell state c¢(t). This new cell state will be used as the current state of the long-term
memory in the next run.

200

L. Pesek et al. / Applied and Computational Mechanics 19 (2025) 195-208

Neural Network Model
binary classification
LSTM

(hidden
layer)

logits

flutter/

~ no flutter

y

LLMs estimate (flutter/no flutter)
for time t + lookahead

Fig. 5. The neural network model: the green nodes represent the input, the five orange nodes represent
the single hidden LSTM layer, the purple nodes represent the probabilities of flutter and no flutter, the
red node is a single number — 0 indicating no flutter/1 indicating flutter, and the black node represents
the LLMs estimate for flutter at time ¢ 4+ lookahead

3. In the output gate, the output of the LSTM model is calculated in the hidden state. The
sigmoid function decides what information can come through the output gate and then
the cell state is multiplied after it is activated with the tanh function.

The PyTorch Lightning framework was chosen for software development. Python is re-
garded as being good for development, since it is high-level and powerful, yet most of the
computation is done within its support routines and can be coded with more efficient languages,
such as C/C++, which provide the foundation. Python version 3.11 was adopted as the start-
ing version due to its efficiency and speed improvements, particularly those related to the stack
frame [3]. Python 3.12 was then used due to enhanced format string capabilities.

LSTM cell

/c - X +

(c(-1) P, >
N —Ij
cell state ¢ T T L tanh

(memory)

» X

i A

4]

—
x

Cx0 = o) fm] (o]

o
Input LI_J ‘ — — g h(t)
 hit) J
____ AN - . S
hidden state h fg;ﬁ_:t igg{f e

Fig. 6. Flowchart of a single LSTM cell. The plus sign and ’X’ indicate matrix addition and multiplica-
tion, respectively

201

L. Pesek et al. / Applied and Computational Mechanics 19 (2025) 195-208

window size = 7, skip = 1, lookahead = 2

timestep t
o [1[2[3[a[5[6[7]8]0]10]
windows__:_:_-————-- g -~

— actual (Lyap. estimated)

e

t=1 [1]2|3]4]5][6]7]8]9]10

e

each block corresponds to one data sample

Fig. 7. Simplified sliding window protocol drawing with prediction

The flutter prediction model’s Python class is derived from the class “LightningModule”
in order to use the framework. Similarly, the data module is derived from “LightningData-
Module”. The PyTorch linear classifier [10] was used. The Adam optimization algorithm to
update network weights iteratively was used due to it being relatively straightforward and ef-
ficient. The cross-entropy criterion was selected to compute the loss, using weighted mean
reduction [11]. As it is usually beneficial for the learning rate to be reduced as training pro-
gresses in order to improve the consistency of loss and to reach lower loss and higher accuracy,
learning rate scheduling was used during training. The most successful technique was found
to be Lightning’s “reduce learning rate on plateau”, which automatically reduces the learning
rate by a specified factor (here, 0.1) if a loss stabilizes over some number of steps (here, 10). A
more rigid reduction in learning rate in regular steps performed almost as well. Different data
normalization techniques were evaluated. The most effective was a logarithmic normalization
proposed by Smolik et al. [12]. The Scikit Learn package provides the class ”StandardScaler”
with the method fit_transform” also showed improvement over not normalizing.

A sliding window protocol scheme was implemented. This allows for only the last N sam-
ples to be used for predictions at a given time step. A specified number of time steps can be
skipped between windows to reduce processing and improve responsiveness in real time. For
example, a factor of two instead of one will reduce the number of windows to be processed by
half. A ”lookahead” defines the time period into the future the prediction is attempted. Each
of these must be consistent during training and in real time. Varying these affects accuracy and
performance. A sampling rate parameter to discard unnecessary samples was not implemented,
although it would be useful in cases where performance was inadequate or the actual sampling
rate was higher than necessary. The final training with a sample rate of 1 Hz was based on a
window of 600 (0.6 s) and prediction “lookahead” of 2 000 (2 s) with no window skipping.

Fig. 7 shows a drawing illustrating the first two time steps of a sliding window, assuming a
window size of seven, a skip of one and a lookahead of two.

With LSTM predictions, for a given time step, the window containing the displacements for
all time steps in the window is fed into the model, and the flutter/no flutter value for the time
step plus the lookahead is provided in parallel as a target.

With skip = 1, as used in the final model, each time step has a unique effect.

5. Data preparation, training and tuning stages

Data is stored in 32-bit float variables, which is a generally accepted convention for neural
networking. The data were collected during the Science Fair 2024 and consisted of the flow

202

L. PeSek et al. / Applied and Computational Mechanics 19 (2025) 195-208

velocity and the wing displacement. Only the wing displacement is input to the model. The
character of the input varied widely, since the velocity was determined by the visitors of the ex-
position — mostly students. The resulting variation of samples improved the quality of learning.

The initial samples were MATLAB files *.mat with corresponding results of the Lyapunov
exponent analysis, indicating either flutter or no flutter designated in windows covering multiple
time steps. A custom Python class was to encapsulate the preprocessing and input of samples
into Lightning datasets for this specific application.

In Lightning, the training data is stored in a file referred to as the "checkpoint file”. Applying
training to existing training data, enabling learning over time, the checkpoint file is provided to
the trainer before evaluating each sample, and updated after the sample has been learned. Each
training cycle is an “epoch”, meaning that the sample has passed through the neural network
one time. Multiple epochs are typically required to get a result with the least-possible loss, and
a maximum number of epochs must be specified to prevent the training to continue indefinitely.
As training sessions are finished, the trainer saves the checkpoint file with the best results for the
session, writing the last epoch number to the checkpoint file. To resume training, the maximum
epoch must be adjusted by increasing it by the epoch number from the checkpoint file. The
initial value for maximum epochs was 50.

There are other important considerations during tuning, training and testing:

* A key point in feeding training data into the model is that the input (here, angular dis-
placement) is provided in parallel with the LLEs estimated flutter, except that the LLEs
estimates are shifted into the future with respect to the input. For example, if the dis-
placement was read at time ¢, the corresponding prediction is not taken from time ¢, but
t 4 lookahead, which in this case was 2000 (2s). The input/classifications pairings are
fed into the model with this offset.

* Care is taken such that the windowing parameters remain identical throughout training,
as well as the hyperparameters and normalization technique and other algorithms.

* The typical approach to split training and test data during training was done, so that a
fraction of the data is not used to train, but to validate the training during the training
phase. The data collected on the first three days was used for training and data from the
last day was used strictly for testing.

* Tuning objectives prioritized accuracy and also responsiveness since the prediction will
be done in real time. It was found that a lightweight depth of one layer with five hidden
layers was sufficient. This can be attributed to the relative simplicity of the input data.

* The initial learning rate of 0.01 was selected since it quickly minimizes loss, and as more
samples were input, the learning rate scheduler reduced it to 0.001, which proved to be
a better starting point for increased accuracy as learning progresses. With the learning
rate scheduler algorithm “reduce learning rate on plateau”, the factor was set to 0.1 and
patience to 5.

* An early stopping function was used to avoid lengthy training when nothing new was
being learned. For early stopping, validation loss was monitored and patience was set to
five epochs.

6. Real time prediction

Since a real-time interface was not available for extensive testing, a comparable scheme involv-
ing a separate thread streaming sample data at real-time rates was developed. A flowchart of

203

L. Pesek et al. / Applied and Computational Mechanics 19 (2025) 195-208

Main thread: Thread putter():
datacache = DataCache() o571 loop until interrupted:
stream = StreamlterableDataset(_.) ,::;P-‘dek read a sample from the stream
source = WindowlterableDataset(...)— - do timed or blocking device read
Thread start(putter) — datacache put(sample)
iterate until interrupted: - threading .Rlock()
window = source next() - copy sample to cache
flutter = model_predict{window) - datacache event set()
if flutter == 1 and other criteria met:
state . flutter a
take alert action E
else state — no flutter m
v

weind o

L4 a|dwes

__next__ dunder

WindowlterableDataset_ next_ ():
loop until window is filled:
sample = datacache get()
- datacache event.wait()
- threading.Rlock()
- sample = datacache cached_data
copy sample into window
return window

Fig. 8. Chart describing data stream processing in Python pseudocode, emphasizing iteration (green),
locking (red) and events (blue)

data stream processing in Python pseudocode is in Fig. 8. As efficiency is critical and Python’s
efficiency in many circumstances is questionable, the most efficient data passing mechanisms
were sought. A variable can be shared in memory between threads in Python, so data does not
have to be transmitted, piped or queued—only synchronized—and the shared data is actually a
Python variable of any data type. Thread synchronization is done using an "Event object”, and
locking uses an ”Rlock object” — both from Python’s threading class. Upon writing a sample to
a shared variable, the writing thread sets an event that the reading thread waits for. The primitive
nature of locking and events suggests that high performance is possible, and a coding solution
using them was found in [1] under named class "DataCache”.

A separate thread reads from the source and uses the DataCache “’put” method to provide
samples to the main thread at the rate of the original sampling. This thread could be modified
to do take samples from a device in parallel to the neural network processing. Custom iterable
classes to manage the stream and window processing were created. A Python iterable class is
advantageous since it can be iterated with many different Python techniques. In the main thread,
a corresponding object reads from the DataCache object, composes the new window of data as
a ”PyTorch Tensor”, which is basically an array, and returns the window. In this window reader
thread, the composition and return of windows is done mainly in the Python class ”__next__
dunder” method, which accumulates samples from the driving thread and returns a window
for every iteration. A Python dunder method is not invoked directly, but is used to provide
programming when logic a built-in operation is not provided by default — in this case, iteration
to the next window in the stream is done by the __next__ method, requiring custom coding. The
input then is run through the neural network using the model’s predict method.

204

L. Pesek et al. / Applied and Computational Mechanics 19 (2025) 195-208

As DataCache was implemented, there is no notification that data is not lost if it is not read
before the next sampling interval. A useful enhancement would be for DataCache to monitor
the frequency of sample loss and to address that if it exceeds a certain level.

A requirement for this mechanism to work efficiently is a dedicated device or operating
system with real-time clock granularity. Also, PEP 703 is a welcome enhancement planned for
Python 3.13, since threading for multiple-CPU computers would be more efficient [4].

7. Results evaluation

Predictions for the Science Fair data required some scrutiny due to a high percentage of false
negatives, i.e., time steps that were predicted to exhibit no flutter, but were reported as exhibiting
flutter according to the LLEs estimates, as well as false positives, conversely. Plotting angular
displacement against the Al-predicted flutter showed plausible reasons for the discrepancies.
This evaluation is described below and depicted in Figs. 9-10. The physical units of measured
signals and LLEs are the same as in Figs. 2-3.

An example of the LLEs estimates vs. Al-predicted flutter states for one selected sample
(Alveletrh_2024-06-01_14-41-14) is shown in Fig. 9. The wing displacement is represented by
blue, purple represents flutter logit values (non-dimensional), and velocity is represented by
brown. A logit is a non-normalized value representing a prediction of an Al model. If the logit
value at a time is positive, flutter is more likely than not, and as the absolute value of the logit
increases, the predicted likelihood increases. Although the logit is a raw, dimensionless value,
it is useful to plot, since it shows how certain the Al is about its prediction.

Offset at about y = —7 for better visibility are green and orange square waves showing
the LLEs flutter/non-flutter estimates (green) versus the Al-predicted state (orange). When the
green line goes high, the LLEs estimation of flutter begins at that timestep; when the orange
line goes high, Al predicts flutter. The blue line indicating the displacement shows flutter at the
times when the absolute values are relatively high.

X angul. disp.
X Lyapunov est. k
X flow velocit
10 24 ﬂutterlogitsy
5
0
-5
-10
Alveletrh_2024-06-01_14-41-14.mat.csv
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time [s]

Fig. 9. Results of flutter prediction of the sample vs. the LLEs estimate: the wing displacement (blue), the
flutter logit values (purple), flow velocity (brown), the Al-predicted flutter (orange), the LLEs estimate
of flutter (green)

205

L. Pesek et al. / Applied and Computational Mechanics 19 (2025) 195-208

U

angul. disp.
Lyapunov est.

HEXNXX

flow velocity
flutter logits

10

5,
{

, L SEN

0 ' G
_57
_10,

Alveletrh_2024-06-01_15-46-06.mat.csv
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time [s]

Fig. 10. Results of flutter prediction of the sample vs. the LLEs estimate: the wing displacement (blue),
the flutter logit values (purple), flow velocity (brown), the Al-predicted flutter (orange), the LLEs esti-
mate of flutter (green)

The main objective is for the Al to predict the onset of flutter. There are very brief flutter
predictions in response to strong interference of the measured signal by the fan converter; these
signal noise interferences can be dismissed from the flutter prediction due to their very short
duration or may disappear with more training samples exhibiting the interference.

In this case, it can be seen that the Al predicted flutter just before the flutter became evident
in the displacements. The LLEs estimate came slightly after the actual flutter onset. It is inter-
esting to note that the Al predicted flutter much more closely than the LLEs estimates. Seeing
this pattern in other samples strongly suggests that the Al is able to improve its predictions de-
spite imprecise cues from the LLEs estimates, which have some inherent imprecision due to the
fact that they are windowed. Similarly, the drop in flutter was predicted more accurately than
the Lyapunov estimate and can be seen as a correction made possible through learning.

Fig. 10 was taken from a similar sample exhibiting normal running vibrations followed by
an onset of flutter (Alveletrh_2024-06-01_15-46-06). In this sample, the onset of flutter was pre-
dicted much more precisely than in the Lyapunov estimate. This is another example of what was
generally observed in samples displaying a leading non-flutter period: the prediction (orange)
was very close to the flutter observed in the displacement (blue). Again, despite inaccuracies or
misleading LLEs estimates, the Al delivered precise predictions of the onset of flutter.

The flutter logit value (purple) is useful for diagnosing situations in which flutter is pre-
dicted, but not so convincingly. This can be useful for signaling a warning state that could draw
attention to the condition so that preventative action might be taken. There is a corresponding
non-flutter estimate that was not indicated in the graphs because it is generally a mirror image
of the flutter prediction. The final prediction is generated by a “binary accuracy” function that
accepts the two logits as input — one representing flutter, the other representing the non-flutter
State.

206

L. PeSek et al. / Applied and Computational Mechanics 19 (2025) 195-208

8. Conclusions

The advanced methods, such as the largest Lyapunov exponents and long short-term memory,
were studied for classification and prediction of flutter states of the airflow wing. Time-varying
wing responses with flutter states measured in the IT CAS wind tunnel built for the Science Fair
2024 exposure were used as test samples.

The results of these methods are presented and discussed in this paper. Regarding the LLE
method, which is used to classify stability and chaos in the system, it was found that the flutter
was quite precisely detected for some records just by inspection of the LLE values. However,
the LLE values are variable since they are sensitive to uncertainties due to the time-variable
conditions in the channel. In some records, LLEs oscillated between positive and negative
values even for the small amplitudes of the wing response due to noised signal. Therefore, for
the tracking of flutter states from time-varying and noisy data, besides the LLEs, ADs values
also needed to be examined. The LLE, together with LAD characteristics, can contribute to
a better classification of complex real-world systems that work under multiple influences over
time. It can be also a useful tool for automatically classifying flutter states of a coupled system
for further processing by Al methods.

The LSTM method after training, anomalies, i.e., false positives and negatives, began to
reflect actual flutter even more closely than values provided by the Lyapunov estimations. The
Al model was sufficiently simple so that it was able to process data at real-time rates while
maintaining a high level of accuracy. The synchronization available in Python appears to be
sufficiently fast to be used in more complex real-time applications such as aircraft wing flutter
prediction.

Acknowledgement

This research is supported by the project of Czech Science Foundation No. 24-12144S Inves-
tigation of 3D flow structures and their effects on aeroelastic stability of turbine-blade cascades
using experiment and deep learning approach”.

References

[1] Bruen, T., Handling real time data in Python, 2019, available from https://medium.com/
@teebr/handling-real-time-data-in-python-54ca97a40b62.

[2] De Troyer, T., Zouari, R., Guillaume, P., Mevel, L., A new frequency-domain flutter speed pre-
diction algorithm using a simplified linear aeroelastic model, Proceedings of the International
Conference on Noise and Vibration Engineering ISMA, Leuven, 2008, pp. 1197-1 206.

[3] Faster Runtime, Python 3.11 release notes, 2022, available from https://docs.python.org/3/
whatsnew/3.11.html.

[4] Gross, S., PEP 703 — Making the global interpreter lock optional in CPython, 2023, available from
https://peps.python.org/pep-0703/#the-gil-makes-many-types-of-parallelism-difficult-to-express.

[5] Hegger, R., Kantz, H., Schreiber, T., Practical implementation of nonlinear time series methods:
The TISEAN package, Chaos 9 (2) (1999) 413-435. https://doi.org/10.1063/1.166424

[6] Hochreiter, S., Schmidhuber, J. Long Short Term Memory, Wikidata Q98967430, 1995.

[7] Kantz, H., Schreiber, T., Nonlinear time series analysis, Cambridge University Press, 2004.

[8] Kim, T., Flutter prediction methodology based on dynamic eigen decomposition and frequency-
domain stability, Journal of Fluids and Structures 86 (2019) 354-367.
https://doi.org/10.1016/j.jfluidstructs.2019.01.022

207

https://doi.org/10.1063/1.166424
https://doi.org/10.1016/j.jfluidstructs.2019.01.022

[9]
[10]

[11]

[12]

[13]

L. Pesek et al. / Applied and Computational Mechanics 19 (2025) 195-208

Manual for predictive maintenance toolbox, MATLAB 2019b, 2019.

PyTorch documentation for the linear classifier nn.linear, 2024, available from
https://docs.pytorch.org/docs/stable/generated/torch.nn.Linear.html.

PyTorch documentation on CrossEntropyLoss, 2024, available from https://docs.pytorch.org/
docs/stable/generated/torch.nn.CrossEntropyLoss.html.

Smolik, L., Rendl, J., Bulin, L., Employing nonlinear transformation of datasets to train neural
networks, Humusoft Technical Computing Camp, 2024.

Wang, Y.-R., Wang, Y.-J., Flutter speed prediction by using deep learning, Advances in Mechani-
cal Engineering 13 (11) (2021) 1-15. https://doi.org/10.1177/16878140211062275

208

https://doi.org/10.1177/16878140211062275

	Introduction
	Description of the test rig – wing model in tunnel
	Classification of the non-stationary signals by Lyapunov exponents and averagedivergences
	Neural networking model description
	Data preparation, training and tuning stages
	Real time prediction
	Results evaluation
	Conclusions

