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Abstract

The goal of this work is to show the possibility of the identification of laminate beam specimens elastic pro-
perties with cross-ply laminae stacking sequences using prescribed eigenfrequencies. These frequencies are not
determined experimentally in this paper but they are calculated numerically by means of the finite element (FE)
software MSC.Marc. The composite material properties of the FE model based on Euler-Bernoulli theory have
been subsequently tuned to correlate the determined frequencies in cross-ply laminate beams with the eigenfre-
quencies obtained by the software package. A real-coded genetic algorithm (GA) and a micro-genetic algorithm
(μGA) are applied as the inverse technique for the identification problem. Because a small efficiency of the GAs in
searching for Poisson’s ratio values was found, this parameter and the in-plane shear modulus have been estimated
by using the law of mixtures. Some numerical examples are given to illustrate the proposed technique.
c© 2011 University of West Bohemia. All rights reserved.
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1. Introduction

Composite materials are widely employed in modern industry. Analysis and design of structures
manufactured from these materials depend directly upon accurate knowledge of their properties.
Hence the property evaluation is one of the important goal of research.

Chu and Rokhlin [5] determined the elastic properties of composite from ultrasonic bulk
wave velocity data. Balasubramaniam and Rao [2] carried out the reconstruction of material
stiffness properties of unidirectional fiber-reinforced composites especially from incident ultra-
sonic bulk wave data. Computer-generated ultrasonic phase velocity data were used as the
input to the GA that has been implemented for the parameters reconstruction. In the above two
references, the Christoffel equation was applied to establish the relationship between material
properties and bulk wave velocity. Complicated techniques were needed to measure the phase
velocity of ultrasonic bulk waves and only single-ply anisotropic materials were considered in
their works.

A number of researchers developed numerical-experimental methods in which experimental
eigenfrequencies were used to identify elastic properties of composites. An indirect identifica-
tion method for prediction the composite properties of plate specimens using measured eigen-
frequencies is presented in [18]. The authors applied the Mindlin plate theory in combination
with a FE model for the laminate analysis. Frederiksen [6] identified the elastic constants of
thick orthotropic plates, whereas a mathematical model based on the higher-order shear defor-
mation theory has been applied. This solution provides reliable estimations of the two transverse
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shear moduli. Ip et al. [10] also investigated eigenfrequencies in the orthotropic material. Fur-
thermore, the mode shapes were measured on specimens with balanced symmetric lamination
which were excited by an impact hammer. In parallel, an analytical model describing the modal
responses of composite shells was developed using the Rayleigh-Ritz method. This model was
subsequently tuned to correlate the theoretical frequencies with the measurements via Bayesian
estimation. In the study [19], physical experiments were performed on the sample plates to mea-
sure the eigenfrequencies by a real-time television holography. The basic idea of the proposed
approach corresponds to simple FE models which are determined only in the reference points
of the experiment design. Therefore, a significant reduction against the conventional methods
of minimization can be achieved in calculations of the cost function.

Liu et al. [15] developed the hybrid numerical method (HNM) which has been employed to
calculate the transient waves in anisotropic laminated plates excited by impact loads. It com-
bines the finite element method (FEM) with the method of Fourier transforms and it is described
in [16]. The HNM and its modified version is then used as a forward solver in some identifica-
tion problems, see e.g. [13, 14]. The GA or μGA, alternatively combined with another method
(for example with the nonlinear least squares method [13]), were usually adopted in these works
as the inverse operator controlling the forward solver for material characterization using elas-
tic waves. In the work [14], the dynamic displacement responses were obtained at only one
receiving point of laminate surfaces. The robustness of procedure of the measurement noise
effect has been investigated by adding Gauss noise to the input displacement response. Han
et al. [9] utilized HNM to reconstruct the elastic constants of the cross-ply laminated axisym-
metric cylinders subjected to an impact load. In this case, the laminated cylinder was divided
into layered cylindrical elements in the thickness direction.

In addition, other techniques of material properties identification have been introduced in
recent years. For instance, Genovese et al. [7] published a novel hybrid procedure for the
mechanical characterization of orthotropic materials. This identification reverse problem has
been solved by combining spectral interferometry and a combinatorial optimization technique,
known as simulated annealing. Another numerical-experimental method for the identification
of orthotropic materials is given in [12]. A biaxial tensile test was performed on a cruci-
form test specimen. The displacement field observed by a CCD camera and measured by
a digital image correlation technique has been compared with a strain field which was com-
puted by FEM. Newton-Raphson algorithm was used as an optimisation procedure. Kam and
Liu [11] presented method for the determination of bending stiffness distribution of laminated
shafts. The difference between predicted and measured deflections was minimized at any two
points on the shaft using a quasi-Newton method. The view of material properties identifi-
cation techniques is covered by Chen and Kam [4] who developed a two-level optimization
method for material characterization by using two symmetric angle-ply beams with different
fiber angles subjected to three-point bending. The best estimates of shear modulus and Pois-
son’s ratio of the beam with fiber angles 45◦ are determined in the first-level optimization pro-
cess. In the second level, the known shear modulus and Poisson’s ratio are kept constant and
Young’s moduli of the second angle-ply beam with fiber angles different from 45◦ are identi-
fied.

In the present study, the possibility of the prediction of elastic properties in laminate beam
specimens with different cross-ply laminae stacking sequences using prescribed eigenfrequen-
cies is presented. The frequencies are determined by the FE software package in place of using
the experimental method. These values were compared with the spectral analysis results of the
FE models of beam. The GA and μGA are applied to manage the inverse problem.
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2. FE formula in forward analysis

The FE model of beam based on Euler-Bernoulli theory is used for the calculation of the eigen-
frequencies. In the (x1, x2, x3) coordinate system, the displacement field is given by

u1(x1, x3, t) = u(x1, t) + x3 ψ(x1, t) , u2(x1, x2, x3, t) = 0 , u3(x1, t) = w(x1, t) , (1)

where u(x1, t) and w(x1, t) are the displacements due to extension and bending, respectively,
and ψ(x1, t) denotes rotation about the x2-axis. Besides, the displacement u(x1, t) can be re-
written in the form

u(x1, t) = uc(x1, t)− zcψ(x1, t) , where zc = B11/A11 . (2)

The symbol uc(x1, t) denotes the centroidal axis displacement. The stiffness parameters A11

and B11 are defined as

(A11, B11) =

n∑
k=1

Qk
11

∫ hk

hk−1

b(x3)(1, x3)dx3 , (3)

where

Qk
11 =

Ek

1− νLT νTL

and Ek =

{
EL for θk = 0 ,
ET for θk = π/2 .

(4)

The longitudinalEL and transverse ET Young’s modulus including the Poisson’s ratios νLT , νTL

represent the material properties of beam FE model that is consisted of n layers which are
supposed to be orthotropic in the (L, T, T ′) directions, see Fig. 1. Each layer k is extended
from lower face hk−1 to upper face hk in the x3 direction. The angle θk is orientated with
respect to the x1-axis and takes only values 0 or π/2. It is also depicted in Fig. 1 that the FE
model is symmetric in the x1−x3 plane. The beam cross-section is assumed to be uniform with
a various shape having width b(x3) and the overall thickness h. The length of the FE is le.

The two-noded elements are used for the beam discretization. The linear and cubic polyno-
mials are chosen as the displacement shape functions of the element, i.e.

uc(x1, t) = [1, x1][a0(t), a1(t)]
T, w(x1, t) =

[
1, x1, x

2
1, x

3
1

][
a2(t), a3(t), a4(t), a5(t)

]T
. (5)

Consequently, the functions u(x1, t), w(x1, t) and ψ(x1, t) which describe deformations of
a beam element can be expressed in terms of the nodal displacement components qe(t) =
[q1(t), q2(t)]

T , where

q1(t) = [u(0, t), u(le, t)]
T and q2(t) = [w(0, t), w(le, t), ψ(0, t), ψ(le, t)]

T. (6)
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Fig. 1. FE model of laminated beam with symmetric cross-section
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M. Zajı́ček et al. / Applied and Computational Mechanics 5 (2011) 239–252

Because the derivation of the FE beam is based on Euler-Bernoulli theory, the relation ψ =
−∂w/∂x1 is valid. Then only one stress tensor component σ11 = σ1 is generally nonzero.
Therefore the constitutive equations of the kth layer reduce to

σk
1 = Qk

11 ε1 , (7)

where ε1 is a strain tensor component ε11 and the parameter Qk
11 is given by relation (4).

Using the principle of virtual work, the element governing equation of the free vibrations
can be written as

Meq̈e(t) +Keqe(t) = 0 , (8)

where Me and Ke are element mass matrix and element stiffness matrix, respectively. The
detail form of these matrices is stated in [22] where the viscoelastic orthotropic beam element
was derived according to Timoshenko theory. However, the FE beam based on Euler-Bernoulli
theory can be easily obtained by omitting the transverse shear strain as it is mentioned in that
paper. Assembling all the element matrices, the free vibration equation of the beam can be
expressed in the form

Mq̈(t) +Kq(t) = 0 , (9)

where M is the total mass matrix, K is the total stiffness matrix and q is the global nodal
displacement vector. When the periodic motion is considered, i.e. q = ν ei Ω t, Eq. (9) can be
rewritten as

(K − Ω2M)ν = 0 , (10)

whose solution leads to eigenvalue problem. The symbols ν and Ω denote eigenvector and
eigenfrequency, respectively. It could be found in [22] that the matrix M depends only on the
material density and the beam geometry provided that Euler-Bernoulli theory has been conside-
red. Therefore, the new eigenfrequencies can be obtained by solving Eq. (10) when the matrix
K is updated with different elastic material constants. The eigenfrequencies calculated from
Eq. (10) are then taken as an input for the inverse analysis.

3. Inverse problem formulation

The main aim of inverse methods is the determination of a selected set of unknown parameters
in a numerical model. It is necessary to define the objective function which has to be minimized
in the feasible domain of optimization parameters. In our case, this function is constructed
using the sum of relative difference squares of the components of two vectors containing eigen-
frequencies. Then the parametric optimization problem could be formulated as follows:

p̂ = arg

{
fo(p̂) = min

p∈D
[f(p)] = min

p∈D

[
n∑

i=1

(1− Ωi(p)/Ω
exp
i )

2

]}
, (11)

where p = [α1, . . . , αs]
T ∈ D ⊆ Rs is a vector of unknown optimization parameters. The

domain D is a convex set and is defined by constraints: αl
k ≤ αk ≤ αu

k for k = 1, 2, . . . , s.
The vector Ωexp = [Ωexp

1 , . . . ,Ωexp
n ]T represents eigenfrequencies that are considered as known.

Finally, Ω(p) ∈ Rn is the vector of eigenfrequencies which are computed from Eq. (10) for ad-
missible values of a vector p. The GAs are then employed to search these unknown parameters
αk. The main procedure of the GAs for our problem is presented below.
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4. Genetic algorithms

These are very effective algorithms searching for optimal or near-optimal solutions over the
investigated finite domain. These methods have been developed by Goldberg [8] according to
the idea of Darwin’s Theory of Evolution. The GAs are suitable for finding the global optimum
of optimization problems which have many local maxima and minima. They also posses the
advantages of easy solving of the mixed problems with continuous and discrete variables, and
without need of the objective function continuity. For these reasons, the GAs have been adopted
to our optimization problem (11).

In the traditional GA, all variables of interest are encoded as binary digits which are known
as genes. Collection of these genes further forms so-called chromosome. After manipulation
of a binary-coded GA, the final binary numbers are then decoded as original real numbers.
On the other hand, a real-coded GA has been also proposed in recent years, see e.g. [3]. The
main discrepancy is that all genes in a chromosome are real numbers. It is more convenient
to deal with most practical engineering applications because the changes from a real number
to the binary digits may be the cause of a loss of the number precision. A real-coding also
promotes the calculation efficiency because of straightforward using numbers in representa-
tion. Moreover, the various types of genetic operations can be simply adjusted or defined, as
given in [17]. For these reasons the real-coded GAs are used in this paper to estimate the
elastic properties in laminate beams with cross-ply laminae stacking sequences. In addition
to the above, it should be mentioned that attempts to utilize the combination of binary and
real genes to identify the unknown system can be found in literature. For example, a hybrid
GA taking the advantage of binary and real digits including quantum computing is presented
in [21].

In this work, the GA making use of the traditional genetic operators is applied as optimiza-
tion technique. The algorithm starts with an initial population of N chromosomes randomly
selected in the searching space D. The selection, crossover and mutation operations are conse-
quently performed to create next generation. The elitism operator is also adopted to replicate the
best individual of current generation. This process is repeated until the convergence criterion or
the maximum generation number Ng is achieved.

It has been pointed out in previous studies that a μGA is more robust algorithm for solving
multi-parameter inverse problems than the traditional GA. According to Liu and Xi [16], the
robustness of a uniform μGA lies in producing of a new genetic information due to the popu-
lation restart process. Therefore, the μGA has been as well used besides the GA to search the
unknown parameters. The structure of this algorithm is a similar to the above described GA
but some differences can be found. The population is very small and usually includes only 5
or 6 individuals. Due to this fact, small discrepancies among individuals in the population are
observed in a few generations and the convergence to some optimum occurs. At this point,
a new population is randomly generated while keeping the best individual from the previously
converged generation and the evolution process is thus restarted. The mutation operator is not
applied for the population evaluation in the μGA because of new chromosomes keep flowing
when the micro population is reborn.

Before the brief description of used real-coded genetic operations, some notations should
be introduced. Let the vector of unknown parameters pi = [α1i, . . . , αsi]

T , see Eq. (11),
means the ith chromosome in the gth generation of a population P (g) = {p1, . . . ,pPs} where
i = 1, . . . , Ps while Ps is population size. Furthermore, the parameters pc and pm evaluate
a probability of the performance of crossover and mutation operations, respectively.
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4.1. Selection operation

The tournament selection has been chosen to generate offsprings since it is quite simple and
suitable for checking whether a chromosome is reproduced or not according to its corresponding
objective function. We randomly select 2 (may be up to Ps − 1) individuals from the current
population and the best one minimum objective function value is added to the next population
which is consequently subjected to other genetic operations. The process is repeated Ps times.

In addition, the roulette wheel selection mechanism is described in this part. This method
is utilized below in the selection of suitable crossover type. The roulette wheel selection can
be visualized by an imaginary wheel. Each parameter of observed set occupies an area that
is related to its objective function value. When a spinning wheel stops, which is in practice
represented by a randomly generated number from the range 〈0, 1〉, a fixed marker determines
selected parameter. Such a selection mechanism needs more numerical computations but the
probability of more frequent selection of one parameter can be easily increased, see the next
subsection.

4.2. Crossover operation

As mentioned earlier, probability of crossover pc is one of the parameters of genetic system.
This probability gives us the expected number pc × Ps of chromosomes which undergo the
crossover operation. The process is started by generating a random number r from the range
〈0, 1〉 for each chromosome in the population that was subjected to the tournament selection.
If r < pc, the chromosome is selected for crossover. These parents are consequently mated
randomly to make offsprings, i.e. new chromosomes. The result of this operation significantly
depends on selected type of operator. In this work, the three various types of crossover operators
are applied in evolutional algorithms. Note that the parameter a ∈ (0, 1) contained in the
following relations is generated randomly.

4.2.1. Simple crossover

Let parents pi = [α1i, . . . , αsi]
T and pj = [α1j , . . . , αsj]

T are selected to be crossed after the
kth position where k ∈ {1, 2 . . . , s− 1} is a random number. The offsprings p̃i and p̃j are then
in the form

p̃i = [α1i, . . . , αki, (1− a)αk+1,i + aαk+1,j, . . . , (1− a)αsi + aαsj]
T ,

p̃j = [α1j , . . . , αkj, (1− a)αk+1,j + aαk+1,i, . . . , (1− a)αsj + aαsi]
T . (12)

The results obtained from test cases in [17] showed that the system without simple crossover is
less stable than the system without arithmetical crossover. In these tests, the traditional GA has
been used in solving of optimization problems.

4.2.2. Arithmetical crossover

This operator is defined as a linear combination of two vectors. If parents pi and pj are crossed,
the offsprings are given as follows:

p̃i = api + (1− a)pj , p̃j = apj + (1− a)pi . (13)

It follows from tests performed by Michalewicz [17] that the GA without arithmetical crossover
has slower convergence.
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4.2.3. Heuristic crossover

This operator is unique because it utilizes values of the objective function f(p) defined in
Eq. (11) to the determination of next search direction. Moreover, the heuristic crossover pro-
duces only a single offspring. Regarding to this fact, we generate the parameter a twice for the
given parents pi and pj , and the following process of determination of a chromosome p̃ is also
repeated two times,

p̃ =

{
pj + a (pj − pi) for f(pj) ≤ f(pi) ,
pi + a (pi − pj) otherwise.

(14)

It seems that this operator can help us in searching for more accurate solution. It is in particular
useful to fine local tuning when all chromosomes are already near each other in the population.
Note that this operator may produce offspring outside the domain D. In such a case another
random value a is generated and another offspring is created. If after three attempts no new
feasible solution is found, this crossover is replaced with the arithmetical crossover.

It is obvious that all three types of crossover operations are useful in the evolutional process
and should be applied. But, some operators are better to use at the start of searching and some
of them are more useful to use when the evolutional process finishes. Therefore we defined the
probabilities of a selection for each crossover operation type in the following way:

p1 = 1− (p2 + p3) , p1 ∈ (0, 1) for simple crossover, (15)

p2 = s1 + s2s
−c
3 , p2 ∈ (0, 1) for arithmetical crossover, (16)

p3 = s4 + s5s
−c
6 , p3 ∈ (0, 1) for heuristic crossover, (17)

where s1, . . . , s6 are chosen real parameters and c ≥ 0. Let Si denotes the standard deviation of
numbers in the ith row of a population P (g) and αi is the arithmetic mean of the same numbers.
Then the parameter c is defined as

c = max {|S1/α1| , |S2/α2| , . . . , |Ss/αs|} . (18)

If the probabilities are calculated according to Eqs. (15)–(17), the selection process based on
the roulette wheel is performed and the selected type of crossover is applied in the algorithm.

Note that the parameter c which means the absolute value of the variation coefficient is also
used in the restart process. When the condition

c < ε for ε > 0 (19)

is satisfied, a new population is always generated in the evolutional process.

4.3. Mutation operation

This operator is performed on a gene-by-gene. The probability of mutation pm provides the
expected number pm × Ps × s of mutated genes. Every gene should have an equal chance to
undergo mutation. Hence, we generate a random number r from the range 〈0, 1〉 for each gene
in the whole population. If r < pm, the gene is replaced. The main purpose of mutation is to
keep the variety of population in the evolutional process and allows possible movement away
from a local optimum in the search for a better result. On the other hand, a frequent mutation can
be the reason of a low convergence of the whole algorithm. Therefore parameter pm is usually
set less than 0.05. These are the reasons why we decided to use only a uniform mutation in our
algorithm. In this case, a selected gene is replaced by a random number from the admissible
domain D.
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5. In-plane shear modulus estimation

It is clear from Eqs. (4) and (7) that the FE model based on Euler-Bernoulli theory described
in the section 2 is not able to identify the in-plane shear modulus GLT of a cross-ply laminate.
But if some fibres and matrix material properties of longitudinal composite layers are known,
the modulus GLT could be estimated by means of the law of mixtures [1] as presented below.

Let us consider that the values of Poisson’s ratios and density of fibres and matrix are known.
These parameters are usually constant for the specified material type and could be commonly
found on the web site of manufacturers. Besides this, we assume that the composite material
density ρ can be calculated with the aid of weight and volume of the specimen. Then the fibre
volume fraction Vf can be obtained from the simplified relations expressed by

ρ = ρf Vf + ρm Vm and Vm = 1− Vf , (20)

where ρf and ρm are fibres and matrix density, respectively. The parameter Vm denotes matrix
volume fraction. Further, we expect that the parametric optimization problem has been per-
formed and the Young’s moduli EL and ET were identified. If we suppose the validity of the
law of mixtures for the moduli EL and ET , i.e.

EL = Ef Vf + Em Vm and
1

ET
=

Vf

ETf
+

Vm

Em
, (21)

and if we define the coefficients

rmf =
Em

Ef
∈ (0, 1〉 , rff =

Ef

ETf
≥ 1 and rLT =

EL

ET
≥ 1 , (22)

where Em is matrix Young’s modulus and Ef and ETf are longitudinal and transverse fibres
Young’s moduli, respectively, we can obtain the quadratic equation of variable rmf in the form

(Vf Vm rff ) r
2
mf + (Vf

2rff + Vm
2 − rLT ) rmf + Vf Vm = 0 . (23)

Solution of this equation for the “reasonable” input coefficients rff and rLT leads to finding
an admissible root rmf from feasible domain defined in (22)1. Consequently, the relation

1

GLT
=

Vf

GLTf
+

Vm

Gm
(24)

is used to determine the in-plane shear modulus GLT . The symbol GLTf denotes the in-plane
shear modulus of fibers and Gm is the shear modulus of matrix. It is concurrently assumed that
these moduli could be determined for isotropic matrix material and generally orthotropic fibres
material using the relations

Gm =
Em

2 (1 + νm)
and GLTf =

Ef

2 (1 + νf ) rGf
, (25)

where rGf = 1 for isotropic and rGf > 1 for orthotropic fibre material. The symbols νf and
νm mean the major Poisson’s ratio of fibres and the Poisson’s ratio of matrix, respectively. By
combining Eqs. (21)1, (22)1 and (25) with Eq. (24), we obtain

GLT =
EL rmf

2 (Vf + Vm rmf) [Vf (1 + νf) rGf rmf + Vm (1 + νm)]
. (26)
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6. Numerical examples and discussion

Identification of elastic properties is demonstrated on examples of single-end clamped beams.
These beams are assumed to be made of cross-ply laminates with various stacking sequences of
layers as shown in Table 1. The geometric properties are chosen as follows: length and width of
beams are 240mm and 8mm, respectively, each laminate has the same material properties of all
layers which have the uniform thickness 0.5mm. The mechanical properties of two investigated
orthotropic composite materials are taken from [20] and are introduced in Table 2.

Table 1. Stacking sequences of used cross-ply laminates

Laminate model ID VAR1 VAR2 VAR3
A [02/904/04] [02/902/0]S [0/90]5
B [902/04/904] [902/02/90]S [90/0]5

Table 2. Mechanical properties of used unidirectional laminae

Composite material type T300/BSL914C epoxy E-Glass/MY750/HY917/DY063 epoxy
Material model ID MAT1 MAT2
Fibre volume fraction, Vf [−] 0.6 0.6
Longitudinal modulus, EL [GPa] 138 45.6
Transverse modulus, ET [GPa] 11 16.2
Shear modulus, GLT [GPa] 5.5 5.83
Major Poisson’s ratio, νLT [−] 0.28 0.278
Transverse Poisson’s ratio, νTT ′ [−] 0.4 0.4

The vector Ωexp of frequencies is not stated experimentally but is calculated numerically
with the help of software MSC.Marc. This approach was chosen to verify the quality of the ma-
terial identification process when the FE model with beam elements described in this work has
been employed. At first, we analyzed the influence of the number of used FEs on values of first
four flexural frequencies. The mesh of 32 × 2 regular four-node isoparametric shell elements
with linear approximations of displacements was created using the software of MSC.Mentat.
On the contrary, the beam element model contained only 8 elements. It was observed that the
increase of element number in both model has a very small influence on the change of flexural
eigenfrequencies values. As shown in Table 3 for laminate model VAR1, the eigenfrequency
errors are about 5% in comparison to both numerical model results. We came to similar con-
clusions in all other calculated cases.

Table 3. First four flexural frequencies in cycles per time, laminate model VAR1

FE model ID MAT1 MAT2
1 2 3 4 1 2 3 4

Shell elements (MSC.Marc) A 124.2 770.4 2124 4073 63.54 397.5 1111 2171
B 51.01 319.5 894.7 1754 42.72 267.8 750.5 1474

Beam elements A 124.9 782.2 2190 4292 64.66 405.1 1134 2223
B 53.64 336.0 940.5 1844 45.94 287.7 805.5 1579
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The identification process of elastic Young’s moduli and the major Poisson’s ratio was
performed according to optimization problem (11). However, it could happen that the same
eigenfrequencies Ω(p) can be obtained from different values of input material parameters
p = [EL, ET , νLT ]

T because the beam is made from orthotropic layers of a various orienta-
tion. Therefore, the objective function f(p) in Eq. (11) is constructed as a weighted sum of
functions

f(p) = ξ1 fA(p) + ξ2 fB(p) , ξ1 = 1 , ξ2 = 1 , (27)

while the same material model ID is assumed. The indexes A and B mean various layer se-
quences stated in the columns of Table 1. This modification of objective function should lead
to the unique solution of elastic parameters. Only first four flexural eigenfrequencies for every
variant A and B are accepted in the whole optimization process. This limit is set for the reason
of ability to reliably detect their maximum values in experimental way in the future.

The GA and the μGA were used to solve the optimization problem (11) where the objective
function was constructed according to (27). The tournament selection and elitism were applied
in all presented simulations. The restart process with parameter ε = 0.001 was also active in
all calculations. The crossover and the mutation probabilities were set to be equal to 0.95 and
0.05, respectively, in the case of GA. When the μGA was employed, the crossover operation
was used with the same probability but the mutation operation was omitted. The parameters in
Eqs. (16) and (17) which have influence on the selection of the crossover operation type were
chosen as follows: s1 = 0.3, s2 = 0.1, s4 = 0.2, s5 = 0.3 and s3 = s6 = 1·106. The maximum
number of generated chromosomes during the process was invariable and was set equal to 3000.
Furthermore, every optimization problem was independently repeated 50 times and the obtained
results were evaluated statistically.

Table 4. Statistical evaluation of EL [GPa] and ET [GPa], laminate model VAR1

Ps ·Ng MAT1 MAT2
Ea

L SEL
Ea

T SET
Ea

L SEL
Ea

T SET

100·30 131.3 0.415 9.609 0.012 44.52 0.548 13.70 0.008
60·50 131.3 0.519 9.612 0.029 44.49 0.594 13.71 0.026
30·100 130.7 2.691 9.634 0.149 44.21 1.247 13.73 0.129
6·500 131.3 0.612 9.605 0.014 44.22 0.817 13.71 0.028

The identification process was started for the following estimation intervals of unknown ma-
terial parameters: EL ∈ 〈10, 1000〉 [GPa], ET ∈ 〈1, 100〉 [GPa], νLT ∈ 〈0.1, 0.4〉 [−]. It can be
seen from Table 4 for the case of laminate model VAR1 that the average values of longitudinal
modulus Ea

L and transverse modulus Ea
T give very similar results for various population size Ps.

The results in the last row of Table 4 were obtained by using the μGA whereas the others by
using the GA. The average estimations of the longitudinal modulus for MAT1 and MAT2 were
different about 5% from expected values in Table 2. But the errors about 15% (difference of
2.5GPa between real and calculated values) were detected for the transverse moduli. Besides,
it can be concluded from Table 4 that the robustness of the GA and the μGA in regard to choice
of initial Young’s moduli values is very good because the standard deviations SEL

and SET
are

small in comparison to average values of Ea
L and Ea

T . Much worse results were obtained in
the Poisson’s ratio calculation. As shown in Table 5, determined average Poisson’s ratios ν a

LT

are not near to expected values of this parameter, even though the best Poisson’s ratios ν b
LT are

rather close to the real values given in Table 2. It is obvious that the identification problem has
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Table 5. Statistical evaluation of νLT [−], laminate model VAR1

Ps ·Ng MAT1 MAT2
νbLT νaLT Sν νbLT νaLT Sν

100·30 0.281 0.241 0.068 0.286 0.239 0.078
60·50 0.281 0.245 0.087 0.277 0.242 0.080
30·100 0.282 0.263 0.118 0.276 0.252 0.106
6·500 0.266 0.233 0.105 0.276 0.270 0.101

a small sensitivity in relation to this parameter, which can be shown by means of the standard
deviation Sν in Table 5, because the ratios of Sν to νa

LT give relatively large values against to
coefficients of variation SEL

/Ea
L and SET

/Ea
T . However, the value of the Poisson’s ratio can be

usually found in a local range for specified material type and it can be estimated reliable using
the law of mixtures

νLT = νfVf + νm Vm . (28)

In view of the fact that similar results were also obtained in the case of the laminate model
VAR2 and VAR3, the Poisson’s ratio νLT has been next calculated according to Eq. (28) and
was removed from a vector of unknown parameters p. The value of νLT is then equal to 0.26
for both material models MAT1 and MAT2 while the Poisson’s ratios of fibres and matrix have
been adopted from [20], see Tables 6 and 7. Differences of computed and real (Table 2) values
are less than 7%.

Table 6. Mechanical properties of used fibres

Fibre type T300 Silenka E-Glass 1200tex
Longitudinal modulus, Ef [GPa] 230 74
Transverse modulus, ETf [GPa] 15 74
In-plane shear modulus, GLTf [GPa] 15 30.8
Transverse shear modulus, GTT ′f [GPa] 7.0 30.8
Major Poisson’s ratio, νf [−] 0.2 0.2

Table 7. Mechanical properties of used matrices

Matrix type BSL914C epoxy MY750/HY917/DY063 epoxy
Modulus, Em [GPa] 4.0 3.35
Shear modulus, Gm [GPa] 1.48 1.24
Poisson’s ratio, νm [−] 0.35 0.35

The identification process has been repeated again to generate a new vector of unknown
material parameters p = [EL, ET ]

T . The Poisson’s ratio νLT was assumed constant during
every computation and equals to 0.26 for all laminate and material models. The longitudinal
and transverse moduli obtained using the μGA and the GA for various numbers of Ps and Ng

gave very similar results. Therefore, only the results of the μGA are presented in the following
text. The ranges of investigated parameters were chosen as above, i.e. EL ∈ 〈10, 1000〉 [GPa],
ET ∈ 〈1, 100〉 [GPa].

As it is obvious from Tables 8 and 9 for VAR1 and VAR2, the value of the Poisson’s ratio
νLT has a neglected influence on computation of Young’s moduli EL and ET in comparison
to results in Table 4. The low values of the standard deviations SEL

and SET
mean that our

optimization algorithm is robust for searching parameters. However, these conclusions are not
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Table 8. Statistical evaluation of longitudinal modulus EL [GPa], νLT = 0.26 [−]

Model MAT1 MAT2
VAR1 VAR2 VAR3 VAR1 VAR2 VAR3

Eb
L 131.7 131.9 137.5 44.53 44.80 45.52

Ea
L 131.3 131.6 95.29 44.46 44.57 27.97

SEL
0.109 0.148 35.40 0.033 0.079 15.19

Table 9. Statistical evaluation of transverse modulus ET [GPa], νLT = 0.26 [−]

Model MAT1 MAT2
VAR1 VAR2 VAR3 VAR1 VAR2 VAR3

Eb
T 9.619 10.43 11.00 13.72 13.88 15.65

Ea
T 9.606 10.30 38.64 13.71 13.77 26.83

SET
0.006 0.037 27.03 0.005 0.029 11.73

valid in the case of VAR3 because incorrect results were obtained for average Young’s moduli.
In addition, large values of standard deviation were computed. The reason of errors lies in the
unsuitable assemblage of composite layers, see Table 1. The laminate model VAR3 can be taken
into account as quasi-isotropic on a macroscopic scale in both variants A and B. Therefore, the
vector of computed eigenfrequencies is the same in variant A and B. Due to this fact, there is not
only one solution of the optimization problem in the domain D. This conclusion follows from
the very low objective function value at the end of the optimization process when the number
of generated chromosomes is equal to 3 000. This occurrence was observed in all considered
cases.

It was discussed in the section 5 that the presented mathematical model of the beam is
not able to identify the in-plane shear modulus GLT . Therefore, the method of this modulus
estimation has been proposed. The calculations of GLT were performed for the average Young’s
moduli given in Tables 8 and 9, and for the Poisson’s ratios given in Tables 6 and 7. The
coefficients rff and rGf were set according to elastic moduli values of fibers in Table 6. While
E-glass fibers have isotropic properties and due to the both coefficients were set equal to 1, T300
carbon fibres are orthotropic and the coefficients were determined as follows: rff = 230/15

.
=

15.3, see Eq. (22)2; GLTf ≡ ETf =⇒ rGf = rff/[2 (1 + νf)] = 15.3/[2 (1 + 0.2)]
.
= 6.39,

see Eqs. (22)2 and (25)2. The volume fraction Vf = 0.6 (Table 2) was assumed constant in all
calculated problems. Note that the mechanical properties of a certain material class, as Young’s
moduli or the Poisson’s ratio, are usually almost invariable. This fact can be also supported
for the carbon fibres (namely for fibre types AS4 and T300) by experimental data given in [20].
Therefore, we can suggest the set of coefficients rff = 15 and rGf = 6.2÷6.4 when the specific
material properties of the carbon fibres are unknown.

The results of GLT calculations for VAR1 and VAR2 are stated in Table 10. The variant
VAR3 was not considered. When we compare the values of shear modulus from Tables 2
and 10 it is evident that the best computed value was found in the case of the material model
MAT1 and VAR2 where the relative error was less than 4%. In the rest cases, the relative
difference between the known and calculated values is about 12%, which is result comparable
to results obtained for the transverse moduli. If we compute the shear modulus GLT only with
real data from Tables 2, 6 and 7, we obtain even more better results. These moduli are as
follows: GLT = 5.69 [GPa] for MAT1 (error 3.4%) and GLT = 6.09 [GPa] for MAT2 (error
4.5%).
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M. Zajı́ček et al. / Applied and Computational Mechanics 5 (2011) 239–252

Table 10. Calculated values of average shear modulus GLT [GPa], Vf = 0.6 [−]

Model MAT1 MAT2
VAR1 VAR2 VAR1 VAR2

rLT 13.67 12.78 3.243 3.237
rmf 0.030 0.034 0.088 0.089
GLT 4.804 5.286 5.145 5.168

7. Conclusion

It has been shown in this paper that the robustness of genetic algorithms is very good for the
determination of Young’s moduli values. This method is particularly effective for a low time-
consuming computation of chromosomes in a generation. Acceptable values of the modulus
EL were calculated but worse results were obtained for moduli ET and GLT . These results are
partially influenced by the selection of used mathematical model of a beam because of the dif-
ferences between eigenfrequencies obtained from shell and beam elements. The calculation of
the shear modulus GLT was then directly dependent on the values of EL and ET . The computa-
tion of the Poisson’s ratio νLT gave high standard deviation values when inverse procedure was
used for identification. However, a small influence of νLT value on values of Young’s moduli
was found. In practice the value of νLT is quite close in vicinity of 0.3 and can be stayed close
to this value or can be computed by using the law of mixtures when the volume fraction of fibers
and the Poisson’s ratios of the fibers and the matrix are known.

The proposed methodology has some disadvantages. The measurement of eigenfrequencies
has to be performed on two independent specimens with different layer sequences. Due to
this fact, the beam specimen made of a quasi-isotropic laminate is not suitable to use for the
identification of material properties. In addition, we have to determine the volume fraction of
fibers and we have to know some material properties of fibers and matrix when we want to
apply the law of mixtures in the calculation of νLT and GLT . It requires the knowledge of
fibers and matrix material properties. On the other hand, the proposed methodology brings
some advantages. The method enables to utilize the simple specimens. Mechanical properties
are directly calculated for a final laminate. Only a few eigenfrequencies given by the simple
test are needed to be computed values of Young’s moduli EL and ET . The required measuring
aparatures are not as expensive as typical static testing machines.

In future, the real measuring of eigenfrequencies is prepared and different mathematical
model of the beam which gives higher accuracy of calculated frequencies should be used.
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