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Abstract

The free vibration behavior of spinning nanoshafts is critically examined through the framework of nonlocal elas-
ticity. Combining the Euler-Bernoulli beam model with the Eringen’s nonlocal theory, this work formulates a scale-
dependent mathematical model. Hamilton’s principle is employed to derive the nonlocal governing equations and
associated boundary conditions. The generalized differential quadrature method (GDQM) is utilized to discretize
and solve the resulting eigenvalue problem. Numerical results systematically quantify how the small-scale pa-
rameter, angular velocity, and various boundary conditions affect the system’s fundamental and second mode
forward and backward frequencies. Additionally, the impact of geometrical properties, such as the aspect ratio
and thickness-to-diameter ratio, on the instability thresholds is investigated. The findings of this study offer valu-
able guidelines for enhancing the performance and stability of advanced rotating nano-electromechanical systems
(NEMS).
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1. Introduction

Rotating machinery has attracted considerable research and development interest, particularly
in the areas of monitoring, diagnostics, theoretical modeling, and dynamic analysis [6, 13, 23,
27,30, 50]. Driven by the scientific and technological revolution at the end of the 20th cen-
tury, contemporary research and engineering have undergone transformative developments. The
paradigm of miniaturization has profoundly transformed the industrial landscape, establishing
a dynamic field of research dedicated to advanced nanotechnological applications. These range
from small-scale motors and robotic actuators to fully functional computers smaller than a bi-
ological cell. The realization of such nano-electromechanical systems (NEMS) [19] relies crit-
ically on the performance of constituent nanostructures, including nanobeams, nanowires, and
nanoplates. Although the mechanical properties of these elements can be studied using molec-
ular dynamics (MD) simulations [22], the significant computational expense associated with
this method often renders it impractical. Therefore, continuum-based theoretical frameworks
are widely employed as a computationally efficient alternative for mechanical analysis at the
nanoscale [9].

Eringen’s nonlocal continuum theory [15,16] offers a particularly useful framework. In con-
trast to classical elasticity, it considers the stress at a point to be a function of strains throughout
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the entire body, leading to more reliable results for small-scale structures. Eringen [17] also
established a formal relationship between nonlocal elasticity and lattice dynamics, showing
that their equations of motion and potential energy expressions are consistent. Today, nonlocal
elasticity models are widely used to analyze size-dependent mechanical behavior in nanostruc-
tures [1, 11]. The discovery of carbon nanotube [28] has been a determinant and a big step for
the world of technology; their exceptional mechanical and electrical properties have opened up
new perspectives for their application in various fields such as medicine, defense, NEMS and
material sciences. Nanostructures undergoing rotation are systems with a promising future to
be used in nanomachines which include nanomotors devices such as fullerene gears and carbon
nanotube gears [20] and bearings [7,46]. The understanding of nanosturctures mechanical be-
havior such as bending, buckling and vibration is required to develop an efficient design of these
small-scale devices where the nonlocal effect becomes prominent. Previous studies have exten-
sively employed nonlocal elasticity to investigate the vibration of nanostructures [10,49]. For
example, Murmu and Adhikari [34] examined the effect of nonlocality on the bending-vibration
of a pre-stressed single-walled carbon nanotube, noting the influence of preload, angular ve-
locity, and nonlocal parameter. In [52], Thai developed a nonlocal shear deformation beam
theory for the bending, buckling, and vibration of nanobeams, deriving analytical solutions for
simply supported beams that aligned closely with Timoshenko and Reddy beam theories [40].
Eltaher et al. [18] introduced a finite element model for nonlocal Euler-Bernoulli beams and
studied the effects of the nonlocal parameter, slenderness ratio, rotary inertia, and boundary
conditions. More recent work has applied the differential quadrature method (DQM) to ana-
lyze rotating cantilever nanobeams made of isotropic [26,33,35,39,47] and functionally graded
materials [2, 14,37, 45], including studies considering various surrounding media and stress
conditions.

It is noted that the use of nonlocal elasticity theory suffers from a misunderstanding of the
key concept of nonlocality [44], which has led to some recent erroneous scientific results due
to the use of nonlocal strain gradient theory, which proposed a combination of the nonlocal
theory with the strain gradient theory. It was believed that the strain gradient theory could only
capture the hardening behavior of the material while the nonlocal theory could only capture the
softening. However, in reality, both theories can give both the hardening and softening behavior
of the material. Moreover, the strain gradient theory is a nonlocal theory with finite neighbor
interactions. So combining it with the nonlocal model into a single unified formulation is not
physically meaningful. Fernandez-Saez et al. [21] proposed an integral constitutive equation to
formulate the static bending of Euler-Bernoulli beam with different boundary conditions, they
remarked the appearance of a paradox when solving the cantilever beam with the differential
form of the Eringen model (increase in stiffness with the nonlocal parameter) and they solved it.
In [42,43], Sae-Long et al. have studied a rational beam-elastic substrate model with inclusion
of nonlocal and surface-energy effects to demonstrate the capability of the proposed model in
eliminating the paradoxical behavior present in the Eringen nonlocal differential model. They
have employed a fourth-order strain gradient model based on a thermodynamic approach to
analyze isotropic and homogeneous nanowire embedded in an elastic substrate.

Applying the Eringen size-dependent model in its differential form requires that the phys-
ically admissible boundary conditions shall be consistent with the underlying kernel of the
differential model and are explicitly derived and applied. This correctly predicts the qualita-
tive trend of “stiffness-softening” and has been successfully used in countless studies to model
size-effects, providing results that are often consistent with experimental data and molecular
dynamics simulations for many problems [24,25,36].
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Recently in [4], we studied the free vibration behavior of a rotating nanoshaft in the form
of a single-walled carbon nanotube (SWCNT). The results showed that the use of SWCNT in
rotating nano-machinery can be a good choice due to exceptional mechanical properties that
offer carbon nanotubes (CNTSs). The nanoshaft structure was studied with and without rotation,
whereas the flexural bending vibration results have been compared and found in agreement with
the results by Chakraverty and Behera [8].

While the free vibration of stationary nano-beams has been extensively studied, the anal-
ysis of spinning nano-structures remains relatively unexplored. The current study bridges this
gap by presenting a comprehensive nonlocal elasticity analysis of the free vibration of spinning
nanoshafts. The novel aspects of this work are threefold: First, it uniquely investigates the cou-
pled effect of the small-scale parameter and the gyroscopic forces induced by spinning on both
the forward and backward whirling frequencies, a phenomenon scarcely addressed in existing
literature. Second, it introduces a robust solution framework by applying the generalized differ-
ential quadrature method (GDQM) to the derived nonlocal equations, demonstrating its efficacy
in handling the complex boundary value problems inherent to spinning systems. Third, it pro-
vides new physical insights by systematically quantifying how angular velocity and boundary
conditions dictate the instability thresholds and frequency splitting in nanoshafts, revealing that
the small-scale effect significantly alters critical speeds compared to the classical local theory.
In this work, Campbell diagrams have been involved to identify critical speed parameters for
different nonlocal parameters. Then, a parametric study has been done to investigate different
geometrical properties for different boundary conditions. The findings, which include novel
data on the influence of the aspect ratio and thickness-to-diameter ratio, offer indispensable de-
sign guidelines for the development of high-performance, stable rotating nano-machinery and
NEMS.

2. Mathematical modelling

Unlike the classical theory of elasticity, the theory of nonlocal elasticity assumes that the stress
depends not only on the strain at a certain point but also on strains at all other points of the body.
The nonlocal theory considers long-range inter-atomic interaction and yields results dependent
on the size of a body. In the following text, the simplified form of the Eringen’s nonlocal
constitutive equation is applied to a Hookean solid as [10]

[1 — (60 G)2 Vg} Onpl = O, (1)

where V? is the Laplacian operator, (o a)2 is a nonlocal parameter, o,,; is the nonlocal stress,
and o, stands for the local stress.

Let us consider a nanobeam of length L and radius r, rotating around its longitudinal axis
with a constant rotational speed, Fig. 1. Previous investigations showed that the Euler-Bernoulli
beam theory (EBT) offers a reliable model for one-dimensional nanostructures such as CNTs.
The cross-section remains planar during the flexure and the beam deflection is small. The
rotating nanoshaft geometry is referred to the Cartesian coordinate system and modelled based
on EBT as follows [4]:
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Fig. 1. Geometry of the nanoshaft during rotation
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where u,, u, and u., are the axial, lateral and transverse displacements, respectively, and
8w8(;” ) denote the rotation of the cross-section about the y- and z-axes, respectively. The local

strain has the following form:

ou 0%v 0w

c dr o2 0x? %)
Then, the local stress-strain relationship shall be defined as
ou 0% 0w
7 © (3@0 "2~ Yoz > @

where E is the Young’s modulus.
Based on the Hamilton’s principle, the motion of an elastic structure over a time interval is
reduced to zero by combining the virtual displacements and virtual forces [46], i.e.,

to
/ (U + 6V — 6K)dt = 0, (5)

t1

where 6U, 6V, d K are the variations of the strain energy, potential energy and kinetic energy,
respectively, and ¢; and ¢, represent the initial and final times. The strain energy is expressed

as [4]
L
/ / Oz 0€4,) dAdx, (6)
0
For the kinetic energy, we have [4]

1 i ou o\ 2 ow\ >
KZz/{@A () () *(E)]
0
0%\ > 0w\ 2 v ow  O*w Ov )
Tol20 (815(91;) +<8t8x> ] (&mﬁ‘mw%)”ﬂ dz, (D)
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where ¢ is the mass density, A is the cross-section, [ is the moment of inertia of the cross-
section, and 2 is the angular velocity of the rotating nanoshaft.

Substituting (6) and the variation of (7) into (5) and integrating by parts then collecting the
coefficients du, dv, dw yield the following equations of motion:

. o _dx
v Yo T dx
ov? ov ow 9*M,
v A, — BT + Q[E — 20 ( Gt) = 2, 8
ow? ow ov 0*M.
ow: pA,— BYe +Q[E 29((‘%)_ E

where I = I, = I, are the moment of inertia relative to z, y, and z axis, and A, A,, A, are
defined as follows:

(A, A, A,) = / (1,2,y) dA. ©)
A

By applying the nonlocal elasticity theory formulated in (1) to the resultant stress in the direction
of z-, y-, and z-axes, we obtain the following system of equations:

y d*i d*u
0A {u — (ega)? @] = EAW’
. d*v o d%0 _ d*w d*v
0A, |:U — (ega)® @] + ol {v — (eg a)? o 2] — 20 (w — (eo a)QE) = Elﬁ, (10)
d*w o d% d?o d*w
. 2 o 2% v e
oA, lw (ega) s } + ol lw (e a)? I } +2Q ( (ega) dx2) EI g

3. Generalized differential quadrature method (GDQM)

Differential quadrature method (DQM) has been successfully used to solve both linear and non-
linear multiscale structural problems efficiently and accurately. It was introduced for the first
time by Bellman et al. in 1972 [3], because it provides simple formulation and low computa-
tional cost. It has been widely used for solving different problems in computational mechan-
ics [5]. The main idea of DQM is to quickly compute the derivative of a function at any grid
point within its bounded domain by estimating a weighted linear sum of values of the function
at a small set of points related to the domain.

In order to show the mathematical formulation of DQM, let f(x) be a continuous function
on the interval [a, b]. Then the n-th order derivative of the function f(z) at an intermediate point
(grid point) x; can be written as follows:

N
=> Cy"Wf(x), i=1,2... ,N,n=12..N-1, (11

T=T; j=1

dr f

dz"

where C;; ™) is the weighting coefficient of the n-th order derivative, and N the number of grid
points of the whole domain (@ = x1, 22, ...,2;,...,2xy = b).

According to Lo et al. [31] who have proposed the generalized differential quadrature
method (GDQM) for solving partial differential equations in fluid mechanics, the weighting
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coefficients of the first-order derivatives in the direction of { = 7 are determined as [48]
P (&) o S, 1 (1)
Oz(l): - 727]:172"'7]\[723&]’ Cz(z):_ Cz ) (12)
T (&G —=&) P (&) ’ Jz_: 7
J#i
where
N
H G—&), i#] (13)
=1
Then, the second- and higher-order derivatives are calculated
N
2 1) ~1) ..
Ci(,j):ZCi(,k)Clg,j??Z:jzlvz"'7N7 (14)
c) = qu ) i=j=12....N,r=23...,m(m<N). (15)

In structural dynamics, many studies have been elaborated using GDQM [12, 32] that help
us to understand the numerical method and exploit it for our nonlocal size-dependent eigen-
problem. Throughout the paper, the grid points are considered based on the well-established
Chebyshev-Gauss-Lobatto points

1 {1 ~cos(i — D

“=3 N-1

5 ],i:1,2...7N. (16)

4. Discrete governing equations and boundary conditions

The longitudinal, lateral and transverse deflection are respectively defined as follows:
u(z,t) = ue™, vz, t) =ve™, w(z,t)=we™!

For convenience and generality, the following non-dimensional variables are introduced as:
element location &, nonlocal parameter y, hub-radius ¢, frequency parameter )\, angular velocity
parameter v, moment of inertia parameter [' and the non-dimensional deflections U, V', and W

=z _©a _r 2 0AL*W? 2 0AL*Q?
57 L? /’1’7 L 9 57 L? )\ - E]' Y fy E]' )
I U v w
F:— = — = — — —
AL’ v x’ v x’ W x

Assuming A; ;, B; ;, C; ;, D; ; are respectively the first, second, third, and fourth derivatives,
the discretization of the governing nonlocal non-dimensional equations using DQM gives the
following system of equations:

N N
-5 (1 — ) Bi,j> U — EAY  B;;U=0, (17)
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N N
-\ <1 —* Y B@j) Vi +TAj (1 -y Bz-,j> v

j=1 j=1

2 2
Q7T52L2] (1 — ZBM> W — ZDHV 0, (18)
N
—)\2 (1 — ,u2 Z Bi,j) Wj + F)\j (1 — [L2 Z Bi,j) Wj

j=1 j=1
22
52L2j 1—p? ZB” v, - ZD”W—O (19)

The big challenge of using GDQM for this kind of problems is the boundary conditions
imposition, which are incorporated by modifying the weighting coefficients. All the elements
in the columns corresponding to the points of boundary conditions in the weighting coefficients
matrix are set to zero [29,51]. In the present work, the boundary conditions used for the free
vibration of rotating nonlocal shaft are formulated as follows:

As we are interested in the flexural vibration behavior of nano-rotors, this study takes into
consideration only the two equations of flexion. So, we define [29]

N N N N
=3 A;V;, VP =>"B,;Vv;, V®O=>cyv;, Vi¥=>"Dy;V; (0)
j=1 j=1 j=1 j=1

The weighting coefficients A;; and the modified weighting coefficients that are a combination
of two matrices [A;]| and [A,] are

An A o Aiva A (W v,
ST ; De=4 0, 1)
An1 Ana ... Ann-1 Ann Vn V)
0 Ap ... Aiva Ay (A A .. Aineg 0
A= S I U e S P ¢2))
0 An2 ... Ann-1 Anw | Avi Anz ... Anv-1 O

As Ferndndez-Séez et al. [21] have already shown that only for cantilever beam, the dif-
ferential form of the Eringen nonlocal model gives inconsistent results compared to those of
its integral form. Considering also that a rotating shaft could not be in a cantilever condition,
three boundary conditions (BCs) shall be imposed: a simply supported (S-S) beam, a simply
supported clamped (S-C) beam and a bi-clamped (C-C) beam. These boundary conditions shall
be consistent with the underlying kernel of the differential model that shall be also equivalent
to the integral form. This equivalence is guaranteed if the nonlocality boundary conditions are
concomitantly satisfied [38].

We define herein below the employed BCs: For the S-S beam, V; = Vy = 0:

0 A ... Ay 0] (W W
SR : : 0= : : (23)
0 Ana ... Anv—1 O (VN VW
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The first derivative is expressed as

(v} = [A] (v}, {vO) =4 {v}, 24)
Using (24),, the second derivative can be written as
{(V®} = [A][A]{v} = [B] {V}. (25)
As V1) = V) = 0, the third derivative is computed as
(v} = [AJ{v®} = [A] [B]{V} = [C]{V}. (26)
Then, the fourth derivative has the form
(v} =[A]{v®} = [4] [B] [C]{v} = [D]{V}. 27)

Following the same formulation, the clamped-clamped boundary condition yields

(v} = [A]{v},

(v} = [A{v®} = [B) (v}, [B] = [4] [4), o8
(V) = [A{v®} = (Al [B] {v} = [C]{V}, [C]=[4][B],
(VO =[A{v®} = [4[C]{v} = [D]{v}, [D]=[4][C]
For the S-C beam, we get
{vi} =[A{v},
(VO = (4] (V) = [ [4] V)= 1B1 V). [B) = (4] (4],

(v} = [A]{v@} = [4] [B]{v} = [C]{v}, [C]=I[Ai][B],
(v} = [AJ{v®} = [A] [C]{v} = [D]{V}, [D]=[A][C].
It should be noted that the above formulations are also employed for the transversal displace-
ment WW.
The discretized equations of motion are expressed in the following eigenvalue problem:

(=N [M]+ A G+ K) - (U, V, W) =0, (30)

where M, GG, and K are the mass, gyroscopic and stiffness matrices, respectively. When {2 = 0,
the system is reduced to be undamped without gyroscopic effect, i.e.,

(=N [M]+K) - (U, V,W)" =0. (31)
In order to solve the general eigenvalue problem, equation (30) is transformed to be
)2 [A} G + [B] Uy = 0, 32)
where
4= {Moﬂ [fof]] - [8]- [—@d ”5]} e = H - (33)

A MATLAB code was developed to address the complex eigenvalue problem formulated from
the two coupled flexural equations expressed in terms of the displacement components V' and
W. The results obtained from this numerical implementation are then analyzed to examine the
effects of small-scale parameters, angular velocity, and boundary conditions on the vibration
behavior of the system.
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5. Selected results and discussions

5.1. Convergence study and validation

In the aim of confirming the efficiency and accuracy of the presented numerical procedure,
Table 1 shows the convergence study of the first six frequency parameters A, i.e.,

)= [ 0AL*w?
N EI

for the S-S nanobeam. It is clearly observed that the frequency parameters converge with the
increasing of the number of grid points N and become stable at sixteen grid points that are
sufficient to obtain converged results for the upcoming results. A single-walled carbon nanotube
(SWCNT) of the following parameters was used: L = 10d, d = 0.678 nm, &/ = 5.5 TPa,
I =4/64rd.

Our results have been validated by comparing the flexural frequency parameters with those
presented by Chakraverty and Behera [8] for different boundary conditions (simply supported
beam, simply supported-clamped beam and clamped-clamped beam). The obtained frequency
parameters are found to be in good agreement for both the local and nonlocal beam [4] using
the following parameters: length L. = 100d, diameter d = 1 nm (where the solid nanoshaft is
not hollow), Young modulus £/ = 2.1 TPa, density o = 7800 kg m~3, Poisson’s ratio v = 0.3h,
and hub-radius factor i/d = 0.02.

(34)

Table 1. First six frequency parameters A

4 6 8 12 16 20 24
3.13432 | 3.1416 3.1415 | 3.1415 | 3.1415 | 3.1415 | 3.1415
6.9282 | 6.2859 | 6.2833 | 6.2831 | 6.2831 | 6.2831 | 6.2831
8.8417 9.1288 9.4202 | 9.4247 | 9.4247 | 9.4247 | 9.4247
154.358 | 16.0982 | 12.7319 | 12.5662 | 12.5663 | 12.5663 | 12.5663
176.411 | 17.2856 | 14.8290 | 15.7027 | 15.7079 | 15.7079 | 15.7079
198.456 | 154.3598 | 28.3974 | 18.9325 | 18.8496 | 18.8495 | 18.8495

5.2. Effect of physical properties on the fundamental frequency parameters

Fig. 2 shows the Campbell diagram presenting the fundamental frequency parameters with re-
spect to the angular velocity parameters (ranging from 1 to 5) for a rotating nanoshaft having a
full solid cross-section without considering the nonlocal parameter, considering S-S, C-C and
S-C beam boundary conditions, respectively. The figure shows that the frequency parameter
is divided into two frequency values having a linear relationship with the angular velocities.
The increasing frequency parameter is the forward frequency Ay, whereas the decreasing one is
the backward frequency \,. It is also remarked that the C-C frequency parameters are higher
than those of S-C and S-S boundary conditions. The Campbell diagram serves to determine
the critical speed where the nanoshaft vibrates violently, it is the angular velocity parameter
correspondent to the intersection of the frequency parameter curves and the angular velocity
parameters curves. Generally, the backward frequency should be of major interest in security
applications and health monitoring of rotating machinery.
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Fig. 2. Campbell diagram for different boundary conditions and 2 = 0

At the nanoscale, the selection of the nonlocal parameter (eqa)? is not arbitrary and must
be physically justified. Our approach to this issue is twofold, addressing both the choice of
the parameter range and the inherent size-dependency captured by the nonlocal theory itself.
(epa)? is chosen to range from 0 to 0.5 as a standard and practical range used extensively in
the literature to model nanostructures of lengths between 2—20 nm, ensuring our results are
consistent with established physical observations and theoretical benchmarks.

In Table 2, we have reported the bending forward and backward frequency parameters with
respect to the angular velocity parameters for different scaling effect parameters (having the
values of 0.1, 0.3, and 0.5). Results show the effect of the scaling parameters on the bending
frequency parameters that decrease with increasing nonlocal parameters for all types of bound-
ary conditions. It is observed that an increasing variation of 0.1 of nonlocal parameter can
decrease the frequency parameter with an average percentage of 4 % for S-S, 2.5 % for C-C and
3 % for S-C boundary conditions.

Fig. 3 shows the fundamental critical speed with respect to the nonlocal parameter for differ-
ent boundary conditions by increasing the nonlocal parameter, a logical decreasing is remarked
in the critical speed parameters that are corresponding to values at A\ = . For the local nano-
rotor, the critical first speed is: 2.3992, 3.4803, and 3.0414 for S-S, C-C, and S-C boundary
conditions, respectively. It is observed that the decreasing value of the critical speed is different
for each type of boundary conditions.

5.3. Effect of geometrical properties on the fundamental mode frequency parameters

In order to investigate the effect of geometrical properties on the vibrational behavior of the
nano-rotor, a parametric study has been done, taking into consideration the aspect ratio L/d and
the ratio h/d. Figs. 4, 5, and 6 illustrate the variation of the first critical speed as a function of
the aspect ratio L/d defined as a non-dimensional value by 1 /o for S-S, C-C, and S-C boundary
conditions, respectively. The figures show that if the aspect ratio increases, the critical speed
parameter decreases until the value of 1/0 = 100, where the decreasing curve of the critical
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Table 2. Fundamental frequency parameters of the rotating nanoshaft for different angular velocity pa-
rameters and nonlocal parameters (solid nanoshaft not hollow)
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Fig. 3. First critical speed parameter for different nonlocal parameters and boundary conditions
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Fig. 4. First critical speed parameter against 1/o for different nonlocal parameters and S-S boundary
conditions
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Fig. 5. First critical speed parameter against 1/o for different nonlocal parameters and C-C boundary
conditions

speed becomes straight and stable. The nonlocal parameter decreases the critical speed param-
eters when it increases for all boundary conditions. It is observed that the shape of the critical
speed curves are qualitatively similar.

The effect of hub-radius on the variation of critical speed parameters is investigated for
different boundary conditions. Figs. 7, 8, and 9 give the critical speed parameters with respect
to thickness-diameter ratio of the nano-rotor. It is clearly remarkable that the influence of the
thickness for a constant length is neglected for all boundary conditions. The curves are identical
in shape and different in value due to the type of boundary conditions. The effect of the nonlocal
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Fig. 6. First critical speed parameter against 1 /o for different nonlocal parameters and S-C boundary
conditions
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Fig. 7. First critical speed parameter against h/d for different nonlocal parameters and S-S boundary
conditions

parameter stays significant.

5.4. Effect of physical properties on the second mode frequency parameters

In this section, the second mode frequency parameters are analyzed. Table 3 shows that an
increase in the small-scale parameter decreases the frequency parameters of the second mode.
In comparison with those of the first mode, the decrease in frequency parameters is smaller
for the second mode than in the fundamental mode. The same effects of the angular velocity
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Fig. 8. First critical speed parameter against h/d for different nonlocal parameters and C-C boundary
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Fig. 9. First critical speed parameter against h/d for different nonlocal parameters and S-C boundary
conditions

parameter and the boundary conditions on the fundamental frequency parameters remain valid
for the second mode.

Fig. 10 shows the Campbell diagram for the second mode frequency parameters that are
divided to forward and backward frequency parameters. It is also remarkable that the curves for
different nonlocal parameters are close to each other. This shows that the nonlocal parameter
has a small effect on the second mode frequency parameter than the fundamental ones. Fig. 11
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Table 3. Second mode frequency parameters of the rotating nanoshaft for different ;2

p?r=0.1 =03 =05
b )\f b )\f b )\f
6.1236 | 6.1236 | 6.0006 | 6.0006 | 5.9136 | 5.9024
5.6854 | 6.8503 | 5.5624 | 6.7273 | 5.4754 | 6.6291
5.2733 | 7.1622 | 5.1503 | 7.0392 | 5.0633 | 6.941
49501 | 7.6631 | 4.8271 | 7.5401 | 4.7401 | 7.4419
4.5394 | 8.0154 | 4.4164 | 7.8924 | 4.3294 | 7.7942
4.1643 | 8.4022 | 4.0413 | 8.2792 | 3.9543 | 8.181
3.7883 | 8.7022 | 3.6653 | 8.5792 | 3.5783 | 8.481
7.7788 | 7.7788 | 7.6114 | 7.6114 | 7.5244 | 7.5244
7.3791 | 8.3397 | 7.2117 | 8.1641 | 7.1247 | 6.9573
7.0122 | 8.7395 | 6.8448 | 8.5639 | 6.7578 | 6.5904
6.6325 | 9.0608 | 6.4651 | 8.8852 | 6.3781 | 6.2107
6.2924 | 9.4559 | 6.125 | 9.2803 | 6.038 | 5.8706
5.9098 | 9.8048 | 5.7424 | 9.6292 | 5.6554 | 5.488
5.6104 | 10.126 | 5.443 | 9.9509 | 5.356 | 5.1886
7.0686 | 7.0686 | 7.0686 | 7.0686 | 7.0686 | 7.0686
6.545 | 7.5782 | 6.534 | 7.5902 | 6.516 | 7.6072
6.1629 | 7.931 | 6.1519 | 7.943 | 6.1339 | 7.9652
5.8101 | 8.341 | 5.7991 | 8.353 | 5.7811 | 8.3711
5.5165 | 8.6663 | 5.5055 | 8.6783 | 5.4875 | 8.6953
5.1146 | 9.0226 | 5.1036 | 9.0346 | 5.0856 | 9.0516
4.7295 | 9.3607 | 4.7185 | 9.3727 | 4.7005 | 9.3897

BCs

SS

C-C

S-C

AN DN B W N~ OON N AN WD~ OONWNM BN WD R~ROoO 2

shows the critical speed parameters of the second mode, which are decreasing with the increase
of the small-scale effect.

6. Summary and concluding remarks

This study successfully investigated the linear free vibration characteristics of a nano-rotor by
employing the Eringen’s nonlocal elasticity theory to capture size-dependent effects. The gov-
erning equations, derived via Hamilton’s principle, were solved using a novel MATLAB code de-
veloped to handle the complex eigenvalue problem inherent to systems with gyroscopic effects.
The generalized differential quadrature method (GDQM) proved to be an effective numerical
approach for this nanoscale dynamics problem, with results successfully validated against the
existing literature.
The performed analysis provided several key insights into the parameters governing nano-
rotor dynamics:
* Rotational dynamics: The gyroscopic effect inherently splits the frequency parameter into
distinct forward and backward whirl modes. An increase in the critical speed parameter
raises the forward frequency while suppressing the backward one.

* Size-dependence: The nonlocal parameter exerts a significant influence, with its increase
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leading to a softening effect that reduces both the frequency and critical speed parameters
across all boundary conditions. This quantitatively demonstrates the crucial role of size-
dependent material behavior in nanostructure dynamics.

* Geometric and boundary effects: Among the boundary conditions studied, clamped-
clamped (C-C) boundary condition yielded the highest frequency parameters. While the
aspect ratio negatively impacts the critical speed, its influence diminishes at higher values.
Notably, the hub-radius was found to have a negligible effect on the dynamic response.
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Our study explicitly and quantitatively accounts for the size-dependent material behavior
that is intrinsic to nanostructures. The results demonstrate how the dynamic characteristics
(frequencies, critical speeds) of the rotating nanoshaft are not fixed but vary significantly with
the size of the structure, as governed by the nonlocal parameter. This provides the practical,
size-specific design insight that is crucial for NEMS applications.

The results of this report can serve as a guidance in the design of rotating nano-machinery,
such as nano-turbines, nano-motors, nano-rotors, nano-blades and other nano-rotational devices
involved in medicine and biology.
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