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Abstract

The paper concerns a modelling approach for fast 2D car to pedestrian impact analysis. The pedestrian model is
composed using the Lagrange equations with multipliers. The model consists of rigid bodies defining the major
human body segments. The bodies are connected by rotational joints with non-linear response. The model is
scalable based on the age and the gender. The car model is multi-segment composed as an open polygon. Between
the pedestrian and the car, there are contacts defined and modelled explicitly by force-penetration dependence. For
a given car profile design and a given human gender, age and percentile, the pedestrian impact consequences can
be evaluated quickly by means of virtual numerical analysis.
c© 2011 University of West Bohemia. All rights reserved.
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1. Introduction

The traffic accidents are within a group of external consequences causing the third highest
number of death in the Czech Republic, just after deaths caused by falls and suicides [15]. The
numbers of deaths or fatally injured citizens prove that the traffic accidents and their conse-
quences are still a serious problem to be solved. The statistics show that the number of acci-
dents decreases slowly in the past years [14]. However, the decrease is necessary to be speed
up regarding also the socioeconomic aspects of the problem [4].

2. Motivation

A lot of effort is devoted to both passive and active safety systems development where virtual
human body models start to play significant role since they become powerful tool for support-
ing development of human-friendly and safe vehicles by the numerical way using computer
simulation. Regarding that the correct biofidelic models are necessary to be developed and va-
lidated [7]. However such complete models usually spend a lot of computational time. Having
a set of structural designs of a vehicle to be analysed, simple models are usually sufficient tool
for the first approximation. Based on the standard injury criteria implemented in the simple
models, they might predict global human behaviour and injuries in very short computational
time. Hence, a lot of structural designs and impact scenarios might be analysed quickly in order
to choose the best one for a deeper analysis.

3. Method

The paper shows the numerical modelling approach towards pedestrian impact analysis. Cur-
rently, two-dimensional (2D) modelling approach is presented.
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Fig. 1. Human body segmentation (taken from [12])

Fig. 2. Human body open-tree multi-body system in the horizontal position

3.1. Geometry and segmentation

The basic human body segmentation is taken from Robbins [12], see Fig. 1. The segmentation is
as simple as possible to ensures the full articulability and correct kinematics of the human body
under the loading. The anthropometry defined in Robbins [12] also presents the 50 %-tile male
body including mass distribution, moments of inertia evaluation and joint stiffness definiton.

Based on the above-mentioned segmentation, the human body model is structured as a
linked open-tree multi-body system (see Fig. 2) implemented using the Lagrange’s equations
with multipliers. The model is composed by 11 segments Ω i, i ∈ {1, . . . , 11}. The segments
correspond to 11 rigid bodies, namely:

• Head

• Neck

• Thorax

• Abdomen

• Pelvis

• Left and right arm

• Left and right forearm

• Left and right hand

• Left and right thigh

• Left and right calf

• Left and right foot
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Due to the planar (2D) approach, the couple segments (arm, forearm, hand, thigh, calf and
foot) are considered as a one single segment.

3.2. Mass distribuion and joints

The position of each segment is geometrically defined by the centre Si, i ∈ {1, . . . , 11} located
between 2 joints Ki,i−1 and Ki,i+1 connecting the segment to the previous and the following
segment in the tree system. The exception is for the head, the hand and the foot that are the
outer segments. In this case, an artificial joint supplying the missing second joint is defined for
the segment length measuring purposes. The segment centre

Si =
Ki,i−1 +Ki,i+1

2
(1)

is an origin of the particular segment local coordinate system. The first local coordinate system
axis is defined as

ē1 =
Ki,i+1 − Si

‖Ki,i+1 − Si‖
(2)

and the second one ē2 is a unit vector perpendicular ē1 constructing a clock-wise system. Each
segment carries its mass mi and moment of inertia Ii, i ∈ {1, . . . , 11} concentrated to its centre
of gravity Ti =

[
T x̄i,

T ȳi
]
, i ∈ {1, . . . , 11} where the bar denotes coordinates in the segment

local coordinate system (ē1, ē2). The scheme is shown in Fig. 3.

Fig. 3. Segment definition

Two neighbouring segments are connected by joints. The full model accommodates 10
joints, namely:

• Head/neck joint in the position between vertebrae Atlas bone and C1

• Neck/thorax in the position between vertebrae C7 and T1

• Thorax/abdomen in the position between vertebrae T12 and L1

• Abdomen/pelvis in the position between vertebrae L5 and Sacrum bone

• Left and right shoulder

• Left and right elbow

• Left and right wrist

• Left and right hip

• Left and right knee

• Left and right ankle
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With respect to the Robbins segmentation [12], all joints in the current model are modelled
as rotational ones accommodating non-linear rotational stiffness. Due to the planar approach,
the couple joints (shoulder, elbow, wrist, hip knee and ankle) are concentrated into one single
joint having double stiffness.

3.3. Anthropometry and stiffness scaling

The basic 50 %-tile human body anthropometry and mass distribution is based on [12] (for both
male and female). The details of the scaling can be found in [8]. Due to the simple modelling
approach and no detailed segment shape description, only the height based scaling is concerned.
Bláha [2] defines the height from ground of all the above-mentioned joints in the human upright
standing position, so the particular segment height can be obtained by substraction. The data
measured by Bláha [2] depends on gender and age from 0 till 75 years.

Let us define a length vector li = Ki,i+1 − Ki,i−1 for each segment Ωi, i ∈ {1, . . . , 11}.
Concerning the size, each segment can be defined by its length 2ai = ‖li‖ as the distance
between the joints connecting the segment to the previous and the following segment in the tree
system. Considering the upright standing position of the model, each segment height can be
defined as hi = lie2 in the global coordinate system (e1, e2). The upright standing position of
Robbins [12] is defined in [8].

Mathematically the anthropometry scaling means that the original size is multiplied by a
scaling factor ki defined as a ratio between the target height defined by [2] and the original
height hi of the segment in the upright standing positon. Concerning the head, the hand and the
foot that are the outer segments the length is measured with help of the artificial joint defined
above. In summary considering the uniform mass density distribution and the model upright
standing position, the 3 basic points defining any segment (centre of gravity and both joints)
can be scaled by multiplying by the scaling coeffitient ki in the global coordinate system as
x̃ = kix. After the anthropometry scaling, all segments have to be reconnected in the joint
positions. The mass and the moment of inertia of a particular segment change by changing its
size. Considering the uniform mass density distribution, the mass and moment of inertia of each
segment can be scaled as m̃ = k3

im and Ĩ = k5
i I [8], where m̃ and Ĩ denotes the scaled values.

The segments are linked together using the rotational joints with non-linear stiffnesses de-
fined in [12] for a 50 %-tile (average) subject. The joints flexibility also changes due to the age.
The age dependent flexibility is also scaled based on so called flexindex [1]. Flexindex defines
the flexibility of the whole human body by a single number (percentage to the average state)
taking into account the flexibility of all major joints together [1]. The percentage is taken into
account to multiply the all body joint ranges for the desired age.

3.4. Multi-body approach

Let us have the model structure described by rigid segments linked to an open-tree multi-body
system as displayed in Fig. 3. The human model dynamical response due to the impact loading
is investigated by the energy balance approach using the Lagrange’s equations with multipliers.
Let us have n segments, in our case n = 11, having the segment numbered by i ∈ {1, . . . , 8}
from the foot through the tree system uptill the head and by i ∈ {6, 9, 10, 11} from the thorax
through the tree system uptill the hand. The motion of each segment Ωi, i ∈ {1, . . . , n} is
defined in plane by 3 independent coordinates where the first two defines the planar position of
its centre of gravity and the third one the rotation around it. Let us define the vector
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q = [x1, . . . , xn, y1, . . . , yn, ϕ1 . . . , ϕn]
T (3)

including 33 generalized coordinates that are dependent by m = 2(n− 1) = 20 constraints

Φi = −xi + xi+1 − (ai − x̄i)cos(ϕi) (4)

−(ai+1 + x̄i+1)cos(ϕi+1)− ȳisin(ϕi) + ȳi+1sin(ϕi+1), (5)

Φn−1+i = −yi + yi+1 − (ai − x̄i)sin(ϕi) (6)

−(ai+1 + x̄i+1)sin(ϕi+1) + ȳicos(ϕi)− ȳi+1cos(ϕi+1), (7)

where x̄i and ȳi are the coordinates of the segment centre of gravity in the local coordinate
system (see Fig. 3) and i ∈ {1, . . . , 7} from the ankle over the legs and spine to the head/neck
joint,

Φ8 = = −x6 + x9 − (x̄shoulder − x̄6)cos(ϕ6) (8)

−(a9 + x̄9)cos(ϕ9)− ȳ6sin(ϕ6) + (ȳshoulder + ȳ9)sin(ϕ9), (9)

Φ18 = = −x6 + x9 − (x̄shoulder − x̄6)sin(ϕ6) (10)

−(a9 + x̄9)sin(ϕ9) + (ȳ6 − ȳshoulder)cos(ϕ6)− ȳ9cos(ϕ9), (11)

for the shoulder joint where [x̄shoulder, ȳshoulder]
T are the coordinates of the shoulder joint in the

thorax local coordinate system and

Φi = −xi + xi+1 − (ai − x̄i)cos(ϕi) (12)

−(ai+1 + x̄i+1)cos(ϕi+1)− ȳisin(ϕi) + ȳi+1sin(ϕi+1), (13)

Φn−1+i = −yi + yi+1 − (ai − x̄i)sin(ϕi) (14)

−(ai+1 + x̄i+1)sin(ϕi+1) + ȳicos(ϕi)− ȳi+1cos(ϕi+1), (15)

where i ∈ {9, 10} for the elbow and the wrist joints. The constraints link together the centres of
gravity of all neighbouring couples of segments. So the whole system has 3n−m = 33− 20 =
13 degrees of freedom that are the initial position and rotation of the base body and 10 further
relative rotations of the open-tree linked system of rigid bodies. The system of equations is
conservative and the kinetic and the potential energies have the forms

Ek =
1

2

n∑
i=1

mi

(
ẋi

2 + ẏi
2
)
+

1

2

n∑
i=1

Iiϕ̇i
2, (16)

Ep = g

n∑
i=1

miyi +
1

2

∑
(i,j)

kij (ϕij)ϕ
2
ij , (17)

where the limits (i, j) in the second term of the potential energy mean all segment couples
connected by joints, kij is the particular relative rotation dependent joint rotational stiffnes and
ϕij = ϕj − ϕi is the relative rotation of the two neighbouring segments. Considering the
Lagrange’s equations with multipliers have the form

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

m∑
j=1

λj
∂fj
∂qi

, i ∈ {1, . . . , 3n} (18)
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L. Hynčı́k et al. / Applied and Computational Mechanics 5 (2011) 151–162

with the Lagrange’s function L = Ek − Ep, we have the equations of motion in the form

d

dt

(
∂Ek

∂q̇i

)
+

∂Ep

∂qi
=

m∑
j=1

λj
∂fj
∂qi

i ∈ {1, . . . , 3n} . (19)

Equations (18) can be rewritten using the matrix notation as[
M ΦT

q

Φq O

] [
q̈
−λ

]
=

[
r
γ

]
, (20)

where M is the mass matrix, Φq is the matrix of constraint derivatives, O is the corresponding
zero matrix, r is the external load matrix and γ is the matrix consisting of the rest after the
constraint derivatives.

3.5. Contact definition

The model is defined by a linked open-tree multi-body system skeleton carrying the mass. For
the purposes of pedestrian impact analysis, the contact forces play an important load. The con-
tact forces express loading caused by the vehicle impact to the pedestrian. In order to model
the contact well, each body of the multi-body system has to accommodate an external shape of
the particular body segment. An ellipse attached to each segment is a good estimation for our
purpose. Each segment ellipse is located by its centre to the segment centre (that is not neces-
sarily its centre of gravity) and it is described by 2 semi-axes ai and bi as shown in Fig. 3. The
scaling of the segment depth in the direction of the second semi-axis can be simply computed
as b̄i = kibi. The vehicle model is based on the approximation by rigid open polygon describing
major vehicle frontal parts (bumper, bonnet and windshield) [10].

3.5.1. Collision detection

The shape of each segment Ωi, i ∈ {1, . . . , n} is geometrically defined by an ellipse. Consider-
ing homogeneous coordinates X = [x, y, w]T , the ellipse can be written in the form

XTAX = 0 . (21)

Any ellipse with the semi-axes ai and bi parallel to the global coordinate system axes has
the matrix in the form

Āi =

⎡
⎢⎣

1
a2i

0 0

0 1
b2i

0

0 0 −1

⎤
⎥⎦ i ∈ {1, . . . , 11} . (22)

The segments of the human body models are positioned and angled in the plane by their
generalized coordinates [xi, yi, ϕi]

T , i ∈ {1, . . . , n} that can define transformation matrix Ri,
i ∈ {1, . . . , 11} that transforms (rotates and moves) the basic ellipse (22) to the particular
position defined by [xi, yi, ϕi]

T in the plane. Such positioned ellipse can be written in the form

Ai = RT
i ĀiRi, i ∈ {1, . . . , n} . (23)

The vehicle model is composed of s straight lines. Any segment Ωi, i ∈ {1, . . . , n} defined
geometrically by the particular ellipse defined by (23) can come into collision with one or more
lines from the open polygon

X = Pl + (Ql − Pl)t , l ∈ {1, . . . , s} , t ∈ [0, 1] (24)
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Fig. 4. Collision detection with contact force identification

that leads to a quadratic equation. Negative discriminant means no collision, zero or positive
discriminant means contact or penetration.

Talking about contacts in multi-body dynamics, the energy absorption must be implemented
in the internal contact variables since the rigidity of the contacting bodies. Furthermore, correct
contact modelling in multi-body approach to biomechanics is crucial due to the high defor-
mation of biological materials. Based on literature review, the continuous contact model, also
referred to as compliant contact model, is chosen [5]. The basis of the continuous contact model
is to measure the penetration of the contacting bodies, see Fig. 4a. This is done by defining the
normal contact force Fn as an explicit function of local penetration δ and its rate as

Fn = Fn

(
δ, δ̇

)
. (25)

For the total contact force, the simplified nonlinear spring-dashpot contact force model in-
cluding tangential friction is used in the current paper as

Fc =
[
Fn (δ)− bδ̇

]
(n− ft) , (26)

where n and t are the penetration normal and tangent vectors respectively, f is the friction
coefficient. The force on penetration dependance for various vehicle parts is take from [10]. The
penetratration depth is checked couple by couple (segment k to open polygon line l, see Fig. 4c
over the whole human body and over the whole open polygon and the particular penetration
depth is computed as the distance between the vehicle structure open polygon line l and the
parallel line tangent to the ellipse surface l′. Mathematically the line parallel to the open polygon
line is constructed as the general line l′ tangent to the ellipse with the tangent vector |PlQl|.
There are 2 solutions for such task, so it is necessary to choose the solution l ′ that is closer to
the line |PlQl| otherwise the situation appeared on the ellipse opposite side. Introducing the
line l′, the contact point Ck is also detected. The contact force point of action (here line of
action since all forces of the same value applied on a line to a rigid body have the same action)
is the intersection of the vehicle structure open polygon line l and the perpendicular line going
through the tangent point of contact p. Let us denote the intersection between lines p and l as
the bottom point Bl. The force action line is constructed as the line p perpendicular to the line
|PlQl| going through the contact point Ck.

In several cases, an edge contact might happen, see Fig. 4b. If there is the edge contact (see
Fig. 4b and Fig. 4c) and the bottom point Bl is introduced outside the open polygon line (t fall
outside the interval [0, 1], see Fig. 4b), the bottom point comes to the edge point Q l where the
penetration is currently highest. The force action line becomes then p′.
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If the segment k is in contact with more open polygon lines (e.g. l1 and l2, see Fig. 4c),
all contacts are treated separately and separate contact forces Fc1 and Fc2 act on the particular
segment. There is no reaction on the vehicle considering its higher mass. Concerning the par-
ticular segment k, the forces Fci, i ∈ {1, . . . , s} are translated to its centre of gravity including
a moment caused by translation. The contact forces acting from the i ∈ {1, . . . , s} contact pairs
on segment k is decomposed to the global coordinate system axis and togehter with the moment
appears then in the right hand side vector r in (20) as

r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
l∑

i=1

Fckle1

...

mkg +
l∑

i=1

Fckle2

...
l∑

i=1

Mkl

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

4. Results

Numerically, the complete simulation model is implemented and solved in the form

[
M ΦT

q

Φq O

] [
q̈
−λ

]
=

[
r
γ

]
(28)

that leads to the system of 33 second order non-linear ordinary differential equations

q̈ = M−1
[
r +ΦT

q

(
ΦqM

−1ΦT
q

)−1 (
γ −ΦqM

−1r
)]

, (29)

where r is the right hand side including also the first order derivative expressions. The Baum-
gart’s stabilization [6] for better convergence is used to stabilize the system. It leads to the final
form of the solution as

q̈ = M−1
[
r +ΦT

q

(
ΦqM

−1ΦT
q

)−1
(
γ − αΦ̇− β2Φ−ΦqM

−1r
)]

, (30)

where α and β are the Baumgart’s stabilization constants. The system is numerically solved
in MATLAB R2010a [11] computational environment using especially the ode45 function for
numerical integration and the fzero function for the contact point detection. Other mathematical
operations concern standard matrix manipulation.

Fig. 5 shows a typical pedestrian kinematic state of the impact situation at time 75 ms af-
ter the impact in the developed software [9]. The impact takes into account a 5 %-tile female
pedestrian impacted by the standard passengers’ car defined by Kerrigan [10] with car initial
velocity 30 km/h. Fig. 6 shows the head output, namely relative head to car position in plane,
head velocity and head acceleration. The same output is stated in Fig. 7 for thorax. The accel-
erations are filtered by the Channel Frequency Class (CFC) [3]. In accordance with SAE J211,
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Fig. 5. Kinematic state

Fig. 6. Head output
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Fig. 7. Thorax output

a 4-channel Butterworth low pass filter with linear phase and special starting condition is used
as a digital filter as

Yi = a0Xi + a1Xi−1 + a2Xi−2 + b1Yi−1 + b2Yi−1 , i ∈ 1, . . . , N, (31)

where X is the input signal, N is the number of samples and Y is the output filtered signal. The
filter constants are calculated as [3]:

ωd = 2π · CFC · 2.0775, a0 = ω2
a

1+
√
2ωa+ω2

a
, b1 = −2(ω2

a−1)

1+
√
2ωa+ω2

a
,

ωa =
sin

Tωd
2

cos
Tωd
2

, a1 = 2a0, b2 = −1+
√
2ωa−ω2

a

1+
√
2ωa+ω2

a
,

a2 = a0,

(32)

where CFC is the filter parameter (180 for the thorax according to ISO 6487 and 1000 for the
head according to SAE J211 [3]) and T is the sampling rate, here it is the time interval between
2 followed saved time history states. The difference equation describes a 2-channel filter. To
realize a 4-channel filter, the data of the 2-channel filter has to run twice; once forwards and
once backwards, to prevent phase displacements. The filter constants ωd are calculated in the
ISO 6487 sample code differently to SAE J211 as

ωd = 2πCFC · 1.25 · 5
3
= 2π · CFC · 2.083̄ . (33)

The current simulation results in HIC = 25846 that is really high considering fatal head
injuries but typical for such simulation and in 3ms = 56 that is under the injury limit [13].

4.1. Injury description

Injury criteria meassures related to the acceleration of the particular segment are implemented
in order to analyze the particular injury of a human body [13]. Currently it concerns the head
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injury criterion (HIC) and thethorax injury criterion (3ms). Whilst the 3ms criterion is the
highest thorax acceleration lasting at least 3 miliseconds, the head injury criterion is stated as
the integral

HIC = max
0≤t1≤t2≤T

(
1

t2 − t1

∫ t2

t1

ahead(t)dt

)2.5

(t2 − t1), (34)

where ahead(t) is the head centre of gravity acceleration during the loading, t2 and t1 are two
arbitrary times during the acceleration pulse. Time values are to be provided in seconds. For
example, the victim of an accident sustains a head injury if HIC36 < 1 000, where the time
window is t2 − t1 ≤ 36 ms.

5. Discussion

The above-mentioned study employs the standard multi-body system modelling approach for
the used in biomechanics, especially the impact biomechanics. The main advantage of the
multi-body system approach is the computation speed. The pedestrian impact scenario takes
usually considerable time comparing to the standards crash simulation since the global kine-
matics of the pedestrian due to the free space after the impact. Hence the fast computation of
the global kinematics including basic injury description is profitable. Such simulation can be
followed by a deeper injury analysis e.g. by detailed finite element models whose have much
higher requirements on computational time. Moreover, merging the multi-body system ap-
proach with some deformable elements like flexible joints, continuous contact models or even
finite element parts ensure even wider exploitation of the model in the field of safety system
development. The current study shows the planar approach that can be simply extended to the
full 3D spatial modelling. The multi-body skeleton of the model can also carry realistic human
shapes modelled by finite elements surfaces.

6. Conclusion

The paper shows a multi-body approach towards modelling of the human body response caused
by the external impact loading. The human body is segmented into 11 major parts that com-
pose together an open-tree linked multi-body structure. Particular neighbouring segments are
connected by rotatinal joints with non-linear stiffness. Each segment carries a mass and inertial
properties and its shape is simplified by an ellipse in order to simulate a contact surface. Contin-
uous contact model based on penetration dependent contact force for each penetrating segment
couples is implemented in order to asure correct impact loading due to the external contact.
Age scaling concerning anthropometry, mass distribution and joint flexibility is derived. Injury
criteria meassures are implemented in order to analyze the particular injury of a human body.
The model serves for fast analysis of a frontal pedestrian impact that might go before a detailed
analysis using more complex virtual human body models or physical tests with dummies. The
2D approach seems to be a promising fast tool for simple analysis even including multiple body
contact.
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[6] Hajžman, M., Polach, P., Application of stabilization techniques in the dynamic analysis of multi-

body systems. Applied and Computational Mechanics, 1 (2007) 479–488.
[7] Haug, E., Choi, H. Y., Robin, S., Beaugonin, M., Human models for Crash and impact simulation.

Elsevier, North Holland, 2004.
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