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Abstract

The dynamic behaviour of a rotating Timoshenko functionally graded (FG) beam is investigated, with material
properties varying along the height of the beam according to a power-law distribution. The study investigates how
key parameters such as the power-law index, rotational speed, slenderness ratio, and various functionally graded
material (FGM) compositions affect the dynamic response of the beam. The governing equations, which incorpo-
rate shear deformation and rotary inertia effects, are formulated and solved using the B-spline collocation method.
The results provide critical insights into how these parameters affect the natural properties of FG beams, contribut-
ing to optimization and development for the design of advanced rotating structures in engineering applications.
© 2025 University of West Bohemia in Pilsen.

Keywords: dynamic analysis, Timoshenko rotating beam, functionally graded beam, power index, B-spline collo-
cation method

1. Introduction

Functionally graded materials (FGMs) are designed to have a smooth and gradual change in
their properties by varying the composition or structure throughout the material. This unique
feature allows different qualities, such as wear resistance, oxidation resistance, stiffness, and
thermal durability, to be placed exactly where they are needed most. This helps to improve the
overall performance of the material. In rotating beams, such as those found in turbine blades,
helicopter rotors, or other high-speed machinery, FGMs provide significant benefits. Rotating
beams are subjected to complex loading conditions, including mechanical loads and strong
centrifugal forces from rotation. These forces can create high stress in certain areas, which can
lead to failure. FGMs help manage these stresses more effectively, making structures stronger
and more reliable.

Traditional homogeneous materials often fail to provide the right balance required to with-
stand diverse and challenging conditions faced by rotating beams. To address this, researchers
have explored FGMs in detail. In the widely acclaimed work [13], the author introduced a new
method to analyse functionally graded beams with rotary inertia and shear deformation, deriving
a fourth-order equation to express physical quantities and presenting results for static deflection,
stress distribution, flexural waves, free vibration, natural frequencies, and mode shapes of dif-
ferent beam configurations. Nguyen et al. [14] studied rectangular FG beams under axial loads
using first-order shear deformation theory. They examined how factors such as the power-law

*Corresponding author. E-mail: sbhowmick.mech@nitrr.ac.in.
https://doi.org/10.24132/acm.2025.986

49

https://doi.org/10.24132/acm.2025.986


S. Chichkhede et al. / Applied and Computational Mechanics 19 (2025) 49–68

index, material differences, and Poisson ratio affect displacements, stresses, vibration frequen-
cies, buckling loads, and mode shapes. In [1], Almitani et al. focused on the stress and vibration
analysis of rotating FG beams, exploring how the material gradation and the rotational speed
impact their performance. Thomas et al. [20] analysed how FG beams behave at large ampli-
tudes during rotation, particularly looking at hardening and softening effects at different speeds.
These studies highlight the unique advantages of FGMs in managing the demands of rotating
beams.

In [22], Zghal et al. studied functionally graded porous beams with an emphasis on param-
eters such as porosity distribution, gradient index, slenderness ratio, and boundary conditions,
affecting natural frequencies, stiffness, and vibration control. The recent study on function-
ally graded beams by Kılıç and Özdemir [12] explored the effects of porosity, gradient index,
boundary conditions, and material properties on vibration, buckling, and stability, using ad-
vanced finite element methods. The study by Bouzidi et al. [3] used the finite element method
to analyse dynamic behaviour of functionally graded rotor-blade systems. Key findings included
improved natural frequencies, stability, and efficiency over their metallic counterparts at varying
speeds and gradients. In [11], Karahan and Özdemir analysed vibration of functionally graded
blades using the finite element method. Results confirmed the accuracy of the model, showing
that rotational speed increases natural frequencies, while material gradient and slenderness ratio
significantly impact the vibration behaviour.

Chen et al. [4] developed a floating frame reference model for rotating functionally graded
beams, incorporating effects of centroid and neutral axes. Key findings revealed that steady
bending deformation increases with angular speed, influencing vibration characteristics min-
imally. In [10], Hao-Nan et al. analysed rotating axially graded tapered Timoshenko beams
using the Chebyshev-Ritz method, revealing significant impacts of rotational speed, taper ra-
tios, and material gradients on natural frequencies. The paper by Panchore and Ganguli [17]
presented a quadratic B-spline finite element method for analysing free vibrations of rotating
non-uniform Euler-Bernoulli beams, demonstrating improved accuracy and reduced computa-
tional effort compared to conventional methods, particularly for the first few natural frequencies.

The study by Ebrahimi and Mokhtari [6] used the differential transformation method to
analyse free vibrations of rotating Mori-Tanaka-based functionally graded beams, revealing sig-
nificant influences of material gradation and rotational speed on natural frequencies. In the arti-
cle [8], Fang and Zhou utilised the Chebyshev-Ritz method to analyse free vibrations of rotating
axially functionally graded tapered Timoshenko beams, highlighting the significant impact of
material properties and geometric factors on natural frequencies. Ebrahimi and Mokhtari [7]
studied the free vibrations of rotating exponentially functionally graded Timoshenko beams us-
ing the differential transform method, revealing significant effects of material gradation and
rotational speed on natural frequencies. The paper by Özdemir [15] explored the vibration
characteristics of rotating functionally graded Timoshenko beams using the differential trans-
form method. Key findings included the effects of material distribution, slenderness ratio, and
rotational speed on natural frequencies.

The paper by Ebrahimi and Dashti [5] examined free vibration of rotating non-uniform func-
tionally graded beams. The study revealed that increasing the rotational speed and hub radius
raises the natural frequencies of functionally graded beams, while higher power-law exponents
decrease them. The breadth-taper ratio impacts frequencies more prominently than the height-
taper ratio. In [21], Wattanasakulpong et al. studied free vibration in functionally graded beams
using an improved shear deformation theory and validated results experimentally. Findings
showed increased frequencies with higher stiffness and denser material composition. Piovan
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and Sampaio [18] investigated the dynamic behaviour of rotating functionally graded beams.
Results revealed increased geometric stiffening with ceramic-rich surfaces, while metal-rich
cores experienced greater oscillatory axial displacements under acceleration changes. In [19],
Şimşek made a fundamental frequency analysis of functionally graded beams under various
boundary conditions using higher-order beam theories. Results highlighted the frequency re-
duction with increased power-law exponent and the significance of slenderness ratio. Ozdemir
Ozgumus and Kaya [16] analysed vibrations in rotating tapered Timoshenko beams. Results
revealed increasing rotational speed and hub radius enhanced natural frequencies, while slen-
derness ratio inversely affected higher modes. The work by Gunda and Ganguli [9] presented ra-
tional interpolation functions for analysing rotating beams, accounting for centrifugal stiffening
effects. The results showed an improved accuracy in predicting natural frequencies compared
to classical finite element methods, especially at higher rotational speeds.

This work provides the basis for the mathematical formulation of a functionally graded
beam using the B-spline collocation method, which uses piecewise polynomials to approximate
function, to ensure continuity and smoothness up to a certain degree depending on the order of
the spline. The aim of the study is to determine the effect of material grading, rotational speed,
slenderness ratio, and different material compositions on the natural frequency of the rotating
beam. The study forms the foundation for further advanced investigations in many applica-
tions such as turbine blades, aerospace structures etc. However, the modelling and treatment
of such application cases shall demand to incorporate additional fields in the formulation from
the associated mechanics/physics of such applications, namely thermal and flow-around-blades
fields.

2. Governing equations

Let us consider a beam of length L, width b, and height h. The beam is fixed to a hub of radius
R and the hub is free to rotate about the vertical axis, as illustrated in Fig. 1 (left). The hub
rotates with an angular velocity Ω [rad sec−1]. The beam is functionally graded, with its material
properties varying along the height (transverse direction) based on a power-law distribution, as
shown in Fig. 1 (right). The FG beam has a metal-rich composition at the top surface and a

Fig. 1. Rotating functionally graded cantilever beam (left) and its cross-section (right)
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Fig. 2. Variation of the Young’s modulus along the height of the FG beam

ceramic-rich composition at the bottom surface. The volume fractions of ceramic Vc and metal
Vm component vary along the z-direction following the power-law relations given as

Vc =

(
z

h
+

1

2

)λ

, (1)

Vm = 1− Vc (2)

with the power-law index λ ≥ 0. The effective material properties are evaluated using the rule
of mixture given by

P (z) = PcVc + PmVm. (3)

Using (3), the Young’s modulus E and the density ϱ can be written as

E(z) = (ET − EB)

(
z

h
+

1

2

)λ

+ EB, (4)

ϱ(z) = (ϱT − ϱB)

(
z

h
+

1

2

)λ

+ ϱB, (5)

G(z) =
E(z)

2(1 + µ(z))
, (6)

where µ is the Poisson’s ratio. The symbols T and B refer to the top and bottom surfaces of the
beam, which consist of metal and ceramic materials, respectively. The corresponding Young’s
moduli at these surfaces are denoted by ET and EB. The variation of the Young’s modulus
along the beam height is illustrated in Fig. 2. The shear correction factor k is given by [13]

k(z) =
5
(
1 + µ(z)

)
6 + 5µ(z)

. (7)

The Hamilton’s principle is employed to derive the governing equations for the dynamic
analysis of the rotating FG beam. As per this principle, for a system subjected to conservative
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forces, the actual motion between two arbitrary time instants t1 and t2 makes the time integral

I =

t2∫
t1

L dt (8)

stationary, i.e., an extremum. The Lagrangian function L in (8) is defined as the difference
between the kinetic energy K and the total potential energy, which includes U0 and UR, i.e.,

I =

t2∫
t1

[K − (U0 + UR)] dt. (9)

For a rotating beam, the total potential energy U0+UR consists of the internal strain energy and
of the work done by the centrifugal force.

The expression for the kinetic energy is obtained considering the geometry and material
properties as mentioned above. The position vector r⃗ of a point P on the beam is given as

r⃗ = (R + x+ u)⃗i+ (y + v)⃗j + (z + w)k⃗, (10)

where u, v, and w are the displacement components, representing displacements along the x-,
y-, and z-axes, respectively. The displacement field is defined as follows

u(x, z) = u0(x) + zθ, v(x, z) = 0, w(x, z) = x(x). (11)

In this context, u0 and θ represent the axial displacement and rotation of the midplane, respec-
tively. Then, the velocity vector v⃗ can be derived as

v⃗ =

[
−Ω(y + v) +

∂u

∂t

]
i⃗+

[
Ω(R + x+ u) +

∂v

∂t

]
j⃗ +

[
∂w

∂t

]
k⃗. (12)

The expression for the kinetic energy is formulated based on the Timoshenko beam theory

K =
1

2

∫
V

ϱ(z)v⃗ · v⃗ dV, (13)

δK =

L∫
0

∫
A

ϱ

[(
∂u0

∂t
+ z

∂w

∂t

)2

+

(
∂w

∂t

)2

+ Ω2 (R + x+ u0 + zθ)2
]

dA dx. (14)

Solving the inner integral and after some modifications, equation (14) can be rewritten into the
following form:

δK =

L∫
0

{
ϱ0

[
∂u0

∂t

∂δu0

∂t
+

∂w

∂t

∂δw

∂t
+ Ω2 (R + x+ u0) δu0

]
+

ϱ1

[
∂u0

∂t

∂δθ

∂t
+

∂θ

∂t

∂δu0

∂t
+ Ω2 (R + x+ u0) δθ + Ω2θδu0

]
+

ϱ2

[
∂θ

∂t

∂δθ

∂t
+ Ω2θδθ

]}
dx, (15)
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where [ϱ0, ϱ1, ϱ2] =
∫
A
ϱ(z)[1, z, z2] dA. Integrating (15) between t1 and t2 yields

δK =

t2∫
t1

L∫
0

{
ϱ0

[
−∂2u0

∂t2
δu0 −

∂2w

∂t2
+ Ω2 (R + x+ u0) δu0

]
+

ϱ1

[
−∂2u0

∂t2
δθ − ∂2θ

∂t2
δu0 + Ω2 (R + x+ u0) δθ + Ω2θδu0

]
+

ϱ2

[
−∂2θ

∂t2
δθ + Ω2θδθ

]}
dx dt. (16)

To derive the total potential energy U0 + UR, the strain components need to be determined
first. Based on the moderate deformation theory, the normal strain εxx and shear strain γxz are
expressed accordingly

εxx =
∂u0

∂x
+

1

2

(
∂w

∂x

)2

+ z
∂θ

∂x
, γxz =

∂w

∂x
+ θ. (17)

Then, the corresponding strain energy δU0 can be formulated as

δU0 =

L∫
0

∫
A

(σxxδεxx + τxzδγxz) dA dx, (18)

δU0 =

L∫
0

{
Nxx δ

[
∂u0

∂x
+

1

2

(
∂w

∂x

)2
]
+Mxx

∂θ

∂x
+Qδ

(
∂w

∂x
+ θ

)}
dx, (19)

where

Nxx = b

h
2∫

−h
2

σxx dz, Mxx = b

h
2∫

−h
2

zσxx dz, Q = b

h
2∫

−h
2

τxz dz. (20)

The external work δUR done by the centrifugal force NR on the beam is given by

δUR =
1

2

L∫
0

NR

(
∂w

∂x

)2
dx, δUR = −

L∫
0

∂

∂x

(
NR

∂w

∂x

)
δw dx, (21)

while the centrifugal force is defined as

NR =

L∫
x

∫
A

ϱΩ2(R + ξ) dA dξ, NR = ϱAΩ2

[
R (L− x) +

L2 − x2

2

]
. (22)

By substituting (16), (19), and (21)2 into (9), and further differentiating the obtained relation,
we get

δu0 :
∂Nxx

∂x
+ ϱ0Ω

2(R + x+ u0) + ϱ1Ω
2θ = ϱ0

∂2u0

∂t2
+ ϱ1

∂2θ

∂t2
, (23)

δθ :
∂Mxx

∂x
−Q+ ϱ1Ω

2(R + x+ u0) + ϱ2θΩ
2 = ϱ1

∂2u0

∂t2
+ ϱ2

∂2θ

∂t2
, (24)

δw :
1

2

∂

∂x

(
Nxx

∂w

∂x

)
+

∂Q

∂x
− ∂

∂x

(
NR

∂w

∂x

)
+ q = ϱ0

∂2w

∂t2
. (25)
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By solving (23)–(25), we get the equations of motion as

Ê2
∂2θ

∂x2
−G0

(
θ +

∂w

∂x

)
+ ϱ̂2Ω

2θ = ϱ̂2
∂2θ

∂t2
, (26)

∂

∂x

[
G0

(
θ +

∂w

∂x

)]
− ∂

∂x

(
NR

∂w

∂x

)
+ q = ϱ0

∂2w

∂t2
, (27)

where

ϱ̂2 = ϱ2 −
ϱ21
ϱ0

, Ê2 = E2 −
E2

1

E0

, [E0, E1, E2] =

∫
A

E(z)[1, z, z2] dA. (28)

The quantity G0 in (26)–(27) follows from (20)3 as

Q = b

h
2∫

−h
2

τxz dz = b

h
2∫

−h
2

ksG0γxz dz, (29)

where ks denotes the shear correction factor. The boundary conditions for (26)–(27) can be
formulated as

w|x=0 = 0,
dw

dx

∣∣∣∣
x=0

= 0, M |x=L = 0,
dM

dx

∣∣∣∣
x=L

= 0.

The term ϱ̂2Ω
2θ in (26) is significant at higher speed only and, therefore, it can be omitted

following [2]. Further, according to the paper [13], it can be written

w = F − Ê2

G0

∂2F

∂x2
+

ϱ̂2
G0

∂2F

∂t2
and θ = −∂F

∂x
, (30)

where F is an auxiliary function. Therefore using (30), a single equation is obtained from
(26)–(27) in the form(

Ê2 −
Ê2N1

G0

)
∂4F

∂x4
− N2Ê2

G0

∂3F

∂x3
+N1

∂2F

∂x2
+N2

∂F

∂x
−

(
ϱ̂2 +

Ê2ϱ0
G0

− N1ϱ̂2
G0

)
∂4F

∂x2∂t2
+

ϱ0
∂2F

∂t2
+

N2ϱ̂2
G0

∂3F

∂x∂t2
+

ϱ0ϱ̂2
G0

∂4F

∂t4
= 0. (31)

Considering a simple harmonic function, the auxiliary function F takes the form of

F = f(x)eiωt. (32)

Substituting (32) into (31), the final equation for the FG beam is obtained as(
Ê2 −

Ê2N1

G0

)
∂4f

∂x4
+

N2Ê2

G0

∂3f

∂x3
+

[(
ϱ̂2 +

Ê2ϱ0
G0

+
N1ϱ̂2
G0

)
ω2 −N1

]
∂2f

∂x2
+(

N2ϱ̂2ω
2

G0

−N2

)
∂f

∂x
+

(
ϱ0ϱ̂2
G0

ω4 − ϱ0ω
2

)
f = 0. (33)

By applying a suitable numerical technique to solve (33), the auxiliary function F can be
obtained, which is then used to compute other dependent variables. In this study, equation
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(33) is solved using the collocation method with B-spline basis functions as the approximating
functions.

The B-spline collocation method yields a closed-form, piecewise continuous solution, where
the differential equation is enforced at a finite set of points known as collocation points. The
parametric coordinate t determines the polynomial order, referred to as the knot vector. An
open-type knot vector T is assumed in this formulation and is defined by the following expres-
sion:

T = [t0, t1, t2, . . . , tn+k+1], (34)

where n+1 represents the number of control points, and k denotes the order of the polynomial
spline. Once the knot vector is established, the B-spline basis functions Ni,k(t) are defined
recursively using the Cox-de Boor recursion formula

Ni,1(t) =

{
1 for xi ≤ t ≤ xi+1,
0 otherwise,

Ni,k(t) =
(t− xi)Ni,k−1(t)

xi+k−1 − xi

+
(xi+k − t)Ni+1,k−1(t)

xi+k − xi+1

.

(35)

The resulting B-spline curve is constructed using the n + 1 control points B0, B1, B2, . . . , Bn

along with the corresponding basis functions and is expressed as

F (t) =
n+1∑
i=1

BiNi,k(t),

where t and k in (35) lie in the following intervals:

tmin ≤ t ≤ tmax, 2 ≤ k ≤ n+ 1. (36)

The function F is substituted into the governing equation as an approximating polynomial in
such a way that it satisfies the specified boundary conditions. Since the number of unknowns in
the approximating polynomial exceeds the number of boundary conditions, the solution must
be enforced at specific discrete points known as collocation points. In this work, the collocation
(or abscissa control) points are determined using the Grevillea abscissa method. The position
vector of the control point Bi, which defines the B-spline curve with respect to the parametric
coordinate t, is calculated as follows

xi =
1

n
(ti + ti+1 + . . .+ ti+n−1) . (37)

As B-splines offer a larger control over the spread and behaviour of the approximating
functions, the degree of polynomial plays an important role in improving the precision of the
results. The results are only accurate at the knots and precise at the remaining positions of the
beam/geometry span. Higher degree of polynomials results in obtaining the better accuracy at
the knots and better precision all over the span. Collocation methods (using regular polynomial
approximations), in general, amongst the other methods of weighted residuals, are by far the
easiest and mostly less accurate of the lot. The best of the precision is reported to be obtained
by the Galerkin’s error minimisation technique and/or the least squares method. But the math-
ematics involved in these methods are not as simple as those of the collocation method. At this
point, the B-spline collocation method comes into the picture. A method that, by virtue of using
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Table 1. Properties of constituents of FGM

FGM Young’s modulus Density
Poisson’s ratio

constituents E [GPa] ϱ [kg m−3]

Aluminium 70 2707 0.3
Alumina 380 3960 0.3

Steel 210 7850 0.3

B-splines as approximating functions instead of regular polynomials, offers a larger number of
knots/collocation points where the residual error may be forced to zero (thus, increasing the ac-
curacy comparatively), thereby maintaining the simplicity of mathematical and computational
implementation and yielding precision comparable to those obtained by the Galerkin’s method
or the least square method. The degree of the B-spline approximation polynomial is instrumen-
tal in enhancing the precision of the method by allowing larger and better approximation and
also by improving the accuracy at a larger number of knots.

To account for material and geometric nonlinearities associated with the problem and to
enable a more comprehensive investigation, higher-order B-spline functions are employed. A
custom MATLAB code has been developed to carry out the numerical analysis of the rotating
FG beam.

3. Validation

The codes have been validated using different cases for natural frequencies of isotropic rotating
and non-rotating beams and for FG rotating and non-rotating beams. The material composition
of the considered FG beam is given in Table 1.

Case 1: In this case, a simply supported beam with L = 0.5m, h = 0.125m, composed
of aluminium and steel is considered. The natural frequencies of the beam are compared with
the results obtained from the present MATLAB code for both isotropic and functionally graded
non-rotating beams, as shown in Table 2.

Case 2: A cantilever beam with parameters L = 1m, m = 6.4 kg m−1, EI = 1.2×105 N m2

is considered. Its natural frequencies for rotating and non-rotating case are presented in Table 3.
The non-dimensional natural frequency and the non-dimensional rotational speed are given by

ω̄ =
ωL2

h

√
ϱm
Em

, Ω̄ = ΩL2

√
E2

ϱ1
.

Table 2. Natural frequencies of simply supported isotropic and FG beam [13]

ω̄ Pure steel Present λ = 1 Present Pure aluminium Present
1 6 728.89 6 729.653 6 457.93 6 458.663 6 615.66 6 616.415
2 22 279.03 22 278.85 21 603.18 21 603.01 21 904.14 21 903.97
3 41 094.04 41 093.80 40 145.42 40 145.18 40 402.57 40 402.33
4 6 0889.98 60 889.91 59 779.01 59 778.94 59 865.4 59 865.33
5 80 895.78 80 895.94 79 686.16 79 686.32 79 534.57 79 534.73
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Table 3. Natural frequencies of a cantilever isotropic beam at non-dimensional rotational speed
Ω̄ = {0, 12}

Mode
Ω̄ = 0 Ω̄ = 12

Ref. [9] Present Ref. [9] Present
1 3.516 3.512 13.170 13.167
2 22.034 22.002 37.603 37.544
3 61.697 61.477 79.614 79.320
4 120.90 120.109 140.535 139.602
5 199.86 197.781 220.539 218.232

The results obtained through the B-spline collocation shows good agreement with the previ-
ously accomplished work. The convergence test shown in Table 4 indicates that for K = {20, 25,
30, 35}, the obtained results do not change which implies that the value of K = 20 is sufficient
for convergence.

4. Results and discussion

The present study analyses the dynamic behaviour of a rotating functionally graded (FG) beam
composed of steel and alumina. The beam under consideration has a slenderness ratio of
L/h = 10 and the shear correction factor

ks =
5(1 + µ)

6 + 5µ

is applied to incorporate the effects of shear deformation. The other material properties of the
FG beam, such as the Young’s modulus, vary through the thickness according to the power-law
distribution. The variation in the power index, rotational speed, slenderness ratio, and the effect
of varying modulus ratio that govern the distribution of steel and alumina within the beam have
been investigated.

Key non-dimensional parameters are defined to simplify the analysis and provide a gener-
alised understanding of the beam behaviour. The rotational speed Ω̄, and the natural frequency
ω̄ is given by

ω̄ =
ωL2

h

√
ϱm
Em

, Ω̄ = ΩL2

√
EA

ϱI
, where I =

bh3

12
.

Table 4. The convergence properties of the first three natural frequencies at λ = 1 and Ω̄ = 2

ω̄ K = 10 K = 15 K = 20 K = 25 K = 30

1 1.648 1.648 1.648 1.648 1.648
2 8.294 8.253 8.253 8.253 8.253
3 23.374 20.388 20.380 20.382 20.382
4 35.590 35.417 35.224 35.223 35.223
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Table 5. Natural frequencies ω̄ for different power-law index λ of the functionally graded beam at Ω̄ = 5,
L/h = 10

ω̄
Power-law index λ

Ceramic 0.2 0.5 1 2 5 10 Metal
1 3.503 3.094 2.770 2.517 2.318 2.1362 2.034 0.976
2 13.325 11.760 10.512 9.527 8.7582 8.084 7.714 3.714
3 32.155 28.388 25.374 22.978 21.0947 19.4508 18.567 8.964
4 57.003 50.355 45.032 40.772 37.383 34.405 32.836 15.891
5 85.964 75.987 67.992 61.555 56.372 51.785 49.410 23.965
6 115.797 102.414 91.678 82.992 75.932 69.646 66.439 32.282
7 147.846 130.889 117.245 106.115 96.937 88.699 84.586 41.216
8 153.627 136.007 121.768 110.152 100.610 92.104 87.867 42.828
9 177.926 157.419 140.962 127.593 116.646 106.859 101.925 49.602

10 178.613 158.151 141.703 128.264 117.135 107.110 102.128 49.793

4.1. Effect of power-law index

The dynamic behaviour of functionally graded beam consisting of steel and aluminium is anal-
ysed at L/h = 10, where the beam is rotating at Ω̄ = 5. The natural frequency of the beam is
obtained at different values of the power-law index that regulates the distribution of steel and
aluminium through the thickness of the beam. The resulting natural frequencies for this varying
power-law index are shown in Table 5, which highlights the effects of material composition
on the vibration properties of the beam. The results show a trend that offers an insight into
the influence of material gradation on the dynamic behaviour of the beam. It is observed that
the natural frequencies decrease as the power-law index increases, indicating a transition from
pure ceramic to pure metal. This is due to the fact that ceramic materials (alumina) exhibit
higher stiffness to density ratio as compared to metals, resulting in higher natural frequencies.
As the power index increases, more steel is introduced into the beam, reducing stiffness while
increasing the density. Lower stiffness leads to lower natural frequencies.

As we examine higher modes, the same decreasing trend can be seen. The higher modes
are more sensitive to changes in material composition, which explains the more pronounced
differences in natural frequencies at higher λ values. This behaviour reflects the fact that the
natural frequency is directly related to the stiffness-to-density ratio of the beam. Alumina, with
its higher stiffness, increases the beam natural frequencies, while steel, with a higher density
and lower stiffness, reduces them. To examine the impact of the power-law index on the 1st,
2nd, 3rd, and 4th natural frequencies, graphs are presented in Fig. 3. Each plot depicts the
variation of natural frequency with respect to the power index at different rotational speeds.
As the rotational speed rises, its influence on each natural frequency becomes more significant,
revealing unique patterns for each frequency mode. Fig. 3 shows a clear trend of decreasing
natural frequency with an increase in power index. With an increase in the rotational speed,
the value of the natural frequency also increases. The highest natural frequency is observed
for λ = 0, as soon as the value of power index increases, the value of the natural frequency
decreases up to a certain value of the power index.

For the first natural frequency, the decrease in natural frequency is observed up to λ = 5
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(a) 1st natural frequency (b) 2nd natural frequency

(c) 3rd natural frequency (d) 4th natural frequency

Fig. 3. Variation of natural frequencies with the power-law index λ at different values of Ω̄

and then the decrease is subtle and becomes almost constant from λ = 15. A similar trend is
observed for the 2nd, 3rd, and 4th natural frequencies, where after λ = 10, the slope of the
curve is low. At a lower speed, i.e., at Ω̄ = {0, 2, 4}, the increase in the value of the natural
frequency is low while it becomes more prominent for higher rotational speeds Ω̄ = {6, 8, 10}.
This trend is more notable for higher frequencies, i.e., for the 3rd and 4th natural frequencies.

4.2. Effect of rotational speed

The influence of the rotational speed on the natural frequency of the functionally graded rotat-
ing beam is obvious from Table 6. The slenderness ratio and the power index are considered
as L/h = 10 and λ = 1, respectively, and the beam is rotated at various non-dimensional
speeds. The listed data suggest that with increasing rotational speed Ω̄, the natural frequency
also increases. This effect can be attributed to centrifugal stiffening, where the outward force
generated by the rotation causes an increase in the effective stiffness. As the rotational speed
Ω̄ increases, the centrifugal forces act to resist flexural deformations, resulting in higher natural
frequencies. For example, at higher speeds (e.g., Ω̄ = 20 or Ω̄ = 30), the data show a noticeable
increase in frequency values for each mode compared to lower speeds.

The relationship between the first four natural frequencies has been plotted against the ro-
tational speed for three different power indexes λ = {0.2, 1, 2} in Fig. 4. As the rotational
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Table 6. Natural frequencies ω̄ for different values of the rotational speed Ω̄ of the functionally graded
beam at λ = 1, L/h = 10

ω̄
Rotational speed Ω̄

0 5 10 15 20 25 30
1 1.357 2.517 4.376 6.298 8.231 10.168 12.109
2 8.156 9.527 12.764 16.775 21.095 25.560 30.100
3 21.517 22.978 26.823 32.087 38.098 44.512 51.146
4 39.158 40.772 45.200 51.571 59.113 67.345 75.989
5 59.825 61.555 66.488 73.881 82.794 92.677 103.286
6 81.008 82.992 88.964 98.098 108.583 119.587 131.787
7 102.677 106.115 115.494 127.394 134.987 145.209 158.544
8 108.151 110.152 116.347 128.822 143.847 153.707 165.813
9 124.790 127.593 130.787 136.17 153.150 156.848 179.512

10 126.521 128.265 138.206 153.342 172.210 174.587 196.999

(a) 1st natural frequency (b) 2nd natural frequency

(c) 3rd natural frequency (d) 4th natural frequency

Fig. 4. Variation of natural frequencies with the rotational speed Ω̄ at different values of λ
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speed increases, the natural frequency for all three power indexes increases at different rates.
For lower rotational speeds, i.e., Ω̄ = 0÷ 4, the proportion of increase in the natural frequency
is low and increases rapidly at Ω̄ = 4 onwards. For λ = 0.2, the highest natural frequency is
obtained for all values of the rotational speed and for higher power indexes, the value of the
natural frequency decreases due to reduced stiffness of the material. The deviation of natural
frequency at different values of λ = {0.2, 1, 2} increases with the mode number, i.e., for the 4th
natural frequency (Fig. 4d). The highest deviation of the natural frequency between the power
indexes is observed.

4.3. Effect of slenderness ratio

The correlation between the natural frequency and the slenderness ratio is shown in Table 7.
At a constant rotational speed Ω̄ = 10 and a power index of λ = 1, the natural frequency was
observed in various slenderness ratios L/h ranging from 5 to 50. This dataset offers an insight
into how changes in the slenderness ratio impact natural frequencies of the rotating FG beam for
different modes (1 through 10). Higher slenderness ratios indicate a longer and slenderer beam
relative to its thickness, making it more flexible and less resistant to bending and vibrational
effects. At lower slenderness ratios, such as L/h = 5, the beam has a comparatively larger
thickness, providing greater structural rigidity. Consequently, the natural frequencies across all
the modes are lower compared to those in the case of higher slenderness ratios. The reason for
this is because the thicker beam undergoes less bending and its stiffness is largely governed by
its inherent material properties, rather than rotational stiffening. With an increasing slenderness
ratio, the values of the natural frequency increase significantly for all modes. For example,
for mode 1, the natural frequency increased from 4.297 at L/h = 5 to 4.409 at L/h = 50,
although the increase is more pronounced in higher modes. This increase is due to the greater
susceptibility of slender beams to centrifugal stiffening at higher rotational speeds.

Although the natural frequency generally increases with the increasing slenderness ratio,
the rate of increase decreases as the slenderness ratio reaches higher values. This suggests that
at very high slenderness ratios, the flexibility reaches a point where additional increases in L/h
have minimal impact on the frequency. This behaviour implies that a threshold slenderness ratio

Table 7. Natural frequencies ω̄ at different values of slenderness ratio of rotating functionally graded
beam for λ = 1, Ω̄ = 10

ω̄
Slenderness ratio L/h

5 10 15 20 30 40 50
1 4.297 4.376 4.395 4.402 4.407 4.409 4.409
2 11.866 12.764 12.99 13.075 13.138 13.161 13.172
3 23.0561 26.823 28.001 28.482 28.852 28.988 29.052
4 35.975 45.2 48.691 50.244 51.500 51.974 52.201
5 49.559 66.489 73.950 77.562 80.652 81.862 82.448
6 62.773 88.965 101.475 107.975 113.828 116.206 117.378
7 69.597 115.49 135.096 145.426 148.337 140.716 135.374
8 72.540 116.35 136.346 148.825 154.937 158.811 135.374
9 76.379 130.79 150.024 154.376 161.595 167.367 160.711

10 82.315 138.21 165.691 182.422 195.952 187.503 170.371
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(a) 1st natural frequency (b) 2nd natural frequency

(c) 3rd natural frequency (d) 4th natural frequency

Fig. 5. Variation of natural frequencies with the slenderness ratio L/h for different values of λ and for
Ω̄ = 5

exists, beyond which the centrifugal stiffening effect contributes less to the frequency increase.
Higher modes exhibit a greater sensitivity to changes in the slenderness ratio than the lower
modes. This trend highlights those higher modes, which involve more complex vibrational
patterns, and are more influenced by the geometric and rotational effects associated with the
slenderness.

The natural frequencies of a rotating beam for four modes at a rotational speed Ω̄ = 10
plotted against the slenderness ratio L/h for three power indices: λ = {0.2, 1, 2} are shown in
Fig. 5. As the slenderness ratio increases, the 1st natural frequency shown in Fig. 5a initially
experiences a slight rise for all power indices, but this growth gradually levels off and tends
toward an asymptotic value. This behaviour suggests that beyond a certain slenderness ratio,
further increases have a negligible effect on the 1st natural frequency. The initial rise is due
to the increased flexibility associated with a higher L/h ratio, which makes the beam more
responsive to centrifugal stiffening effects at the initial stage. However, as the beam becomes
very slender, this effect saturates and further changes in L/h have limited impact. For the
2nd, 3rd, and 4th natural frequencies, Figs. 5b–d show the same trend of an increase in the
natural frequency with an increase in the slenderness ratio. However, the rate of increase in
the natural frequency increases with the mode number, and the 4th natural frequency displays a
more pronounced increase with the slenderness ratio, particularly at lower values of L/h.
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Table 8. Natural frequencies ω̄ at different material composition of rotating functionally graded beam
for Ω̄ = 10

Material
ω̄

Power-law index λ

composition 0.2 0.5 1 2 5

Steel/Aluminium

1 3.208 3.191 3.230 3.341 3.482
2 9.383 9.299 9.355 9.626 10.049
3 19.766 19.545 19.565 20.023 20.880
4 33.354 32.981 32.951 33.594 34.897
5 49.107 48.591 48.510 49.314 51.002

Aluminium/Alumina

1 5.785 5.429 5.129 4.892 4.892
2 16.905 15.748 14.686 13.822 13.822
3 35.592 32.995 30.445 28.294 28.294
4 60.051 55.629 51.137 47.222 47.222
5 88.423 81.964 75.257 69.234 69.234

Zirconia/Alumina

1 3.275 3.259 3.262 3.282 3.296
2 9.585 9.535 9.536 9.587 9.629
3 20.191 20.079 20.067 20.155 20.234
4 34.042 33.853 33.814 33.927 34.030
5 50.073 49.799 49.719 49.836 49.941

Although it eventually normalises, the rate of increase and the final frequency values are
significantly higher compared to the 1st natural frequency. This suggests that higher modes are
more sensitive to changes in the slenderness ratio. The dimensionless natural frequencies ω̄ for
a rotating beam made from three different combinations of FGM, in particular steel/aluminium
(steel/Al), aluminium/aluminium (Al/Al2O3), and zirconia/aluminium (Zr/Al2O3), with a rota-
tional speed of Ω̄ = 10 and various power indexes λ are listed in Table 8. Since the stiffer mate-
rial forms the upper surface, increasing power index leads to a higher volume fraction of metal,
which lowers the stiffness. Therefore, aluminium/alumina FGM displays a notable decrease in
natural frequencies as the power index increases, with values decreasing steadily across all the
modes from 0.2 to 5 due to a higher stiffness ratio. However, for the zirconia/alumina combina-
tion, the natural frequencies remain almost constant across all the values of λ, showing minimal
variation. Both zirconia and alumina are ceramics with similar stiffness values, so changes in
their proportion have a limited effect on the overall stiffness of the beam.

However, in the case of steel/aluminum, the natural frequency increases with the power-law
index due to the rising volume fraction of aluminum. The effect is more prominent in higher
modes due to the increasing sensitivity of higher-frequency modes to changes in stiffness and
material composition.

The 1st and 4th natural frequencies for the three types of above-mentioned FGMs are plot-
ted against the power index λ in Fig. 6. The 1st natural frequency in Fig. 6a shows that for
aluminium/alumina the frequency decreases significantly as λ increases from 0.5 to 5. This
is probably due to a decrease in the stiffness as the volume fraction of aluminium increases,
which is a less stiff material compared to alumina. Steel/aluminium has a subtle increase in
natural frequency with increasing λ from 0.5 to 5, which implies that its structural behaviour
is less sensitive to compositional changes in the considered range of λ. Steel and aluminium
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(a) 1st natural frequency (b) 2nd natural frequency

(c) 3rd natural frequency (d) 4th natural frequency

Fig. 6. Variation of the natural frequencies with the power index λ for Ω̄ = 10 for different material
compositions

have densities and stiffness ratios more similar to ceramics such as alumina. Zirconia/alumina
shows a very slight increase in frequency with λ, remaining relatively constant. This is because
both zirconia and alumina are ceramics with similar stiffness, so their gradation does not greatly
impact the natural frequencies.

Moving toward the higher frequencies, i.e., the 2nd, 3rd, and 4th natural frequencies in
Figs. 6b–d, the trends mirror those seen in the 1st natural frequency but with higher magnitude
differences. The responsiveness of natural frequencies to the power index is primarily affected
by the inconsistency in constituent material properties, with metal/ceramic based FGMs ex-
hibiting more frequency variation due to higher differences in material properties compared to
metal/metal and ceramic/ceramic based FGMs.

5. Conclusion

The dynamic analysis of rotating functionally graded (FG) beams is crucial to understanding
their vibration characteristics under different operating conditions. This paper focuses on eval-
uating the dynamic response of a rotating FG beam. The results indicate that parameters such
as the rotational speed, slenderness ratio, and material composition influence the natural fre-
quencies differently due to the effects of material gradation.
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1. The power-law index substantially affects the dynamic behaviour of the rotating FG beam,
with a higher ceramic content resulting in stiffer, higher frequency beams, whereas a
higher metal content lowers the stiffness and the corresponding natural frequencies. The
used material composition of steel/alumina shows that the natural frequency of the rotat-
ing beam is directly proportional to the stiffness to mass ratio of the beam.

2. Incorporating rotational speed will result in centrifugal stiffening of the beam, which in
turn increases the natural frequency. For a given value of the power-law index, increasing
rotational speed increases natural frequency. The rate of increase in natural frequency is
higher at a lower mode, while lower for a higher mode.

3. As the slenderness ratio increases, the natural frequency tends to rise, primarily due to
the centrifugal stiffening effect in the rotating beam. However, this increase saturates at
higher ratios, particularly at lower modes. Higher modes show a greater response to the
slenderness ratio, suggesting that they are more influenced by geometric changes of the
beam.

4. The influence of the power index on the natural frequency depends on the difference in
properties between the materials used in the FGM. FGMs with contrasting properties
of metal/ceramic (such as aluminium/alumina) show significant changes, while FGMs
with similar metal/metal and ceramic/ceramic materials (such as steel/alumina and zirco-
nia/alumina) exhibit uniformity across the power index range.
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[12] Kılıç, B., Özdemir, Ö., Vibration and stability analyses of functionally graded beams, Archive of
Mechanical Engineering 68 (1) (2021) 93–113. https://doi.org/10.24425/ame.2021.137043

[13] Li, X. F., A unified approach for analyzing static and dynamic behaviors of functionally graded
Timoshenko and Euler-Bernoulli beams, Journal of Sound and Vibration 318 (4–5) (2008)
1 210–1 229. https://doi.org/10.1016/j.jsv.2008.04.056

[14] Nguyen, T.-K., Vo, T. P., Thai, H. T., Static and free vibration of axially loaded functionally
graded beams based on the first-order shear deformation theory, Composites Part B: Engineer-
ing 55 (2013) 147–157. https://doi.org/10.1016/j.compositesb.2013.06.011
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