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Abstract

In this paper a new method is proposed for direct time integration of nonlinear structural dynamics problems.
In the proposed method the order of time integration scheme is higher than the conventional Newmark’s family
of methods. This method assumes second order variation of the acceleration at each time step. Two variable
parameters are used to increase the stability and accuracy of the method. The result obtained from this new
higher order method is compared with two implicit methods; namely the Wilson-θ and the Newmark’s average
acceleration methods.
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1. Introduction

Problems in the theory of vibration are divided in two categories; wave propagation problems
and inertia problems, which the latter is called structural dynamics. In these problems, gov-
erning field equation is a second order differential equation [1, 2]. For nonlinear systems, it is
usually expected to solve equations of motion numerically [2]. In the time integration methods,
time is divided to several time steps and an algorithm is used to predict the values of displace-
ment, velocity or acceleration at each time based on previous value. The algorithm is based
on an assumption for variation of displacement in each time step and satisfying the equation of
motion in selected discrete times. In fact it is a form of finite difference solution for differential
equations [2–11].

In nonlinear analysis, stiffness is calculated at the beginning of each time step and then re-
sponse is calculated at the end of this time step with assuming that stiffness is constant through-
out the step. Therefore nonlinearity is considered by continuously updating the stiffness. Cal-
culated responses will be considered at the end of each time step as the initial conditions for
next time step. Therefore system nonlinearity behavior is replaced with a series of consecutive
approximate linear characteristics [1, 2, 5, 8].

In some of algorithms, in each time step, equation of motion is written at the beginning
of the time step and the unknown values at the end of time step is explicitly calculated, these
methods are called explicit methods. In some other methods, to calculate the unknown values
at the end of time step it is required to write the equation of motion at this point, these methods
are called implicit methods [2–9]. A method is called convergent if its error for a specific time
is decreased, by decreasing time step length. Also, a method is consistent if the upper bound of
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its residue (error in satisfying the equation of motion), is a constant power of time step length.
In accuracy evaluation of the time integration methods, usually two quantities are determined,
numerical damping (dissipation) and periodic error (dispersion).

In unconditionally stable methods, instability never happens, no matter how the long time
step is [1–5]. Newmark, [12], presented a one-step algorithm with two parameters and he noted
that γ should be taken as 0.5, because for values more than 0.5 positive numerical damping
will exist and for values less than that, it will have negative numerical damping (numerical
instability). The average acceleration form appears to be the most popular one. After him, lots
of researches have worked on his idea. Wilson presented a modified form of linear acceleration
method, called Wilson-θ method [13], and improved it to an unconditionally stable method. He
also proposed the concept of collocation to develop dissipative algorithms, which were further
generalized in [13]. The Wilson-θ method is unconditionally stable for θ = 1.37. This method
is subject to both phase and amplitude errors depending on the time step used.

Classical methods such as the Newmark’s method [12] or the Wilson-θ method [13] assume
a constant or linear expression for the variation of acceleration at each time step. In condition-
ally stable methods, the time step must be smaller than a critical time step as a constant times
the smallest period of the system, consequently often entails using time steps that are much
smaller than those needed for accuracy [7]. In this paper, we illustrate how to derive equa-
tions of proposed method from the Taylor series expansion in which algorithmic parameters are
inserted. In this new implicit method, it is assumed that the acceleration varies quadratically
within each time step. Considering this assumption and employing the two parameters δ and α,
the proposed method is derived.

2. Proposed Method

The governing nonlinear equation of motion is expressed as:

Mẍ + Cẋ + K(x)x = P, (1)

where M is a constant mass matrix, C is a constant damping matrix, and K(x) is a nonlinear
stiffness matrix; P is vector of applied forces; x, ẋ and ẍ are the displacement, velocity and
acceleration vectors respectively.

By Applying the Taylor series expansions of xt+Δt and ẋt+Δt about time t and truncating
the equations, the following forms of equations are obtained:

xt+Δt = xt + Δtẋt +
Δt2

2
ẍt +

Δt3

6

...
xt +αΔt4

....
xt, (2)

ẋt+Δt = ẋt + Δtẍt +
Δt2

2

...
xt +δΔt3

....
xt . (3)

If the acceleration variation is assumed to be second order within time t − Δt to t + Δt, the
Eqs. (2) and (3) can be written as:

xt+Δt = xt + Δtẋt +

[(
α − 1

12

)
ẍt−Δt +

(
1

2
− 2α

)
ẍt +

(
α +

1

12

)
ẍt+Δt

]
Δt2, (4)

ẋt+Δt = ẋt +

[(
δ − 1

4

)
ẍt−Δt + (1 − 2δ) ẍt +

(
δ +

1

4

)
ẍt+Δt

]
Δt. (5)

Eqs. (4) and (5) can be used to approximate the displacement and velocity at time t + Δt
respectively. It can be proven that this strategy guarantees the second-order accuracy for any
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choice of δ and α. The parameters δ and α are introduced in order to improve accuracy and
stability. Special case δ = 1/4, α = 1/12 leads to the linear acceleration method.

Consider equation of motion in time t + Δt as following:

Mẍt+Δt + Cẋt+Δt + Ktxt+Δt = Pt+Δt. (6)

By substituting Eqs. (4) and (5) into the equation of motion Eq. (6), ẍt+Δt is calculated. Note
that x0 and ẋ0 are known and ẍ0 can be calculated using Eq. (1) at time t = 0. We need the
solution at time Δt before we can begin to apply Eqs. (4) and (5). It can be computed by using
any one step methods such as the linear acceleration or the average acceleration methods. Now,
we can obtain x2Δt from Eqs. (4) and (5), then x3Δt, and so on.

3. Examples

In order to see the result of the proposed method and to see its advantages over the other implicit
existing methods, let’s consider two examples which the results obtained from the proposed
method are compared with the Wilson-θ and average acceleration (Newmark’s) methods.

Example 1 [2]: Consider a single degree of freedom system in Fig. 1. Fig. 2 shows the
equivalent spring force (fs) versus displacement diagram with elastoplastic behavior. kel from
Fig. 1 is the slope of the linear part of the Fig. 2. This structure is under acting force (p) as
Fig. 3. The initial conditions are x(0) = ẋ(0) = 0 that 0 ≤ t ≤ 9 sec and Δt = 0.1.

Fig. 1. Frame of structure [2] Fig. 2. Force-displacement relationship [2]

Fig. 3. Exciting force [2]
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Table 1. Numerical responses using the Wilson-θ, average acceleration, and proposed methods

Displacement Responses [m]

Time
[sec]

Wilson-θ
(θ = 1.4)

Average
acceleration

method

Proposed
method

(δ = 1/3, α = 1/6)
0 0 0 000 0 0 000 0 0 000 0
0.1 0.036 8 0.043 7 0.043 7
0.2 0.183 3 0.232 6 0.219 5
0.3 0.483 0 0.612 1 0.590 9
0.4 0.900 7 1.082 5 1.061 6
0.5 1.322 6 1.527 9 1.482 2
0.6 1.682 8 1.837 7 1.739 4
0.7 1.978 3 1.889 3 1.742 2
0.8 1.862 3 1.671 6 1.482 6
0.9 1.301 1 1.280 1 1.065 6

In Table 1 displacement results of this system due to the applied loading P (t) (see Fig. 3)
are given. The results obtained using of Wilson-θ, average acceleration, and proposed methods
are compared.

Also the displacement responses versus time are shown in Fig. 4.

Fig. 4. Displacement responses versus time diagram for example 1

Example 2 [14]: Consider the second order nonlinear differential equation as following:

ẍ + sin x = 0, (7)

with initial conditions x(0) = π/2 and ẋ(0) = 0 that 0 ≤ t ≤ 20. Let’s select Δt = 0.1 and
define the error at time t as following:
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et = |xt − xt(exact)|, (8)

in which xt(exact) is the exact solution and xt is the numerical solution (angle (degree)) at time
t. The values obtained by the Wilson-θ, average acceleration, and proposed methods can be
compared to each other in Fig. 5.

Fig. 5. Angle responses versus time diagram from example 2

The numerical solution calculated from mentioned methods and their error respect to the
exact solution of Eq. (7) have been shown in Table 2 for t = 6 sec to t = 7 sec.

Table 2. Angle responses using the Wilson-θ, average acceleration, and proposed methods and their error
respect to the exact solution

Time
[sec]

Wilson-θ
(θ = 1.4)

Average
acceleration method

Proposed method
(δ = 1/3, α = 1/6)

xt et xt et xt et

6 62.160 2 33.331 4 34.366 0 5.537 2 28.138 0 0.690 8
6.1 53.881 0 18.297 2 41.556 6 5.972 8 35.592 2 0.008 4
6.2 44.690 7 1.939 0 48.369 1 5.617 4 42.714 0 0.037 6
6.3 34.704 1 14.532 9 54.751 8 5.514 9 49.446 3 0.209 3
6.4 24.070 0 31.296 3 60.670 5 5.304 2 55.743 1 0.376 8
6.5 12.971 8 47.445 4 66.090 7 5.673 6 61.564 4 1.147 2
6.6 1.621 5 64.631 9 70.983 8 4.730 4 66.881 4 0.628 0
6.7 −9.768 9 81.310 5 75.338 3 3.796 7 71.671 3 0.129 8
6.8 −20.964 5 96.228 3 79.142 7 3.878 9 75.917 0 0.653 1
6.9 −31.759 1 111.718 82.379 9 2.421 4 79.606 8 0.351 7
7 −41.963 5 125.158 85.049 9 1.855 7 82.729 4 0.464 7

19



A. A. Gholampour et al. / Applied and Computational Mechanics 5 (2011) 15–20

Table 2 shows that the numerical values of xt calculated using the proposed method are more
accurate than those for the Wilson-θ and average acceleration methods. In this example, we
presented only angle responses, whereas the angular velocity and angular acceleration responses
calculated using the proposed method are also more accurate than the other methods.

4. Conclusion

A new implicit step by step integration technique for problems in structural dynamics was il-
lustrated. A second order polynomial as a function of time was used in order to approximate
the variation of acceleration during the time steps. Therefore the proposed method was shown
more accurate values than the Wilson-θ and average acceleration methods. This method was a
two parameter method (δ and α). Proposed method allows numerical damping while retaining
second order accuracy. The new method can be used for either linear or nonlinear problems,
although in this paper, we have discussed only nonlinear problems.
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