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Modelling of the bladed disk vibration
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Abstract

The requirement for wide operation range of steam turbine can cause, that the blades work close to resonant
frequency. For decreasing of blade’s vibration there are placed damping elements in the blade shroud. These
elements are calculated for dissipation of the vibration energy. The analytical method of blade and bladed disk
modal analysis is introduced. The method enables to include blades both with and without damping elements in
shroud. The mathematical model of the bladed disk is prepared for including damping effects in contact planes.
© 2010 University of West Bohemia. All rights reserved.
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1. Introduction

The requirements on wide frequency operation range and mainly on higher efficiency of steam
turbine blades lead to thinner profile, which is better in term of computation of fluid dynamics
(CFD) but blade dynamic properties get worse. The purpose of damping elements is to decrease
potential high amplitudes of blade vibration, which may occur due to resonances or big acting
forces. The aim of this article is to develop suitable methodology for vibration modelling of
damped blades. The method is based on discretization of 3D rotating disk [1] and 1D blades [3]
by FEM. This contribution is the rudimentary step for research of dynamic behaviour of the
bladed disk with damping elements, which are placed between blade shrouds using the har-
monic (balance) linearization method. In future, the damping will be involve due to slip contact
interaction in inner couplings between blade shrouds.

2. The mathematical modelling of the disk with blade foots

The rotating bladed disk (see fig. 1) can be generally decomposed into a disk (subsystem D)
and separated blades (subsystems B;,7 = 1,...,r). Disk is clamped on inner radius to rigid
shaft rotating with constant angular velocity w around its y axis. According to the derivation
presented in [2] the disk can be discretized in the rotating x y z coordinate system using linear
isoparametric hexahedral finite elements (see [1]). The equation of motion can be written in a
configuration space defined by the vector

qp = |.. .,u;-F),’U](-F),U}](-F)

T
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ROTOR

Fig. 1. Scheme of the rotating bladed disk

of nodal j displacements (see fig. 1) in direction of rotating axis z,y, z. The disk nodes are
classified into free nodes (superscript F') and coupled nodes (superscript C') on the outer and
inner surface of the blade foots. The mathematical model of the disk was derived in [1] using
Lagrange’s equations in the form

Mpdp(t) + wGpgp(t) + (K.p — w’Kap) qp(t) = W’ fp, (2

where Mp, K,p and K, are symmetric mass, static stiffness and dynamic softening ma-
trices, skew-symmetric matrix wG'p expresses gyroscopic effects and w? fp is force vector of
centrifugal load.

The vector of generalized coordinates of the disk can be partitioned according to (1) as

(F)
an = [ i) 1 ca)) e R, ¢ e R )
dp

The displacements of the coupled disk nodes on condition of rigid blade foots modelled
as a disk part can be expressed by displacements of referential nodes R; which are identical
with the first blade nodes j = 1 at blade foots (see fig. 1). This relation between coupled disk
displacements corresponding to blade ¢ and blade displacements in referential node R; is

]

UEC) cosa; 0 sinay 1 0 0] O Zj Y; Y1
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or shortly

q](C) =T, Tiq, i=1,2,...,m 5
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where x;, y;, z; are coordinates of the coupled disk node j on the rigid blade foots in coordinate
system x;, y;, z; of the blade ¢ with the origin in the first blade node and «; is the angle between
the rotating disk axis x and the rotating blade axis z;. Coordinates of vector g, ; express the
referential node displacements in direction of blade rotating axes z;, y;, z; and small turn angles
of the blade cross section in node R;.

The complete transformation between displacements of coupled nodes of the disk on the
blade foots and the referential nodes R; of all blades can be expressed in the matrix form

©r | _ Ta'T ©

il q | = qD) =Tp rqr. (6)

The global transformation rectangular matrix Tp p € R"5r describes the linkage between
the disk (D) and the blade rim (R). Coordinates of vector gi express displacements of the blade
nodes j = 1,2,..., N (see below) in coordinate systems x;, y;, 2; (see fig. 1) in order of blades
(fori=1,2,...,1r)

T
ar=[ab: ab> ---4n,] €R', ng = 6N, (7)

where r is the blade number.

For illustration we present in table 2a number of lowest natural frequencies of the nonrotat-
ing centrally clamped modeled disk (see fig. 2) with rigid blade foots but without blades. The
nodes which lie on the inner radius are fixed in all directions. The mode shapes corresponding
to natural frequencies are characterized by the number of nodal diameters (ND) and the number
of nodal circles (NC). the modal values of the disk with foots modelled as flexible differ from
the disk model with rigid foots very small [4].

Table 1. Parameters of model Table 2. Modal analysis of the disk with rigid blade foots
Disk width 9 mm Frequencies of disk

Disk outer radius | 252.5 mm with blade foots
Number of blades 60 pcs [Hz] | shape
Length of blade 205 mm 1]234,8 | 1ND
Width of blade 20 mm 212348 | 1ND
Hight of blade 10 mm 31249,8 | 1NC
Shroud mass 0.078 kg 4 1306,7 | 2ND
51306,7| 2ND
615993 | 3ND
715993 3ND

3. The blade rim with damping elements in shroud

The single blades are modelled as one dimensional continuum linked with rigid shroud body in
its centre of gravity of last blade profile. The mathematical model of the uncoupled blade 7 with
shroud in configuration space of its blade node displacements (in the direction of rotating axes
x;, Y, z; and of small angular displacements of the blade cross sections)

Qi = [ uj v, w505, 05,05, g, €RM™L =12, rj=1,2,....N  (8)
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Fig. 2. Scheme of the disk with blade foots

has the form [3, 5]
MBéB,i(t) + wGB(.]B’i@) + (KsB + wQKwB — UJ2KdB) qB’i(t) = WQ.fB X (9)

where blade matrices Mg, K5, K;p and G have an identical meaning with matrices of the
disk and matrix wQK% p expresses a centrifugal blade stiffening. (Shortly, the deformation en-
ergy gained due to extension in centrifugal array can be expressed by matrix of blade centrifugal
stiffening [S]-Appendix 1.) The matrix Kz is result of modelling of 1D continuum in rotating
coordinate system.

In this first modelling task is supposed, that the damping element is fast connected on the
sloping side with blade ¢+ 1 because the frictional force here is much higher than on the straight
(radial) side of the damping element. This model in the first step of modelling respects only a
contact stiffness between blade ¢ and damping element connected with following blade ¢ + 1 on
the radial area. This contact stiffness is defined by contact stiffness matrix between blades ¢ and
1+1

K =diag(0 0 ke ke kyy 0)g e - (10)
expressing the constraint for the circumferential displacement and two rotations by means of
contact stiffness k. in normal direction to radial area {;n; and two flexural stiffnesses ke¢, Ky, .

This contact stiffness matrix is expressed in local contact coordinate system &;, n;, (; placed
in central contact point B; of the ¢-th blade shroud. The coupling (deformation) energy between
two adjacent blades ¢ and ¢ + 1 (see fig. 3 is, in this contact coordinate system, expressed as

. 1
Engl - 5 (qBi N qA“'l)ZJh,Ci K(CB> (qBi B in‘*'l)fiJh‘,Ci ’ (1)
where g, q,,, are vectors of blade 7 displacements in point B; and blade ¢ + 1 displacements
in pointA;;; expressed in coordinate system &;, 7;, (;. The difference between qp, — q 4, ,
represents the relative motion of contact areas between two adjacent blades ¢ and ¢ + 1.

The translation of blade local coordinate systems from point C; to point B; and from point

C;.1 to point A; 1 is expressed by translation matrices

0 Zx  —Yx
Ri=|-2x 0 ax |, X=Ay,B. (12)
Yx —Tx 0
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Fig. 3. Scheme of two adjacent blades and damping element

The translated local coordinate system is then rotated so, that the contact coordinate axis &; is
the radial according to bladed disk axis of rotation y;.
The vector of displacements in point B; in the contact coordinate system is

uBi uBi
UB; TB 0 UB; up,
wBi wBi
a3, & OB, - ©B; 4B; 2,2
ﬁB,‘, 0 TB ﬁB,‘, QOBZ,
- wB' - &iminGi L E L wB’ H @iz,

(13)
where the rotation matrix 75 between coordinate systems is specified by angle dg between
radial axis x; of blade passing through point C; and radial axis &; passing through point B;.

cosdp 0 —sindp
5= 0 1 0 . (14)
sindg 0 cosdp

Analogously the vector of displacements of point A;; in this contact coordinate system is
defined as
- TA 0
in+1 &G [ 0 T4 :| qaii, T4 Yit %41

15)

where
cosdy 0 sindy
TA= 0 1 0 . (16)
—sindy 0 cosdy
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The vector of blade ¢ displacements in point B; in coordinate system z;, y;, 2; is defined by
generalized displacements of point C; and by matrix of translation Rp

up E RE Uc FE Rg
= ‘ = ‘ = " 17
95w |: ¥Bi :|$i,yi,Zz |: 0 E ¥ TiyYirZi 0 E 4 (an

According to (13) this vector in the contact coordinate system &;, 7;, ¢; has the form

B 0:||:E Rg

qB; &iminGi = l: 0 5 0 E :l qc; ETRTE (18)

Tp

Analogously, the vector of blade ¢ + 1 displacements in point A;,; in the contact coordinate
system &;, 1;, ; is expressed as

TA 0 E R£
94, gminti [ 0 74 :| |: 0 FE qc;. Tip1Yit1Zi1 (19)

Ty

We can now express the coupling energy, defined in (11)by means of generalized coordinates
of 7-th and 7 + 1-th blades in the form

. 1 T
7,141 B
EC’+ = 5 (TBin - TAqu,+1) K(C) (TBin - TAin+1) : (20)
L . . . .. OELT! (R) .
After multiplying the previous equation and from identity 65 = g we obtain the
R K

stiffness matrix of coupling between two adjacent blades ¢ and 7 + 1 in the form

ac, ac,.,
' dB;
Kpg B —Kp a
T (D) Tre (B) e
TLK Ty |- | -TEKS Ta .
KO = | : : ;@D
*KA(; K?; 95,11
~TiK T | | TAKS Ta |- | 90,

where gp; and gp ;1 are the vectors of all generalized displacements of blade ¢ and i-th. Vec-
tors gc, and gc 41 are the vectors of generalized displacements in the last node N on blade ¢
and i-th, respectively.
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The whole coupling stiffness matrix between all blades (here 60 blades) is then

T T T T T
ac, C, dcy 9C59 9Cgo
Kaa+Kpp |- —Kp.a —Ka.p
—Ka.B - | Kaa+Kpp |- —Kp.a
. | _ | (22)
c = —Ka.B - | Kaat+Kpp | - —Kp.a
Kaa+Kpp |- - —Kp.a
-Kp,a —-Ka,B Kaa+Kpg,p J

This contact stiffness matrix connects the blades together into a blade rim, whose equation
of motion is

MRggg(t) + wGRrR(t) + (KsR + K(CR) +w?Kop — w2KdR) qp(t) = W’ fr, (23)

where all matrices (except K (CR) are block-diagonal in the form
Xp =diag (Xp, Xp, ..., Xp), X =M,G K, M, K,. (24)

The contact stiffness matrix K éB) defined in (10) depends on geometric and material char-
acteristics of damping element. Mentioned above, the frictional force is much higher on the
slopping side, so at the first time the damping element is considered fast connect here. The
normal force in the contact on radial straight side is

mrrw?

(25)

"~ tand,

Fig. 4. Scheme of the damping element
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where mr is the damping element mass, w = %7 is the angular velocity and 7 is radius of
damping element centre of gravity. The contact stress is
hey  bey
Noiv NN X
O[MPa) = %7 Acp ="hy, by -10°, (26)
ef [mm?]

where £ is axial and b is radial damping element proportions and A, is the effective contact
area (see fig. 4), defined by real size of contact area, i.e. the high A multiply by coefficient v,
etc.

The contact normal stiffness in direction ( is
N, .
ke = 70 - 10%[N/ml), 27)

where contact deformation dp,,,) = co® in um is defined, according to [6], by contact defor-
mation coefficient ¢ and contact exponent p. Moments of flexion around axes &; and 7; can be
expressed as

hﬁf/2 1
Mg = 2/ k]befdn nztp = — k’[befhef }sz(p,
0 12 N——

ke
bcf/2 1
M, =2 / kihesd€ €0 = = kibesher Vo, (€8)
o 12 Hk,—/
¢

where unit contact stiffness k; is supposed constant and the angles of relative turning of interface
surfaces are marked as (¢ and ©J. Two flexural contact stiffnesses are then

1 1
kee = 75ke (h)? by = 15ke (by)* . (29)

4. The modelling of bladed disk with damping elements in blade shroud

The motion equations of the fictive undamped system assembled from uncoupled subsystems —
the central clamped disk with rigid blade roots and blade rim with damping elements in shroud —
in the configuration space

" (N 1]
q= (qD ) (qD ) qr (30)
can be formally rewritten as
Mq(t) + wGq(t) + (K, + w’ K, — 0’ K,) q(t) = w*f. (31)

According to mathematical models (2) and (23), all matrices have the block-diagonal form
X :dlag (XD7 XR)7 X = M7 Ga Kda
K, = diag(K.p, K.z + K2), K,, = diag(0, K,p) (32)

and f = [ b, fﬂT. The vector of generalized coordinates q(t) of the real bladed disk in
consequence of the couplings (6) can be transformed into new vector q in the form

ap,’ E 0 (F)
¢9 | =0 Tpgr [ 9o ] or shortly g = T'q. (33)
ar 0 E qr
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The mathematical model of the central clamped bladed disk with damping elements in blade
shroud in the configuration space g takes the form

Mi(t) +wGa(t) + (K. +w'K. - oK) 4(1) = *F, (34)
where X = TTXT, X = M,G, K, K;, K, and f =TT f.

5. Modal analysis of bladed disk

The results of blade and shrouded blade modelling was compared with results from commercial
software ANSYS. For illustration we present in tab. 3 a number of lowest natural frequencies of
the one modeled blade with shroud fixed in the first node on the rigid disk with rigid blade roots.
The DOF number of 1D blade model is 36 without reduction (see fig. 5). The first and second
natural frequencies are sufficiently accurate, moreover the influence of rotation is practically
same also for higher frequencies.

Table 3. Modal analysis of the blade with shroud in different FEM softwares

Frequencies of blade with shroud
ANSYS | MATLAB | ANSYS | MATLAB
0 rpm 2000 rpm
142 141 153 151
282 282 288 286
970,5 1003 981,5 1011
1536 1533 1537 1533
1907 1969 1913 1974

Fig. 5. Model in Ansys (left picture) and model scheme in MATLAB (right picture)

The next step of the testing of the presented method was modal analysis of blade rim, i.e. the
blades with shroud connected by contact stiffness matrix K ;C) of damping elements.The results
of modal analysis in the form of the some few lowest natural frequencies of the the blade rim
fixed in the first nodes of all blades into rigid disk with rigid blade roots are presented in tab. 4.
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Table 4. Modal analysis of the blade rim

Frequencies of blade rim
Fixed in 1st nodes | Fixed in 1st nodes

of blandes of blandes
0 rpm 2000 rpm
[Hz] number [Hz] number
142 60x 151 60 x
291 1x 295 1x
618 2% 620 2%

1003 60x 1011 60x
1068 2% 1069 2%
1390 2% 1392 2%

All blades of the blade rim with damping elements are connected with disk rigid foots in
the first nodes and the mathematical model (34) of the bladed disk is used for testing. Its modal
analysis is performed for undermentioned parameters:

0, =20° (angle of damping element slope)
0a=3.45° (angle between radial blade axis z;;1 and axis &;)
0p=2.55° (angle between radial blade axis z; and axis &;)

myp=0.0086 kg (mass of damping element)
rr=0.4655m (distance of the centre of gravity of damping element from the rotation axis)

c=3 (contact deformation coefficient )

p=0.5 (contact exponent)

b=0.006 m (radial proportion of damping element)

h=0.02 m (axial proportion of damping element)
Y% =0.5 (coefficient of contact area reduction in radial proportion)
Y, =0.5 (coefficient of contact area reduction in axial direction).

The some few lowest natural frequencies of the central clamped blade disk with damping
elements in the blade shroud are presented in tab. 5. The corresponding mode shapes are char-
acterized by the number of nodal diameters /N D and nodal circles NC, i.e. the number of lines
(resp. circles) with zero amplitude. The graphic demonstration of mode shapes is available
but in this paper in gray-scale there are presented for illustration only chosen shapes depicted
without shroud and damping elements (see fig. 6-8).

Table 5. Eigenfrequencies of bladed disk — clamped on inner radius

Frequencies of bladed disk
Clamped in inner disk radius
0 rpm 2000 rpm

[Hz] | number | shape | [Hz] | number | shape
69,5 2% IND | 75,9 2 1 ND
71,7 1x INC | 783 1 1 NC
84,6 2x 2ND | 91,2 2 2 ND
113,2 2X 3ND | 121,8 2 3ND
125,5 2X 4ND | 135,0 2 4 ND
130,1 2% 5ND | 140,0 2 5ND
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7/
7/ /

Fig. 6. Mode shape corresponding to eigen- Fig. 7. Mode shape corresponding to eigen-
frequency 69,5 Hz — 1 ND for non-rotating frequency 71,7 Hz — 0 ND for non-rotating
bladed disk bladed disk

Fig. 8. Mode shape corresponding to eigenfrequency 125,5 Hz — 4 ND for non-rotating bladed disk

6. Conclusion

The presented method and the corresponding developed software enables to create small com-
putational consuming model of the bladed disk for nonlinear task. The disk is modelled as a
three dimensional rotating continuum and blades as a one dimensional continuum with rigid
shroud connected by damping elements. The displacements of the coupled disk nodes on the
rigid blade foots are eliminated by means of displacements in the first blade nodes. The con-
tact stiffnesses of a damping elements supported between blade shroud are respected in slid-
ing interface surfaces. In presented stage of modelling the contact surfaces are considered as
smooth. The method allows to introduce continuously distributed centrifugal and gyroscopic
effects which influence the bladed disk modal properties. Modal values of particular compo-
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nents of the complete model were compared with modal values calculated using commercial
software. The modal accurance is good. The model is prepared for including damping effects.
In future, the forced vibration and its graphical representation will be done. The model does
not use the cyclic symmetry and is prepared for system with different blades (with and without
shroud).

The new approach to bladed disk vibration modelling was tested for undamped modeled
bladed disk with sixty blades and damping elements. From a modal analysis follows that the
developed software in MATLAB code based on presented methodology is acceptable for a
modelling of damping effects.
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